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Abstract Quality control managers are faced with the challenge of detecting out-of-control during production which may be assignable or common causes. To monitor and get quality products there is need for the use of Statistical Process Control (SPC). The study uses empirical Bayesian (EB) models for estimating Exponentially Weighted Moving Average (EWMA) statistic weighting factor. This is applied to data collected from a tyre producing company on the weight of radial car tyre of sizes 185, rim 14 Elite. A random sample of size 30 containing five subgroups was taken. The simulation was done using Markov chain Monte Carlo (MCMC) of 10000 samples. The study further obtained the values for λ (weighting factor) in the two EB models as 0.493 ≤ λ ≤ 0.506 for beta-Bernoulli model while uniform-Bernoulli model is 0.494 ≤ λ ≤ 0.506, which are useful for EWMA quality control charts. The results show that the uniform-Bernoulli model and the beta-Bernoulli model give almost identical results, which are reliable in plotting EWMA quality control charts as the classical approach.   
 1. Introduction    Quality control engineers are faced with the challenge of the detection of the shift 
during the production process. This shift is mostly due to assignable or common causes. 
To monitor and get quality products there is need for the use of Statistical Process 
Control (SPC). SPC is an applied statistical method that improves the quality of 
characteristics by monitoring the process under consideration, continuously, in order to 
detect assignable causes such that a required action is taken as quickly as possible [6]. A 
control chart consists of three horizontal lines: Upper Control Limit (UCL), Centre Line 
(CL) and Lower Control Limit (LCL). The centre line in a control chart denotes the 
average value of the quality characteristic under study. If a point lies between UCL and 
LCL, then the process is deemed to be under control. Otherwise, a point outside the 
control limits can be regarded as evidence that the process is out of control and, hence 
preventive or corrective actions are necessary in order to find and eliminate the 
assignable cause or causes [5]. The CUSUM chart helps in detecting such small 
permanent shifts that may go undetected when using the X-bar chart [14]. Therefore, it 
is important to detect the shift as soon as it occurs and to provide corrective actions in 
order to eliminate or minimize future occurrences of similar shifts. Various statistical 
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techniques have been applied to detect shifts in the production process, such as, 
Shewhart charts for detecting moderate to large process shifts, while the Cumulative 
Sum (CUSUM) and the Exponentially Weighted Moving-Average (EWMA) charts are 
commonly used for small shift detection [1]. EWMA control charts were introduced by [2] 
followed by [8], and [4]. Since the weights decline geometrically when connected by the 
smooth curve, the EWMA is sometimes called the geometric moving average (GMA). The 
EWMA is used extensively in time series modeling and in forecasting [3]. Since the 
EWMA can be viewed as a weighted average of all past and current observations, it is 
very insensitive to the normality assumption. The choice of weighting factor λ, in the 
EWMA control procedure determines its sensitivity to a small or gradual drift in the 
process. Several authors have tried to estimate a value for the weighting factor λ or 
fixing the desired in-control Average Run Length (ARL). [12] Suggested that the value of 
λ will work well in the interval 0.05 ≤  λ ≤ 0.25. On the other hand, [9] suggested that the 
weighting factor (λ) value should be between 0.03 and 1.0. However, despite advanced 
scholarly works in this area, the use of empirical Bayesian methods has not been 
employed. This paper focuses on estimating the weighting factor λ using beta-Bernoulli 
and uniform-Bernoulli empirical Bayesian (EB) models, the EWMA statistic and EWMA 
quality control chart.  
 2.0   Material and Method 
 
2.1 Optimization of EWMA with Empirical Bayesian Weighting Factor 
The exponentially weighted moving average (EWMA) is a statistic for monitoring the 
process that averages the data and gives it a less as weight of λ such that the smaller the 
value of λ, the further it is removed in time. The EWMA statistic as established by [15] 
is:  

    (1) 
while the estimated variance of the EWMA statistic is approximately: 

        (2) 

 
where 

  is the mean of historical data 
  is the variance of historical data 
  is the observation at time t 
 is the number of observations to be monitored including  
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  is a constant that determines the depth of memory 
The parameter  is the weighting factor (0<<1) which determines the rate at which 
“older” data enters into the estimation of the EWMA statistic. An empirical Bayesian 
(EB) procedure was introduced to estimate   using prior information about the 
weighting factor λ. Two different estimates for  were achieved through the use of beta-
Bernoulli and uniform-Bernoulli models. In the first model, since the smoothing constant 
takes values between 0 and 1 we assume a Bernoulli data likelihood distribution where 
values between 0 and 0.49 are taken as 0, and values between 0.5 and 1 are taken as 1. 
This is taken in this manner because Bernoulli is a discrete distribution. Then a beta 
conjugate prior is assumed for the probability of success in Bernoulli data likelihood 
distribution. In the second model, Bernoulli data likelihood is again assumed, and a 
conjugate uniform prior distribution is assigned for the probability of success in the 
Bernoulli distribution. The product of the likelihood and the prior distribution gives the 
most important distribution; the posterior distribution. The posterior distributions are 
sampled to give a large amount of information about the parameter of interest (weighting 
factor λ). The commonest method for this is called Gibbs sampling. Thus, the Bayes 
theorem is given as: 

