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Abstract
Scheduling to maximize the (weighted) number of Just-In-Time (JIT)

jobs or minimize the (weighted) number of early and tardy jobs on uniform
parallel machines are considered in this paper. The mathematical model
formulation for the general case is presented. It is known that these prob-
lems are NP Complete on a single machine; this suggests that no efficient
optimal solution seeking algorithms can obtain solution at polynomial
time as the problem size increases. Two greedy based heuristic algorithms
are proposed for solving the problem with a numerical example to illus-
trate it use. Extensive computational experiments performed with the
heuristic on large scale problem sizes showed promising results.

1 Introduction
Scheduling is concerned with the problem of assigning a set of jobs to a set
of machines subject to a set of constraints. Scheduling constraints include due
date (e.g. a date when a job must be completed), priority on jobs (e.g. finish a
job as soon as possible while meeting the other due dates) and machine capac-
ities (e.g. the speed of each machine). Scheduling problems entail solving for
optimal schedule with various objectives, different machine environments and
characteristics of the jobs. [6] classified scheduling problem with a three field
representation α|β|γ (α – machine environment, β – Job characteristic and γ –
Objective of interest).

Uniform parallel machines can be characterized as machines with different
speed factor, and each job has a single operation. A manufacturing unit can
invest in machines that have same capacity considering operational cost. The
reality that machines advance in technology and are bought at different dates is
also a reason for getting "uniform" machines. The problem of scheduling jobs
on uniform machines to maximize the (weighted) number of tardy jobs have
been done by [8], [9], [2], [13]. They studied uniform parallel machines with
single due dates for each job.
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This paper considers independent jobs to be scheduled on machines which
are available for processing simultaneously, each with an interval due dates
rather than single due dates, called due window of each job. The earliest due
date aj ≥ 0 (i.e. the instant at which a job can be completed and delivered),
and the latest due date dj ≥ 0 (an instant by which processing or delivery of
a job must be completed). No penalty is incurred when a job is completed
within its due window, but earliness (tardiness) penalty is incurred if a job is
completed before its earliest due date or after its latest due date. Pre-emption
of jobs is not allowed (e.g when a job begins on a machine it must be allowed to
complete its operation). Adopting the problem classification of [6], the dual of
the problems becomeQm||

∑
wj(Uj+Vj) andQm||

∑
(Uj+Vj) ( i.e., minimizing

the (weighted) number of early and tardy jobs on m uniform parallel machines).
However, the initial problems are maximizing the (weighted) number of JIT jobs
on uniform machines.

JIT has numerous application in chemical or high technology industries
where parts must be ready at specific times in order to meet certain required
conditions (such as arrival of other parts, specific temperature, pressure, etc.).
Production of perishable items (e.g. food, drugs, and photographic films) under
deterministic demands having similar cost structure. Other applications can
be found in production units with no or limited capacity for storage where the
due windows are determined by the pick-up times, and pick-ups are made by
customers. If the due window (pick-up) is missed, a special delivery service
needs to be bought by the producer, the cost of which is dependent on the
earliness/tardiness penalty. Rental agencies (hotels, car rentals) plan reserva-
tion schedule to meet exactly the request times of customers. For instance, if
a customer requires a room (or car) within specific dates, but the dates could
not be met, the customer would look for an alternative accommodation/agency,
with loss of income for the agency. Alternatively, the agency could offer a deal
whereby the customer would be scheduled on a different date with compen-
sation. The objective is to maximize the number of customers scheduled as
requested.

The remaining parts of the paper are as follows: Section 2 considers the
review of relevant literature. The problem formulation is outlined in section 3.
The heuristic algorithms for our problems are presented in section 4. In section
5, the problem generation and computational results are enumerated and finally,
in section 6, the concluding remarks are given.

2 Literature Review
The parallel machine scheduling problem can be classified into three categories:
identical parallel machines scheduling problem, uniform (proportional) parallel
machines scheduling problem and the unrelated parallel machines scheduling
problem. A complete review of literature can be found in [1]. [10] have shown
that our problem is NP Complete in the strong sense even on a single machine.

One of the earliest to minimize the number of tardy jobs on uniform machines
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was [8] who considered Qm|pmtn|
∑
Uj and gave a polynomial complexity time

O(n4) for m = 2 and O(n3(m−1)) for m ≥ 3. [9] provided an improved O(n3)
algorithm for the special case of m = 2, making the time bound O(n3(m−1))
uniform for all m. For the Qm|pmtn|

∑
wjUj they proposed a O(Wn2) time,

where W is the sum of the job weights, i.e. minimizing the weighted number of
late jobs. They also presented a fully polynomial approximation scheme for the
weighted case.

