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Abstract

This communication carries out an analytic study on entropy optimization and heat spreading
of an electrically conducting Newtonian fluid flow within permeable and parallel wall channel
in a horizontal orientation. The medium is anisotropic porous passage and permeated by a
uniform transverse magnetic field. Internal heat generation and heating friction are consid-
ered. Relevance and applications dwell in underground sewage and catalytic transportation as
well as in liquid flow rheostats and sensors. Appropriate scaling alterations are administered to
convert the governing partial differential equations (PDEs) to ordinary differential equations
(ODEs). By means of the Laplace’s transform approach the solutions via basic flow controlling
parameters values are evaluated exactly. Fluid dimensionless velocity and temperature distri-
butions are sorted out based on the selected figures of embedded parameters, and their impacts
examined quantitatively and studied in detail via graphs on heat transfer rate, Bejan number
and entropy generation factor. Among others, our findings predict that suction-based viscosity
parameter, magnetic and anisotropic permeability parameters retract the dimensionless axial
velocity, whereas the entropy generation increases significantly by improved viscous dissipation.
Escalation of fluid temperature is predetermined by medium anisotropy. Additionally, further
outcomes unveil that not only Peclet and Reynolds based suctions fail to achieve an impact on
the entropy generation but also the heat generation at the channel centerline.