      (3) 
 
2.2 Beta-Bernoulli Model 
According to [7], a beta prior distribution can be assigned to the probability of success 
(which is the parameter of interest) of a Bernoulli random variable. The conjugacy is 
beta-Bernourlli model. This is adopted in this paper to make inference about the 
weighting factor  for estimation of EWMA statistic. Therefore, let be the 
probability of success that older data enters into the distribution for estimation of EWMA 
statistic, so;  

 
 

Where  is the observed data at time   
The Bernoulli distribution is described as  

 
while the data likelihood function, which is the joint probability density function, is given 
as 
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where . 
The prior distribution is beta distribution defined as  

   
where is the shape parameter and  is the inverse scale parameter. 
The expectation and variance of the prior distribution are given as  

 
Hence, the posterior distribution using Bayes theorem is derived as  

 

 

 
where,  is the posterior estimates of the weighting factor. 
This yields the beta-Bernoulli model. Since the posterior and the prior distributions are 
of the same functional form, we deduce that                                                                                         

 
 
2.3 Estimation of the posterior mean and variance of beta–Bernoulli 
model: 

 

 
 
2.4 Uniform-Bernoulli Model 
The use of Uniform-Bernoulli model in statistical application is not common in the 
literature. However, in this paper, the model is developed and used in the estimation of 
the weighting factor  for the estimation of EWMA statistic. Therefore, let  be 
the probability of success that an older data enter into the estimation of EWMA statistic, 
so;  
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Where  is the observed data at time  . 
The Bernoulli distribution is described as  

 
While the data likelihood function is given as 

 
where . 
The prior distribution is uniform distribution defined as 

 
The expectation and variance of the prior distribution is given as 

 
where  and  are the lower and upper limits. Hence, the posterior distribution using 
Baye’s theorem is derived as  

 

 

 
This yields the beta-Bernoulli model. 
Estimation of the posterior mean and variance of uniform–Bernoulli 
model using the k'th moment: 
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Therefore, Mean: 

 
Variance: 

 

 
So,  
 
Hence, the modified EWMA statistic is now described, for each model, as  

  
While the estimated variance of the EWMA statistic is approximately: 

 
This means that after the EWMA control chart has been running for several time 
periods, the control limits will approach steady – state values. 

 
 

 
 

 
 
3.0 Data  
The data for this work was collected from a tyre producing company on the weight of 
radial car tyre of sizes 185, rim 14 Elite. A random sample of 30 batches was taken, with 
each batch containing five observations. The workers were involved in shift work for 
morning, afternoon and night on eight hours per day. The tyres produced have the 
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following qualities: size= 185/80/R14, dimension (overall diameter), load capacity 
(664mm), inflation pressure (2.8) and tolerance limit (10.30kg-11.03kg). The weights of 
tyres were taken at random and were recorded. The two EB models presented were 
applied to the radial car tyre data collected after a simulation study of 10000 MCMC 
samples of the weighted factor λ drawn from the posterior distributions using the Gibbs 
sampler in Open BUGS windows software application. The historical values were first 
determined. Then the empirical Bayesian posterior estimates of weighting factor from 
beta-Bernoulli and uniform-Bernoulli models are applied to each batch of five, to 
determine the observed values for the new estimates of EWMA statistic. The individual 
estimates are presented in Tables 2 and 3 while the new estimates EWMA, for the two 
models including the classical EWMA are presented in Table 1. Figure 1 indicates the 
kernel density and trace plots from the two proposed models. The kernel density plots 
showed uniformity, indicating that the samples were actually drawn from the required 
distributions and convergence is well established, as in the trace plots, since the 
sampling error or Markov chain error (MC error) is less than 5%, respectively.  
 4.0 Results and Discussion 
Table 1 Presents the EWMA estimates from beta-Bernoulli and uniform-Bernoulli 
empirical Bayesian weighting factors. The results show that the uniform-Bernoulli model 
and the beta-Bernoulli model provide almost identical values of the weighting factor λ. 
The estimates of the weighting factor from the EB models were in turn used to estimate 
the EWMA statistic and the process chart drawn. The EWMA estimates from classical 
approach were also obtained and so was its process chart in Figure 3. The control chart 
plots in Figures 2 indicate that the EWMA charts of weighting factor from beta-Bernoulli 
and uniform-Bernoulli models are also reliable. The results for EWMA Chart of EB 
models in Figure 2 showed that there are some points more than 3.00 standard 
deviations from center line which are out of control as shown in points 1, 2, 3 while the 
results for classical EWMA Chart in Figure 3 showed that there are some points that are 
more than 3.00 standard deviations from center line that are out of control as shown in 
points 1, 2, 3, 5. 
 5.0. Conclusion  
The use of empirical Bayesian methods in most statistical applications is becoming more 
important in statistical process control chart due to instability and errors associated with 
the estimates from classical approaches (Okafor and Mbata 2012). As a result of this, it is 
deemed fit to employ EB models to estimate EWMA statistics for process control charts 
in quality control studies. The proposed beta-Bernoulli and uniform-Bernoulli empirical 
Bayesian models were suitable in modifying the EWMA statistic weighting factor (λ), and 
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subsequently, optimizing the EWMA estimates for the quality control chart. The range of 
estimated values of (λ) from the beta-Bernoulli model is obtained as 0.493 ≤ λ ≤ 0.506, 
while the uniform-Bernoulli model gives 0.494 ≤ λ ≤ 0.506. This results shows that the 
application of EB models gives a better  improvement for both EWMA statistic 
estimation and the EWMA control chart. 
Table 1: EWMA values and Optimized EWMA Values 

