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Abstract
This paper deals with the development of a new numerical scheme to solve systems of linear

integro differential equation under mixed conditions. The new method adopted the use of
standard collocation points to transform the state equations into linear algebraic equations.
These equations are then solved using MATLAB programming through the matrix inversion
technique to obtain the unknowns. The convergence of the method is established and numerical
examples are solved and compared with existing results to confirm the efficiency of the new
method.
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1 Introduction
One of the simplest integro differential models studied in literature is the Volterra-Kostitzin model,
which is used for describing the evolution of a population in a closed environment, [1], [2], [3], [4].
Integro Differential Equation (IDE) is an equation in which the unknown function u (x) appears
under an integral sign and contains an ordinary derivatives, [5]. IDE can be represented in the form

u(n) (x) = z (x) +

∫ h(x)

g(x)

K (x, t, u (t)) dt, (1.1)

where h (x) and g (x) are the limits of integration and the initial condition is

u(k) (a) = uk, (1.2)

where z (x) and K (x, t) are assumed to satisfy the existence and uniqueness theorem. However,
z (x) and K (x, t) are given real valued functions which are continuous together with their first

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://ijmso.unilag.edu.ng/article

44

 https://doi.org/10.5281/zenodo.10035489
http://ijmso.unilag.edu.ng/article


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

Vol. 9, No. 2, pp. 44 - 52
https://doi.org/10.5281/zenodo.10035489

derivative. If the limits are fixed then, (1.1) is said to be Fredholm integro differential equation.
If at least one limit is a variable then, (1.1) is said to be Volterra integral equation, [5]. IDEs
have been used to model heat and mass diffusion processes, biological species coexistence together
with increasing and decreasing rate of growth, electromagnetic theory and ocean circulation among
others, [6], [7], [8], [9] and [10].

[11] considered operational matrix method for the solution of linear differential difference equa-
tions without application to system of differential and integro differential difference equations. [12]
applied operational matrix method to solve system of linear Fredholm integro differential equations
without applications to Volterra type and differential difference equations. [13] solved Volterra in-
tegro differential equations using operational matrix without considering system of differential and
difference equations. It should be noted that in general, operational matrix is efficient if the kernel
of integration can be expanded in Taylor’s series, [13]. Since it is possible to have kernel that is
not expandable in Taylor’s series, this became a set back for operational matrix. In this work, the
works of [11], [12] and [13] are combined and extended so that the operational matrix technique
becomes efficient and very easy to implement when the kernel is not expanded.

We consider a system of linear IDE in the form

N
n=0

S
j=1P

n
ij (x)u

(n)
j (x) +R

r=0
S
j=1q

r
ij (x)u

(r)
j (x+ τ)

= gj (x) +

∫ x

0

S
j=1Kij (x, t)uj (t) dt+

∫ 1

0

S
j=1wij (x, t)uj (t) dt, (1.3)

subject to the mixed condition

m−1
j=0 a

(n)
ij u(i)

n (a) + b
(n)
ij u(j)

n (b) = λn,i, i = 1, 2, ..., S, n = 0, 1...m− 1. (1.4)

Where uj : J → RN , J ∈ [0, 1] . The solution to (1.3) and (1.4) is a continuous function to be
determined, that is, u ∈ C[J,RN ). Pn

ij (x) , q
r
ij (x) , gj

: J → RN are given continuous functions.
K,w : J × J → RN are Lipschitz continuous, aij , bij , λn,i are real constants. The aim of this work
is to develop a new polynomial collocation method that can handle systems of Fredholm, Volterra
and Volterra-Fredholm IDEs.

2 Matrix Formulation of State Equation
Let (1.3) be written in the form

ϕ1 (x) + ϕ2 (x) = gj (x) + ϕ3 (x) + ϕ4 (x) (2.1)

where

ϕ1 (x) =

N∑
n=0

Pn (x)u
(n) (x) (2.2)

and Pn (x) =


pn11 pn12 pn13 · · · pn1s
pn21 pn22 pn23 · · · pn2s
...

...
...

...
...

pns1 pns2 pns3 · · · pnss

 , u(n) (x) =
[
u
(n)
1 u

(n)
2 · · · u

(n)
s

]T
.

Similarly,

ϕ2 (x) =

R∑
r=0

qr (x)u
(r) (x)M (2.3)

where, qr (x) =


qr11 qr12 · · · qr1s
qr21 qr22 · · · qr2s
...

...
...

...
qrs1 qns2 · · · qrss

 . M =


M−r 0 · · · 0
0 M−r · · · 0
...

...
...