[2] considered the problem Q|pmtn, pj = p|
∑
Uj and proposed a solution in

time O(n log2 n+mn log n).
[4] studied the problem Q||

∑
wjUj . Using Dantzig-Wolfe decomposition,

they reformulated it as a set of partitioning problem. They constructed a branch
and bound algorithm through column generation. The average time to solve
10 machine 100 job instances was 1.59 hours for the Q||

∑
wjUj . [11] used

bounds from a surrogate relaxation resulting in a multiple knapsack. Extensive
computational experiments compared with [4] showed better timing.

[13] studied the parallel machines where the speeds of the machines depend
on the allocation of a secondary resource. They gave two versions of the prob-
lem of minimizing the number of tardy jobs. The first version assumes that the
jobs are pre-assigned to the machines, while the second one takes into consid-
eration the task of assigning jobs to the machines. They proposed an integer
programming formulation to solve the first case and a set of heuristics for the
second.

[5] considered the problem of scheduling n identical jobs on m uniform paral-
lel machines to optimize scheduling criterion of minimizing the weighted number
of tardy jobs. They gave an O(n log n) algorithm for solving the problem.

3 Problem Formulation
For any given schedule S, let pj , tij and Cj(S) = tij+pj represent the processing
time, actual start time on a given machine and completion time of job j on
machine i, respectively. Job j is said to be early if Cij(S) < aj , tardy if Cij(S) >
dj and on-time if aj ≤ Cj(S) ≤ dj . In addition, let xij for j be defined as follows:

xij =

{
1 if aj ≤ CS ≤ dj (On-time)
0 otherwise

(3.1)

Furthermore, let wj ≥ 0 be the weights for the early/tardy jobs. The math-
ematical model of this problem is given as follows:

P = max

m∑
i=1

n∑
j=1

wjxij (3.2)
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Subject to:

aj ≤
j

max
k=1
{{Cik−1(S), aj − pj}+ pj}xij i = 1, . . . ,m; j = 1, . . . , n. (3.3)

j
max
k=1
{{Cik−1(S), aj − pj}+ pj}xij ≤ dj i = 1, . . . ,m; j = 1, . . . , n. (3.4)

m∑
i=1

xij j = 1, . . . , n. (3.5)

xij ∈ {0, 1} i = 1, . . . ,m; j = 1, . . . , n (3.6)

Equation (3.2) is the objective function of the general case, that is, maxi-
mizing the weighted number of JIT jobs on the uniform machines. Constraint
(3.3) insures job j is not finished before its earliest start time aj and Ci,j−1 is
the time to complete the (j − 1)th job on machine i. Similarly, Cij is the time
to complete the jth job on machine i. Constraint (3.4) is the completion time
of job j if it is no greater than it’s latest due date dj . Constraint (3.5) insures
that a job is assigned to at most one machine, and constraint (3.6) forces a job
to be either on-time or early/tardy; 1 if on-time and zero otherwise.

4 Heuristic
In this section, the heuristic algorithms proposed for solving the problems of
minimizing the (weighted) number of early and tardy jobs on uniform machines
are presented. The differences between the two heuristics proposed are indicated
within the heuristic given below. In step 3, we break tie by smallest pij for
heuristic minimizing the number of early and tardy jobs and highest wj

pij
for

heuristic minimizing the weighted number of early and tardy jobs. Similarly, in
steps 3 and 4, pr > pj is used for heuristic minimizing the number of early and
tardy jobs while wr

pr
<

wj

pj
is used for heuristic minimizing the weighted number

of early and tardy jobs on the uniform machines.

4.1 Heuristic for Scheduling on Uniform Machines
1. Re-index the jobs on the machines such that a1 ≤ a2 ≤ . . . ≤ an ;

Ti := ∅ ; Li := ∅; Q := {J1, J2, . . . , Jn}; ti0 := 0; i := 1, 2, . . . ,m;
|Ti| := 0;j := 0; L :=

∑m
i=1 Li

2. Arrange machines in order of decreasing speed

3. Assign the jobs to the machines in order of decreasing speed and break
tie by smallest pij or highest wj

pij

for i := 1 to m do
for j := 1 to n do

if max{ti,j−1, aj − pij}+ pij ≤ dj then
Ti := Ti ∪ {Jj} ; Q := Q \ {Jj} ; j := j + 1; |Ti| := |Ti|+ 1

else
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end if
end for

end for

4. Reassign remaining jobs in Q on the machines if they could be scheduled
ontime without making any scheduled job late. (Q := J1, J2, . . . , Jq)
for i := 1 to m do

for p := 1 to q do
Find jobs Jr in Ti with pr > pj or wr

pr
<

wj

pj

for l := 1 to |Jr| do
Remove Job Jk from Ti
Reassign Job Jq from Q into Ti
if max{tij−1, aj − pij}+ pij ≤ dj then

Ti := Ti ∪ {Jq}; Qi := Qi \ {Jq}
Li := Li ∪ {Jk};

else
end if

end for
end for

end for
Move all Q into L

5. Stop (Find total weights in L or T)

4.2 Numerical Example
A numerical example of ten jobs to minimize the weighted number of early and
tardy jobs on 3 uniform machines is presented in Table 1.