 Classical Method Beta-Bernoulli Model Uniform-Bernoulli Model 
Sample EWMA SD LCL UCL CV% OptEWMA SD LCL UCL CV% OptEWMA SD LCL UCL CV% 
1 10.56 0.519 10.44 10.68 4.91 10.68 0.784 9.90 11.47 7.34 10.68 0.790 9.89 11.47 7.40 
2 10.61 0.108 10.58 10.64 1.02 10.71 0.789 9.92 11.49 7.37 10.71 0.784 9.92 11.49 7.32 
3 10.68 0.335 10.60 10.76 3.14 10.74 0.790 9.95 11.53 7.35 10.74 0.788 9.95 11.53 7.34 
4 10.85 0.061 10.84 10.86 0.56 10.83 0.786 10.04 11.61 7.26 10.83 0.794 10.03 11.62 7.34 
5 10.65 0.328 10.57 10.73 3.08 10.73 0.787 9.94 11.51 7.34 10.73 0.784 9.94 11.51 7.30 
6 10.79 0.102 10.77 10.81 0.95 10.80 0.792 10.00 11.59 7.34 10.80 0.786 10.01 11.58 7.28 
7 10.81 0.082 10.79 10.83 0.76 10.81 0.791 10.02 11.60 7.32 10.81 0.792 10.01 11.60 7.33 
8 10.82 0.097 10.80 10.84 0.90 10.81 0.786 10.02 11.60 7.27 10.81 0.782 10.03 11.59 7.24 
9 10.89 0.042 10.88 10.90 0.39 10.85 0.790 10.06 11.64 7.29 10.85 0.788 10.06 11.63 7.27 
10 10.92 0.045 10.91 10.93 0.41 10.86 0.791 10.07 11.65 7.28 10.86 0.790 10.07 11.65 7.28 
11 10.80 0.112 10.77 10.83 1.04 10.80 0.782 10.02 11.58 7.24 10.80 0.786 10.02 11.59 7.27 
12 10.85 0.117 10.82 10.88 1.08 10.83 0.786 10.04 11.61 7.26 10.83 0.784 10.04 11.61 7.24 
13 10.81 0.042 10.80 10.82 0.39 10.81 0.792 10.01 11.60 7.33 10.81 0.792 10.01 11.60 7.33 
14 10.78 0.057 10.77 10.79 0.53 10.79 0.790 10.00 11.58 7.32 10.79 0.787 10.00 11.58 7.29 
15 10.79 0.042 10.78 10.80 0.39 10.80 0.789 10.01 11.59 7.31 10.80 0.787 10.01 11.58 7.29 
16 10.80 0.061 10.79 10.81 0.56 10.80 0.788 10.01 11.59 7.29 10.80 0.787 10.01 11.59 7.28 
17 10.82 0.057 10.81 10.83 0.53 10.81 0.785 10.03 11.60 7.26 10.81 0.784 10.03 11.59 7.25 
18 10.82 0.057 10.81 10.83 0.53 10.81 0.794 10.02 11.61 7.35 10.81 0.789 10.02 11.60 7.30 
19 10.89 0.065 10.87 10.91 0.60 10.85 0.783 10.06 11.63 7.22 10.85 0.785 10.06 11.63 7.23 
20 10.77 0.091 10.75 10.79 0.84 10.79 0.789 10.00 11.57 7.31 10.79 0.783 10.00 11.57 7.26 
21 10.89 0.065 10.87 10.91 0.60 10.85 0.780 10.06 11.63 7.20 10.85 0.787 10.06 11.63 7.25 
22 10.89 0.065 10.87 10.91 0.60 10.85 0.787 10.06 11.63 7.25 10.85 0.785 10.06 11.63 7.24 
23 10.90 0.071 10.88 10.92 0.65 10.85 0.791 10.06 11.64 7.29 10.85 0.787 10.06 11.64 7.25 
24 10.82 0.120 10.79 10.85 1.11 10.81 0.787 10.02 11.60 7.28 10.81 0.786 10.03 11.60 7.27 
25 10.85 0.127 10.82 10.88 1.17 10.83 0.786 10.04 11.61 7.26 10.83 0.790 10.04 11.62 7.30 
26 10.92 0.027 10.91 10.93 0.25 10.86 0.791 10.07 11.65 7.28 10.86 0.790 10.07 11.65 7.27 
27 10.72 0.104 10.70 10.74 0.97 10.76 0.788 9.97 11.55 7.32 10.76 0.785 9.98 11.55 7.29 
28 10.86 0.074 10.84 10.88 0.68 10.83 0.790 10.04 11.62 7.29 10.83 0.786 10.04 11.62 7.26 
29 10.63 0.091 10.61 10.65 0.86 10.72 0.791 9.92 11.51 7.38 10.72 0.786 9.93 11.50 7.33 
30 10.87 0.091 10.85 10.89 0.84 10.84 0.784 10.05 11.62 7.23 10.84 0.789 10.05 11.62 7.28 
Overall 10.80 0.094 10.78 10.82 0.87 10.80 0.002 10.800 10.804 0.020 10.80 0.002 10.800 10.804 0.020 