Keywords: Channel flow; porous medium; Laplace’s transform method; surface heat flux; entropy
generation.
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1 Introduction
The fundamental pioneering knowledge of entropy generation which accounts for the irreversibility
of some thermal processes is handsomely based on the second law of thermodynamics. This law
reiterates that all processes in practice are inherently irreversible. Entropy generation mechanism
remains an important factor used for predicting the minimization of destructive available work/en-
ergy for a majority of engineering devices and components such as in heat exchangers, bladed
and/or bladeless turbines, gas turbines, energy harvesters and many power-consuming industrial
and technical appliances.
Many a researcher has shown keen interest and studied entropy optimization on several body sur-
faces frequently encountered in system processes initiated by Bejan [1,2]. In his pioneering studies,
he has shown that minimizing irreversibility in any thermodynamic system is tantamount to reduc-
ing the operating cost and unplanned wastages. It finds applications in refrigeration plants, system
upgrading of equipment and production work surveillance, and many more.
Adopting Darcy-Brinkman-Forchheimer model, [3] analyzed numerically via the finite volume method
(FVM), the entropy generation of MHD buoyant and forced convection one-phase nanofluid flow
through a vertical porous channel subjected to adiabatic wall temperature and medium porous
structure. They reported that the entropy generation is promoted generally by increasing the in-
herent fluid parameters. More recently, [4] presented a new insight regarding reformulation of the
two Bejan numbers derived from the first law of thermodynamics. Their analysis unveiled the role
and physical meaning of this number as criterion of non-dimensional variable. Enhanced upgrade
in thermal systems and energy during heat spreading in fluid convection is of considerable impor-
tance to material process engineers and manufacturing developers, amongst others. Beneficial and
prevailing applications as itemized above draw the attention of a number of researchers into the
ensuing entropy analysis study in thermal systems.
In their maiden investigation into the heat and mass transfer of a conductive Casson fluid flow within
an inclined microchannel, [5] established that entropy generation rate decreases at the walls with
increasing Hartmann number while noticeable decrements emerge at the center region. Makinde
and Azeez [6] conceptualize on second law analysis via a pressure driven steady Newtonian fluid flow
through a channel with asymmetric wall convective cooling and variable viscosity. They found that
strengthening viscous dissipation can promote the entropy generation rate as well as the dominant
structure of the fluid friction irreversibility. More recent report of [7] on hydromagnetic entropy
penetration of non-Newtonian micropolar fluid boundary layer flow in the neighborhood of a non-
linearly elongating sheet establishes that viscous and Ohmic dissipation dwindle the Bejan factor.
The problems of convective hydrodynamic fluid flow in anisotropic porous media in both macro-
and micro-channels are significantly important; most especially in agro-allied engineering and geo-
logically related applications such as in underground water pollution control, river dam acidification
alongside the mine drainage, thermal insulation in buried heat resistant cables, catalytic fixed-bed
reactors for biodiesel production, amongst others. [8] have conducted a transient natural convection
study of fluid flow in the region interlaced by porous anisotropic permeability between two concen-
tric annular cylinders, and predicted that the effect of temperature stratification further stabilizes
and regulates the fluid flow. Using spectral local linearization method (SLLM); [9] have shown that
both thermal and solutal stratifications unreservedly influence the boundary-layer viscous hydro-
magnetic dual convection of a viscoelastic fluid past an inclined permeable cylinder enshrined in
Darcy resistant porous medium. A handful of studies on channel flow at variant physical properties
have appeared in literature [10–17,36].
The practical importance of heat source or heat generation may arise from a variety of causes such
as radioactivity, dissociating fluids, fluid undergoing exothermic or endothermic chemical reactions,
release of latent heat due to water vapor condensation; the occurrence of which is very often ob-
servable when rain is about to fall in some sub-Sahara regions, etc., the reverse cause of which may
constitute heat sink or absorption.
In many convection fluid flows, attributes of body forces cannot be overruled; they play very signifi-
cant roles as per triggering and/ or controlling the fluid transportation as well as thermal spreading.
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The influence of Lorentz force (considerably comparable with other hydrodynamic forces), which
frequently manifests in an electrically conductive moving fluid traversed by a substantial mag-
nitude of the applied magnetic field, finds its relevant applicability in several system processes
of non-mechanical speed-control ensuing in manufacturing and production activities. Consider-
able applications are encountered in many high-technological devises such as hydromagnetic power
generators, high-speed electronics coolants, magneto-aerodynamic ovens, smelt and molten metal
purifications, and so forth [18]. The classical unidirectional laminar flow problem of an incompress-
ible and viscous electrically conductive fluid permeated by a non-varying magnetic field; applied
transversely to the parallel walls of the channel was pioneered ab initio by [19]. Numerous exten-
sions of this work prevail with ramifications in [20–24] and many other researches. [25] examined
the impact of magnetic and electric fields on the convective cooling process of liquid metal flow
within a duct. Their findings signified that impressed magnetic or electric field could remarkably
enhance or attenuate heat transfer factor. More recently, [26, 37] examined and solved exactly the
peristatic flow of a micropolar fluid within an asymmetric channel subject to Lorentz and Darcy
forces, heat generation and variable thermal conductivity. They considered the effect of wall slips.
Amongst others, their findings stipulate that admittance of the Lorentz force into the flow has the
tendency to eliminate bolus formation.
The main theme of the current model is pivoted on examining the effects of anisotropy porous
structure on electrically conducting fluid amidst transversely imposed magnetic field vis-à-vis the
classical Hartmann flow problem. Reactions of the fluid behaviors consequential to the alterations
in viscosity Reynolds and thermal diffusion Peclet numbers as well as dissipative Brinkman are
accounted for and discussed in detail aposteriori, constraints encompassed with the entropy gener-
ation and Bejan number.

2 Mathematical Formulation
Consider steady, laminar fully developed two-dimensional flow of a viscous and electrically conduct-
ing fluid saturated in a simple anisotropic porous medium; bounded by permeable parallel wall of
infinite extent in a horizontal geometrical configuration as depicted by Figure 1. The lower and
upper walls of the channels are subjected to lateral mass injection and suctions respectively. Both
channel walls are directly exposed to uniform thermal flux q, and the flow is pressure-gradient
driven. The choice of coordinate system indicates that x-axis is along the centerline, while per-
pendicular to it is the y-coordinate axis. The applied uniform magnetic induction B0, is aligned
parallel with the y-axis. The axial and transverse velocities are u and v. is the inlet temperature,
T is the fluid temperature. Hydrodynamic pressure and fluid density are and respectively. Internal
heat generation is Q0.