Table 1: Data for the Numerical Example
Job aj dj Processing Processing Processing Weight Wj

pij

time (M1) time (M2) time (M3) wj

1 3 27 8 12 24 3
2 4 18 4 6 12 2
3 6 36 10 15 30 1
4 1 31 10 15 30 5
5 5 24 6 9 18 1
6 8 20 4 6 12 1 M3=0.0833
7 11 35 8 12 24 2 M1=0.25;M2=0.1667
8 4 10 2 3 6 2
9 1 19 6 9 18 1 M1=0.1667;M2=0.111
10 7 44 12 18 36 1

Let L be the set of late jobs and Q the set of scheduled jobs. tij−1 is the time
of the previous job on machine i.
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Illustration for the Uniform Machines
Step 1: Assign the jobs according to their earliest due dates.

[J4, J9, J1, J2, J8, J5, J3, J10, J6, J7]
Step 2: Arrange the jobs on these machines in order of their speed.

Machine 1:
Machine 2:
Machine 3:

Step 3: Assign the jobs to the various machines and when there is a
tie, break tie by highest Wj

pij
(HPWJ)

Figure 1: Gantt Chart of the numerical example at step 3

at step 3, Job J7 is Tardy (Late)
Step 4: Reassign jobs in Q (Unscheduled jobs) on the Machines if they could

be scheduled on-time without making any scheduled job late.
The job J7 tardy (Late) is tried on machines 1 to see if possible to
be on-time. It can be scheduled on machine 1 without affecting
already scheduled jobs, replacing Job J9

(Since w7

p17
> w9

p19
). Job J9 is again tried on machines 2 & 3.

Incidentally, it remains tardy.
Job J9 is Tardy(Late)

Step 5: Stop
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Figure 2: Gantt Chart of the numerical example at step 4

5 Problem Generation and Computational Re-
sults

In this section, the above heuristics were evaluated on randomly generated prob-
lems and extensive computational analysis of their performance investigated.

5.1 Problem Generation
Experiments were designed to test the relative effectiveness of the proposed
algorithms. The heuristics would be tested on problems with 100, 200, 300,
400 and 500 jobs that would be generated as in [7], [3], [12], and [14]. The
number of machines is set at six levels: 2, 4, 6, 8, 10 and 12. For each job j, an
integer processing time pj is randomly generated in the interval in [1,99]. Two
parameters k1 and k2 are used, and taken in the set {1, 2, 3, 4}. For the data to
depend on the number of jobs n, the integer earliest start time aj is randomly
generated in the interval [0, nk1

m ] and the integer latest due date dj is randomly

generated in the interval [aj + pj , aj + 2np̄k2

m ] where p̄ =
∑m

i=1

∑n
j=1 pij

m . For each
combination of n, k1 and k2, 10 instances are generated, i.e., for each value of
n, 160 instances are generated with a weight randomly chosen in [1, 10] and
8,000 problems (50 replications) where m is the number of machines. k1 and
k2 indicates the different levels of Traffic Congestion Ratio (TCR). The larger
the value of k1 and k2 the more congested the queue will be, and the higher the
number of tardy jobs will result. The heuristics are implemented with Java on
a Intel(R) Core(TM) i3-3217U CPU with 1.8GHz, 4 GB RAM.
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5.2 Computational Result
The computational results for both minimizing the weighted number of early
and tardy jobs and the number of early and tardy jobs are presented in Table 2.
The weighted number of jobs, number of jobs and their respective running times
in seconds are shown. For the weighted case in Table 2, avegWT, indicates the
average weighted number of early and tardy jobs on various uniform machines;
while avegnT indicates the average number of early and tardy jobs on the various
machines.

From Table 2, it is observed that the range of the average weighted number
of early and tardy jobs is 117.48 where the minimum is 0 and maximum is
117.48 for the heuristic used. The median average weighted number of early
and tardy jobs is 3.62. The mean average weighted number of early and tardy
jobs is 13.61.

The observed running times in seconds of the heuristic for the problem of
minimizing the weighted number of early and tardy jobs are as follow: Range
(6.01), Minimum (3.56), Maximum (9.57), Mean (6.56) and Median (6.97)

Similarly, for the problem of minimizing the number of early and tardy
jobs on the uniform machines, the range is 22.67 where the minimum is 0 and
maximum is 22.67. The median average number of early and tardy jobs is 1.55.
The mean average number of early and tardy jobs is 3.24. The observed running
times in seconds of the heuristic for the problem of minimizing the number of
early and tardy jobs are as follow: Range (14.33), minimum (9.74) maximum
(17.14), mean (9.74) and median (9.53).