Tolerance Level: (10.38 – 11.30)kg 
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Table 2: Posterior Estimates of Beta-Bernoulli Model by MCMC 
  λ sd MC_error val2.5pc Median val97.5pc start Sample 
theta[1] 0.4965 0.2886 0.003212 0.02533 0.4968 0.9742 1 10000 
theta[2] 0.5020 0.2893 0.002906 0.02448 0.5038 0.9742 1 10000 
theta[3] 0.5021 0.2888 0.002815 0.02488 0.5025 0.9763 1 10000 
theta[4] 0.4970 0.2865 0.002837 0.02723 0.4959 0.9732 1 10000 
theta[5] 0.5006 0.2901 0.002622 0.02214 0.5014 0.9767 1 10000 
theta[6] 0.5050 0.2898 0.002816 0.02495 0.5125 0.9768 1 10000 
theta[7] 0.5022 0.2872 0.002714 0.02705 0.5060 0.9737 1 10000 
theta[8] 0.4983 0.2879 0.002899 0.02452 0.4971 0.9764 1 10000 
theta[9] 0.5019 0.2879 0.002961 0.02680 0.5000 0.9757 1 10000 
theta[10] 0.5027 0.2877 0.002899 0.02295 0.5035 0.9778 1 10000 
theta[11] 0.4949 0.2884 0.002891 0.02196 0.4931 0.9753 1 10000 
theta[12] 0.4979 0.2876 0.002550 0.02812 0.4956 0.9754 1 10000 
theta[13] 0.5046 0.2892 0.002697 0.02586 0.5007 0.9785 1 10000 
theta[14] 0.5024 0.2896 0.002846 0.02409 0.5059 0.9756 1 10000 
theta[15] 0.5007 0.2871 0.002797 0.02525 0.5004 0.9739 1 10000 
theta[16] 0.4997 0.2884 0.002705 0.02276 0.5041 0.9773 1 10000 
theta[17] 0.4965 0.2872 0.002891 0.02643 0.4916 0.9730 1 10000 
theta[18] 0.5060 0.2880 0.002796 0.02802 0.5074 0.9739 1 10000 
theta[19] 0.4948 0.2881 0.002930 0.02393 0.4955 0.9743 1 10000 
theta[20] 0.5010 0.2883 0.002907 0.02574 0.5009 0.9758 1 10000 
theta[21] 0.4930 0.2884 0.003082 0.02569 0.4917 0.9710 1 10000 
theta[22] 0.4980 0.2871 0.002960 0.02698 0.4983 0.9722 1 10000 
theta[23] 0.5023 0.2871 0.003173 0.02467 0.4985 0.9759 1 10000 
theta[24] 0.4996 0.2883 0.002755 0.02261 0.5016 0.9743 1 10000 
theta[25] 0.4967 0.2866 0.002679 0.02537 0.4948 0.9737 1 10000 
theta[26] 0.5022 0.2873 0.003068 0.02599 0.5036 0.9750 1 10000 
theta[27] 0.5006 0.2897 0.002703 0.02353 0.5031 0.9740 1 10000 
theta[28] 0.5005 0.2867 0.002754 0.02749 0.4968 0.9754 1 10000 
theta[29] 0.5015 0.2860 0.002933 0.02527 0.4999 0.9719 1 10000 
theta[30] 0.4958 0.2883 0.002837 0.02637 0.4920 0.9756 1 10000 Minimum and Maximum value of λ: (0.493, 0.506) 
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Table 3: Posterior Estimates of Uniform-Bernoulli Model by MCMC 
  λ sd MC_error val2.5pc median val97.5pc start Sample 