∇ · V = 0 , (2.1)

ρV · ∇V = −∇p+ µ∇2V + J ∧B +
µ

K
V , (2.2)

(ρCp)V · ∇T = k∇2T +
J2

σ
+Q0 (T + T0) + µϕ . (2.3)

Where electric current density [34,35] is

J = σ

(
E + V ∧B +

1

Ne
∇pe

)
. (2.4)

ϕ = 2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
1

2

(
∂u

∂y
+

∂v

∂x

)2
]

(2.5)
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Figure 1: Schematic Diagram of the Physical Model

is the heat dissipation function. Additionally, N, e and pe are respectively number density, electronic
charge and the electron pressure; E, B are electric and magnetic fields, V = (u, v), whilst the
following usual operators

∇ =

(
∂

∂x
,
∂

∂y

)
, ∇2 =

(
∂2

∂x2
+

∂2

∂y2

)
(2.6)

In the absence of Hall current and Magnetic Reynolds number Rm(= σµeaU0) , µe being the
magnetic permeability of the medium, assumptions are made that electron pressure gradient ∇pe =
0 and E = 0. More so, the symmetrical second-order permeability anisotropic tensor of the fluid-
saturated porous medium [27,28] is

K =

(
K1cos

2θ +K2sin
2θ (K1 −K2)sinθcosθ

(K1 −K2)sinθcosθ K2cos
2θ +K1sin

2θ

)
, (2.7)

Herein, K1 and K2 represent the permeabilities along the principal axes of the porous matrix while
the orientation angle between the horizontal and the principal axis with permeability K2 is θ. The
dynamic viscosity is µ. Insertion of (4) - (7) into (1) - (3) gives the component form of conservation
equations as

∂u

∂x
+

∂v

∂y
= 0 , (2.8)

a

(
u
∂u

∂x
+ v

∂u

∂y

)
+ b

(
u
∂v

∂x
+ v

∂v

∂y

)
=

 a
(
− 1

ρ
∂p
∂x + µ

ρ∇
2u− σB2

0

ρ u
)

+b
(
− 1

ρ
∂p
∂y + µ

ρ∇
2v
)
− µ

ρK2
u

 (2.9)

b

(
u
∂u

∂x
+ v

∂u

∂y

)
+ c

(
u
∂v

∂x
+ v

∂v

∂y

)
=

 b
(
− 1

ρ
∂p
∂x + µ

ρ∇
2u− σB2

0

ρ u
)

+c
(
− 1

ρ
∂p
∂y + µ

ρ∇
2v
)
− µ

ρK2
u

 (2.10)

Where a = k11, b = k12 = k21, c = k22, in (7)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

(
∂2T

∂x2
+

∂2T

∂y2

)
+ σB2

0u
2 + µ

(
u2

κ1
+ fracv2κ2

)
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+ 2µ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
1

2

(
∂u

∂y
+

∂v

∂x

)2
]

(2.11)

Equations (9) - (10) are further simplified and rearranged to obtain

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+

µ

ρ
∇2u− σB2

0

ρ
u− µ

ρK2
cu , (2.12)

Where c = cos2θ+K∗sin2θ, a special case for which θ = π/2, as in (12) signifies c as the anisotropy
parameter, whereas K∗ = K1/K2 is the ratio of permeabilities.
Boundary conditions:

u(x,−a) = 0, v(x,−a) = v0 , ∂T
∂y

∣∣∣
(x,−a)

= − q
k ,

u(x, 0) = Up,
∂u
∂y

∣∣∣
(x,0)

= 0 , T (0, 0) = T0 , ∂T
∂y

∣∣∣
(x,0)

= 0 ,

u(x, a) = 0, v(x, a) = v0,
∂T
∂y

∣∣∣
(x,a)

= − q
k .


(2.13)

Where Up, q, k and Cp are peak velocity at channel centerline, wall heat flux, thermal conductivity
and specific heat of the fluid respectively. It is worthy to mention that of the stated boundary
conditions, two of them are indeed essential for solving (9) - (12). This simulation presumes that
the uniform lateral mass flux, v = −v0. Thusly, (8) reveals that

v = −v0 , u = u(y) ,−∞ < −a ≤ y ≤ a < ∞ , x ≥ 0. (2.14)

Presenting the under-listed scaling variables:

X = αx
v0a2 , Y = y

a , U = u
U0

, P = q
ρU2

0Pr
,

Ha = B0a
√

σ
µ , Da−1 = K2

a2 , Θ = k(T−T0)
qa , Re = av0

ν ,

 (2.15)

and using them via (14) in (9) - (12) to obtain the following ODEs alongside; the accompanied
boundary conditions in cognizance of symmetry about the dimensionless centerline, and neglecting
channel end-effects:

d2U

dY 2
+Re

dU

dY
−
(
Ha2 + cDa−1

)
U = −G (2.16)

∂2Θ

∂Y 2
+ Pe

∂Θ

∂Y
+QΘ = λU −Br

[(
Ha2 +Da−1

)
U2 +

(
dU

dY

)2
]

, (2.17)

Herein, U0 denotes scaled velocity, ν =
(

ν
ρ

)
is the kinematic viscosity, Re

(
= aν0

ν

)
is suction-based

Reynolds number, ε
(
=

Up

U0

)
is the velocity ratio, α

(
= k

ρCp

)
is the thermal diffusion coefficient,

Ha and Da−1, are respectively Hartmann and inverse Darcy numbers, Pr
(
= ν

α

)
, Br

(
=

νU2
0

qa

)
and

Pe
(
= aν0

α

)
are Prandtl, Brinkman and suction-based Peclet numbers respectively. The dimen-

sionless constant axial adverse temperature gradient λ
(
= ∂Θ

∂X

)
, [29, 30]. Nonetheless, if the wall

temperature is constant and the flow is thermally and hydrodynamically fully developed then λ = 0

[26]. Also Q
(
= Q0a

2

k

)
is heat generation/absorption parameter, G

(
= − dP

dX

)
is the dimensionless

pressure gradient. By replacing injection wall velocity ν = −ν0 with suction ν = ν0 in our present
non-dimensional equations of momentum and energy; neglecting permeability of the porous medium
and heat generation/absorption, successfully we recover those of [31]. Furthermore, Pe = 0 signifies
that the flow is purely diffusive heat transfer. Letting

Re = A ,G = −C ,Ha2 + cDa−1 = B , (2.18)
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whereas the Laplace Transform (LT ) of U , being

Ū(S) =

∫ ∞

0

exp(−SY )U(Y )dY , (2.19)

and S > 0, is the Laplace transform parameter. Now taking LT of (16) after mere rearrangement
of terms and simplification, to have

Ū =
εS2 + εAS + C

S(S2 +AS −B)
(2.20)

One now resolves (20) into partial fractions and write

Ū =
D1

S
+

D2

2S +A+
√
(A2 + 4B)

+
D3

2S +A−
√
(A2 + 4B)

(2.21)

Whereby D1, D2, D3 are to be determined. Imposing the solvability conditions on (21) in terms of
Laplace variable S, solving the three encompassed obtained equations simultaneously,

D1 = −C
B , D2 =

(Be+C)(
√

(A2+4B)−A)

B
√

(A2+4B)
,

D3 =
(Bε+C)(

√
(A2+4B)+A)

B
√

(A2+4B)
,

(2.22)

Nonetheless, taking the inverse LT of (21), substituting (22), we find

U(Y ) = D1 +
D2

2 exp

(
A+

√
(A2+4B)

2 Y

)
+ D3

2 exp

(
A−

√
(A2+4B)

2 Y

)
Or its replicate

U = D1 +
1
2exp

(
−A

2 Y
) [

(D3 +D2)coshY
√
A2 + 4B

+ (D3 −D2)sinhY
√
A2 + 4B

]


(2.23)

Succinct scrutiny of (17) reveals that the equation is indeed a mixture of PDE and ODE, and
in consequence one needs to invoke the LT with respect to coordinate variable X. This may be
expressed as

Θ̄(S, Y ) =

∫ ∞

0

exp(−SX)Θ(X,Y )dX . (2.24)

Worthy to reiterate, is the prudent assumption of constancy of the dimensionless adverse temper-
ature gradient λ = ∂Θ