It is observed for both problems considered that as n increases the (weighted)
number of early and tardy jobs decreases. The reason is due to the number of
jobs in the experiment being constant. Similarly, as the number of machines
increases, the running times of the heuristics also increase. Indicating that more
machines increase the running times of the heuristics even when the number of
jobs is kept constant. In Figures 3 and 5, the performance of the heuristics is
shown for when m = 2 and m = 10 for both problems under consideration. The
charts show that the (weighted) number of jobs reduces with increase in the
number of jobs scheduled. Figures 4 and 6 reveal the running time in seconds of
the heuristics for when m = 2 and m = 10 for both problems. From the charts,
it is evident that as the number of jobs increases so does the running time of
the heuristics.

Similarly, Figures 7 and 9 show the performance of the heuristics for when
n = 100 and n = 500 for both problems under review. They indicate that
the (weighted) number of jobs decreases with the increase in the number of
machines. In conclusion, Figures 8 and 10 show the time performance in seconds
of the heuristics for when n = 100 and n = 500. They also indicate that
the running time of the heuristics increase with the increase in the number of
machines. However, unlike in Figures 4 and 6, the running times of the heuristics
for both problems considered are very close, indicating that the weights of the
jobs have little effect on the timing of the heuristics when compared with the
equal weighted jobs problem.
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Figure 3: Chart of Heuristic Performance when m=2

Figure 4: Chart of Time Performance of the Heuristic when m=2
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Figure 5: Chart of Heuristic Performance when m=10

Figure 6: Chart of Time Performance of the Heuristic when m=10
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Figure 7: Chart of Heuristic Performance when n=100

Figure 8: Chart of Time Performance of the Heuristic when n=100
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Figure 9: Chart of Heuristic Performance when n=500

Figure 10: Chart of Time Performance of the Heuristic when n=500
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Table 2: Results for (Weighted) number of early and Tardy jobs
m n Unweighted Case Weighted Case

avegnT avegTime avegwT avegTime
2 100 22.6667 3.040367 117.48 3.96466
2 200 12.1 3.008633 61.9 3.77856
2 300 7.3333 2.991367 39.48 3.6861
2 400 5.9667 2.9292 25.98 3.60426
2 500 4.4667 2.801333 22.68 3.55794
4 100 11.4 6.104033 40.5 5.428375
4 200 4.9667 5.599167 19.0588 4.650882
4 300 3.2 5.581633 12.7188 4.5464
4 400 2.3333 5.545567 8.3947 4.295531
4 500 1.7 5.452367 4.68 4.225026
6 100 6 8.528467 11.6667 6.442667
6 200 2.6667 8.186733 9.5882 5.683176
6 300 1.4667 8.059433 3.3529 5.457
6 400 1 7.952667 3.88 5.31076
6 500 0.7 7.759367 0.75 4.930571
8 100 2.7667 11.13517 7.25 7.72075
8 200 1.6333 11.17307 5.7391 7.620522
8 300 0.5333 11.03833 3 7.607536
8 400 0.5333 10.7309 0.8667 7.499933
8 500 0.1667 10.52823 0.2759 7.60369
10 100 1.8333 14.7139 2.9333 8.533067
10 200 0.3667 14.28397 1.7143 8.495095
10 300 0.3333 14.3193 1.1429 8.216
10 400 0.1 13.87313 0.1333 8.354733
10 500 0 13.38207 0.5 8.299167
12 100 0.7407 17.13615 1.3158 9.570316
12 200 0.1852 17.10522 0.7931 9.376552
12 300 0.0333 16.57147 0.3793 9.435241
12 400 0.0333 16.37203 0 9.291333
12 500 0 16.27043 0 9.511833
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It takes more time to run a couple (m,n) of the weighted case when compared
with the unweighted case. For example, when m = 2 and n = 100, the average
time for the weighted case on the Uniform machines is 6.56 seconds compared
to 9.74 for the unweighted case.

6 Conclusion
In this paper, the problems of scheduling to maximize the (weighted) number
of JIT jobs on uniform machines were considered. The dual of these problems
are minimizing the (weighted) number of early and tardy jobs on uniform ma-
chines. A mathematical model formulation for the general case, that is, the
weighted case was provided. Two greedy heuristic algorithms were proposed for
solving these problems. A numerical example for illustrating the heuristic for
the general case was presented. The problem is NP-complete therefore suggest
that computational time will increase exponentially with problem size. Compu-
tational experiments were demonstrated with results showing the effectiveness
of the heuristics for large problem size. The results and analyses revealed that
the heuristics are promising. Further research should seek to improve on these
results by using evolutionary algorithms, find exact solutions for small samples
where possible, evolve approximation and pseudo-polynomial algorithms.
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