theta[1] 0.5026 0.2895 0.002723 0.02583 0.5057 0.9743 1 10000 
theta[2] 0.4965 0.2887 0.002770 0.02208 0.4904 0.9751 1 10000 
theta[3] 0.5007 0.2894 0.002702 0.02813 0.4966 0.9757 1 10000 
theta[4] 0.5064 0.2888 0.003258 0.02658 0.5107 0.9764 1 10000 
theta[5] 0.4958 0.2882 0.002716 0.02520 0.4953 0.9742 1 10000 
theta[6] 0.4998 0.2903 0.002750 0.02662 0.4982 0.9784 1 10000 
theta[7] 0.5038 0.2886 0.002954 0.02384 0.5056 0.9762 1 10000 
theta[8] 0.4936 0.2864 0.002905 0.02592 0.4918 0.9740 1 10000 
theta[9] 0.5007 0.2887 0.003013 0.02658 0.5014 0.9752 1 10000 
theta[10] 0.5013 0.2868 0.003064 0.02622 0.5027 0.9759 1 10000 
theta[11] 0.4986 0.2895 0.002608 0.02636 0.4961 0.9750 1 10000 
theta[12] 0.4953 0.2872 0.002850 0.02384 0.4914 0.9744 1 10000 
theta[13] 0.5026 0.2864 0.002927 0.02849 0.4992 0.9740 1 10000 
theta[14] 0.4982 0.2875 0.002633 0.02684 0.4919 0.9756 1 10000 
theta[15] 0.4983 0.2868 0.003003 0.02554 0.4983 0.9750 1 10000 
theta[16] 0.4999 0.2898 0.002890 0.02442 0.4943 0.9771 1 10000 
theta[17] 0.4966 0.2891 0.002778 0.02505 0.4910 0.9756 1 10000 
theta[18] 0.5001 0.2870 0.002903 0.02637 0.4996 0.9750 1 10000 
theta[19] 0.4979 0.2900 0.002789 0.02472 0.4995 0.9765 1 10000 
theta[20] 0.4957 0.2888 0.002861 0.02553 0.4902 0.9747 1 10000 
theta[21] 0.4998 0.2899 0.002710 0.02439 0.4978 0.9761 1 10000 
theta[22] 0.4961 0.2861 0.003153 0.02502 0.4949 0.9729 1 10000 
theta[23] 0.4994 0.2892 0.003049 0.02421 0.5008 0.9747 1 10000 
theta[24] 0.4997 0.2912 0.002667 0.02427 0.5009 0.9757 1 10000 
theta[25] 0.5021 0.2879 0.002557 0.02529 0.5073 0.9741 1 10000 
theta[26] 0.5039 0.2915 0.002843 0.02673 0.5024 0.9768 1 10000 
theta[27] 0.4982 0.2903 0.003073 0.02529 0.4997 0.9738 1 10000 
theta[28] 0.4977 0.2870 0.002961 0.02675 0.4953 0.9724 1 10000 
theta[29] 0.4978 0.2884 0.002621 0.02400 0.4960 0.9737 1 10000 
theta[30] 0.5002 0.2872 0.002995 0.02378 0.5031 0.9742 1 10000 Minimum and Maximum value of λ: (0.494, 0.506) 
Figure 1: Density and Trace plots of the EB models 
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Beta-Bernoulli Model 
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Uniform-Bernoulli Model 
Figure 2: EWMA Charts of Beta- Bernoulli and Uniform-Bernoulli EB 
Models 
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Figure 3: EWMA Charts of Classical EWMA 
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