∂X which integrates to yield

Θ = λX + F (Y ) , (2.25)

wherein X and F (Y ) are correspondingly the dimensionless axial position and arbitrary function
of Y .
Applying LT on (17) after substituting (25), one obtains

d2Θ̄

dY 2
+ β

dΘ̄

dY
+QΘ̄ =

1

S

{
λU −

[
γU2 +Br

(
dU

dY

)2
]}

(2.26)

Where
β = Pe , γ = Br

(
Ha+Da−1

)
. (2.27)
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Evaluating the homogeneous part of (26), the resulting complementary primitive function is

Θ̄c = E1e
−β+

√
β2−4SH
2 Y + E2e

−β−
√

β2−4SH
2 Y , (2.28)

Where E1 and E2 are integration arbitrary constants. The particular integral of (26) via (28)
proffers

Θ̄p =
1

S



(λ−γD1)D1

Q +
(α

2 −γD1)D2e
−
(

A+
√

(A2+4B)
2

)
Y(

A+
√

(A2+4B)
2

)2

−β

(
A+

√
(A2+4B)
2

)
+Q

+
(α

2 −γD1)D3e
−
(

A−
√

(A2+4B)
2

)
Y(

A−
√

(A2+4B)
2

)2

−β

(
A−

√
(A2+4B)
2

)
+Q

−

(
γ+Br

(A+
√

(A2+4B))
2

4

)
D2

2
4 e

−(A+
√

(A2+4B))Y

(
A+

√
(A2+4B)

)2
−β
(
A+

√
(A2+4B)

)
+Q

−

(
γ+Br

(A−
√

(A2+4B))
2

4

)
D2

3
4 e

−(A−
√

(A2+4B))Y

(
A−

√
(A2+4B)

)2
−β
(
A−

√
(A2+4B)

)
+Q

− (γ−BrB)
D2D3

2 e−AY

A2−βA+Q



(2.29)

Thusly, the general solution of obtained ODE (26) reads as Θ̄ = Θ̄c + Θ̄p, is inverted Laplacianly
in terms of S to give

Θ(X,Y ) = λX +



(
E1e

−
(

β−
√

β2−4SH
2

)
Y
+ E2e

−
(

β+
√

β2−4SH
2

)
Y

)
δ(X)

− (γ−BrB)
D2D3

2 e−AY

A2−βA+Q +
(α

2 −γD1)D2e
−
(

A+
√

(A2+4B)
2

)
Y(

A+
√

(A2+4B)
2

)2

−β

(
A+

√
(A2+4B)
2

)
+Q

+ (λ−γD1)D1

Q +
(α

2 −γD1)D3e
−
(

A−
√

(A2+4B)
2

)
Y(

A−
√

(A2+4B)
2

)2

−β

(
A−

√
(A2+4B)
2

)
+Q

−

(
γ+Br

(A+
√

(A2+4B))
2

4

)
D2

2
4 e

−(A+
√

(A2+4B))Y

(
A+

√
(A2+4B)

)2
−β
(
A+

√
(A2+4B)

)
+Q

−

(
γ+Br

(A−
√

(A2+4B))
2

4

)
D2

3
4 e

−(A−
√

(A2+4B))Y

(
A−

√
(A2+4B)

)2
−β
(
A−

√
(A2+4B)

)
+Q



(2.30)

Herein
δ(X) =

{
0 , X ̸= 0
∞ , X = 0
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is the so-called Dirac delta, while its inverse Laplace transform is 1. Choosing, among others, the
boundary conditions ∂Θ

∂Y (X, 0) = 0, ∂Θ
∂Y (X,−1) = −1, utilizing (30), we find

E1 =

 e

(
β+

√
β2−4Q
2

)
(F1 + F2 − F3 − F4 − F5) + 1− F1e

(
A+

√
(A2+4B)
2

)

−F2e

(
A−

√
(A2+4B)
2

)
+ F3e

(
A+

√
(A2+4B)
2

)
+ F4e

(
A−

√
(A2+4B)
2

)
+ F5e

A



+

[(
e

(
β−

√
(β2−4Q)
2

)
− e

(
β+

√
(β2−4Q)
2

))(
β −

√
β2 − 4Q

)]−1
2

δ(X)
(2.31)

E2 =

 e

(
β−

√
β2−4Q
2

)
(F1 + F2 − F3 − F4 − F5) + 1− F1e

(
A+

√
(A2+4B)
2

)

−F2e

(
A−

√
(A2+4B)
2

)
+ F3e

(
A+

√
(A2+4B)
2

)
+ F4e

(
A−

√
(A2+4B)
2

)
+ F5e

A


+

[(
e

(
β+

√
(β2−4Q)
2

)
− e

(
β−

√
(β2−4Q)
2

))(
β +

√
β2 − 4Q

)]−1
2

δ(X)
(2.32)

Where

F1 =

(
α
2 − γD1

)
D2

(
A+

√
(A2+4B)

2

)
(

A+
√

(A2+4B)

2

)2

− β

(
A+

√
(A2+4B)

2

)
+Q

, (2.33)

F2 =

(
α
2 − γD1

)
D3

(
A−

√
(A2+4B)

2

)
(

A−
√

(A2+4B)

2

)2

− β

(
A−

√
(A2+4B)

2

)
+Q

, (2.34)

F3 =

(
γ +Br

(
A+

√
(A2+4B)

)2

4

)
D2

2

4

(
A+

√
(A2 + 4B)

)
(
A+

√
(A2 + 4B)

)2
− β

(
A+

√
(A2 + 4B)

)
+Q

, (2.35)

F4 =

(
γ +Br

(
A−

√
(A2+4B)

)2

4

)
D2

3

4

(
A−

√
(A2 + 4B)

)
(
A−

√
(A2 + 4B)

)2
− β

(
A−

√
(A2 + 4B)

)
+Q

, (2.36)

F5 =
(γ −BrB) D2D3

2 A

A2 − βA+Q
. (2.37)
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Finally, we find the temperature distribution function as

Θ(X,Y ) = λX +
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(2.38)

3 Entropy production and irreversibility process analysis
In accordance with [2], the volumetric rate of local entropy generation in convective heat transfer
of an incompressible Newtonian fluid preserving Fourier thermal conduction law may be advanced
as [3]

SG =
k

T 2
0

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)

+
µ

T0

{
2

((
∂u

∂x

)2

+

(
∂v

∂y

)2
)

+

(
∂u

∂y
+

∂v

∂x

)2
}

+
1

T0

(
σB2

0 +
µ

κ1

)(
u2 + v2

)
, (3.1)

in which the first term is the local heat dissipated due to thermal conduction, the second term is local
viscous heat dissipation, the third term is the local heat dissipation consequential to the Lorentz
and Darcy forces. Engineering irreversibility quantity of importance is the Bejan factor (Be). It is
usually considered as the ratio of the first term of (39) to the resultant entropy generation [7,32,33].
Thusly,

Be =
SG,H

SG
, (3.2)

where SG,H is the heat generation due to conduction heat transfer, i.e. heat transfer irreversibility.
The non-dimensional forms of (39) and (40) alter to

NS =
1

Pe2

(
∂Θ

∂X

)2

+

(
∂Θ

∂Y

)2

+
Br

Ω

(
∂U

∂Y

)2

+
(
Ha2 +

c

Da

) Br

Ω
U2 , (3.3)
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wherein NC,XY = NCX +NCY = 1
Pe2

(
∂Θ
∂X

)2
+
(
∂Θ
∂Y

)2
and Ω = ∆T

T0
denotes the ratio of temperature

difference to inlet temperature, i.e. temperature ratio, while the combination of the last two terms
is friction irreversibility. Bejan number, may now be expressed as

Be =
NC,XY

NS
, (3.4)

in which 0 ≤ Be ≤ 1. Heat transfer irreversibility dominance signifies Be = 1, and Be = 0
depicts predominance of the fluid friction irreversibility. Computations are then carried out and
post-processed for various values of the axial and transverse dimensionless temperature, axial non-
dimensional velocity and the velocity gradient across the fluid flow within the channel based on
carefully selected basic flow parameters.

4 Results and Discussion
A parametric analytical study is carried out comprehensively and scrutinized via plotted graphs.
This is done for selected values of flow-control dimensionless materials, viz., heat transfer rate,
Bejan number, entropy generation factor, viscosity parameter, magnetic permeability parameter,
anisotropic permeability parameter, Darcy, Peclet-based suction, Reynolds-based suctions and heat
generation.
The effect of these parameters on the velocity, temperature and entropy generation are analyzed
using Maple software and the graphical results are presented as follows.
The impacts due to the variation of major physical parameters, such as the Reynold number (Re),
inverse Darcy number (Da−1), the Hartmann number (Ha), the anisotropic parameter (c), and
pressure gradient (G), on the velocity profile, are depicted in Figures 2-4, 15, and 20 respectively.
It is seen that while increases in Re diminish the velocity profile, increases in Da−1, Ha, c, and G
enhances the velocity profile.
The influence of various flow controlling parameters on temperature profiles is demonstrated in Fig-
ures 5-8, 16-19, and 21. It is observed in Figure 8 that increase in Da−1 shrinks the temperature
profile. But increases in the other parameters such as Re, Ha, SH , G, Br, Pe, c, and X, magnify
the temperature profiles.
The response trend of entropy generation rate when the heat generation parameter SH is adjusted
is depicted in Figures 9-14. It is seen in Figures 9 and 11 that increases in Pe and Ω reduces the
entropy generation profile. While in Figures 10, 12-14 the entropy generation profile is boosted
with increases in Br, Re, Da−1, and SH .
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Figure 2: Velocity profile decrease as Reynold number (Re) increases.

5 Concluding remarks
This is an analytic study on entropy optimization and heat spreading of an electrically conducting
Newtonian fluid flow within a permeable and parallel wall channel on a horizontal orientation. The
medium is an anisotropic porous passage, permeated by a uniform transverse magnetic field. The
Internal heat generation and heating friction are considered.
The scaled governing equations are solved by means of the Laplace’s transform approach, and the
solutions, via basic flow controlling parameters values are evaluated exactly.
Analyses of the impact of the fluid dimensionless velocity and temperature are examined quantita-
tively and studied in detail via graphs on heat transfer rate, Bejan number and entropy generation
factor.
Among others, the important findings predict that suction-based viscosity parameter, magnetic and
anisotropic permeability parameters retract the dimensionless axial velocity, whereas the entropy
generation increases significantly by improved viscous dissipation. The upsurge of fluid temperature
is predetermined by medium anisotropy. Also, it is not only the Peclet and Reynolds based suctions
that fail to achieve an impact on the entropy generation, [38] Casson-Williamson flow, stretching
plate, 2-phase nanofluid, slips, generation at the channel centerline.
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Figure 3: Velocity profile increase as inverse Darcy number (Da−1) increases.

Figure 4: Velocity profile increases as the Hartmann number (Ha) increases.
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Figure 5: Temperature profile increases as Reynold number (Re) increases.

Figure 6: Temperature profile increases as Hartmann number (Ha) increases.
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Figure 7: Temperature profile increases as (SH) increases.

Figure 8: Temperature profile decreases as the inverse Darcy number (Da−1) increases.
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Figure 9: Entropy generation number, NS profile decreases as Peclet number (Pe) increases.

Figure 10: Entropy generation number, NS profile increases as the Brickman number (Br) increases.
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Figure 11: Entropy generation number, NS profile decreases as Ω increases.

Figure 12: Entropy generation number, NS profile increases as Reynold number (Re) increases.
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Figure 13: Entropy generation number, NS profile increases as the inverse Darcy number (Da−1)
increases.

Figure 14: Entropy generation number, NS profile increases as the heat generation parameter (SH)
increases.
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Figure 15: Velocity profile increases as the anisotropy parameter (c) increases.

Figure 16: Temperature profiles increases as the pressure gradient G increases.
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Figure 17: Temperature profiles increases as the Brickman number (Br) increases.

Figure 18: Temperature profiles increases as the Peclet number (Pe) increases.
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Figure 19: Temperature profiles increases as the anisotropy parameter (c) increases.

Figure 20: Velocity profiles increases as the pressure gradient (G) is enhanced.
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Figure 21: Temperature profiles increases as the axial distance (X) increase.
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