...
0 0 · · · M−r

 ,
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where, M−r =



(
0
0

)
(−τ)

0 (
1
0

)
(−τ)

1 (
2
0

)
(−τ)

2 · · ·
(
N
0

)
(−τ)

N

0
(
1
1

)
(−τ)

0 (
2
1

)
(−τ)

1 · · ·
(
N
1

)
(−τ)

N−1

0 0
(
2
2

)
(−τ)

0 · · ·
(
N
2

)
(−τ)

N−2

...
...

... · · ·
...

0 0 0 · · ·
(
N
N

)
(−τ)

0

 .

ϕ3 (x) =

∫ x

0

K (x, t)u (t) dt (2.4)

where, K (x, t) =


K11 (x, t) K12 (x, t) · · · K1s (x, t)
K21 (x, t) K22 (x, t) · · · K2s (x, t)

...
...

...
...

Ks1 (x, t) Ks2 (x, t) · · · Kss (x, t)

 .

ϕ4 (x) =

∫ 1

0

w (x, t)u (t) dt (2.5)

where, w (x, t) =


w11 (x, t) w12 (x, t) · · · w1s (x, t)
w21 (x, t) w22 (x, t) · · · w2s (x, t)

...
...

...
...

ws1 (x, t) ws2 (x, t) · · · wss (x, t)

 .

gj (x) = G (x) (2.6)

where, G (x) =
[
g1 (x) g2 (x) ... gs (x)

]T
.

Therefore, (3) reduces to

N
n=0Pn (x)u

(n) (x) = −R
r=0qr (x)u

(r) (x)M+G (x) +

∫ x

0

K (x, t)u (t) dt

+

∫ 1

0

w (x, t)u (t) dt, (2.7)

with mixed conditions
m−1
j=0 [aiu

(i) (a) + biu
(j) (b)] = λi . (2.8)

3 Method of Solution

Let uj (x) be the approximate solution to (2.7)

uj (x) = Xj (x)Aj (3.1)

where Xj =
[
1 xj x2

j ... xn
j

]
and Aj =

[
aj0 aj1 ... anj

]T are constants to be deter-
mined.
Equation (3.1) can be written in matrix form

u (x) = X (x)A. (3.2)

Collocating using

xi = a+
(b− a) i

N
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and substituting (3.2) into (2.7) gives

D (xi)A = G (xi) , (3.3)

where D (xi) =
N
n=0 Pn (xi)X

(n) (xi)+
R
r=0qr (xi)u

(r) (xi)M−
∫ x

0
K (xi, t)X (t) dt−

∫ 1

0
w (x, t)X (t) dt.

Substituting (3.2) into the mixed condition ( 2.8)

DiA =m−1
j=0 aijX

(i) (a) + bijX
(j) (b) (3.4)

and augmenting (3.3) and (3.4) gives[
D (xi)
Di

]
A =

[
G (xi)
λi

]
. (3.5)

Solving for the unknown constants A in (3.5) yields

A = γ−1 (xi)V (xi) , (3.6)

where γ (xi) =

[
D (xi)
Di

]T [
D (xi)
Di

]
, V (xi) =

[
D (xi)
Di

]T [
G (xi)
λi

]
.

Equation (3.6) is then substituted into the approximate solution (3.1) to give the numerical solu-
tions.

4 Convergence of Method
Convergence of solution. Let uN (x) be the approximate solution and u (x) be the exact solution
to (11) . If G (x) be a continuous function defined on J = [0, 1] , K (x, t) , w (x, t) are continuous
functions, then the method converges iff∥∥N

n=0PnE
(n)

∥∥
∞ + |M|

∥∥R
r=0qr (x)E

(r)
∥∥
∞

∥E∥∞
≤ K∗ +w∗

where K∗ = supx,t∈J

∫ x

0
|K(x, t)| dt, w∗ = supx,t∈J

∫ 1

0
|w(x, t)| dt

Proof. Substituting the approximate solution uN (x) into (2.7),

N
n=0Pn (x)u

(n)
N (x) = −R

r=0qr (x)u
(r)
N (x)M+G (x)

+

∫ x

0

K (x, t)uN (t) dt+

∫ 1

0

w (x, t)uN (t) dt. (4.1)

Subtracting (2.7) from (4.1) gives

N
n=0Pn (x) (u

(n)
N (x)− u(n) (x)) = −R

r=0qr (x) (u
(r)
N (x)− u(r) (x))M

+

∫ x

0

K (x, t) (uN (t)− u (t))dt+

∫ 1

0

w (x, t) (uN (t)− u (t))dt.

Taking the absolute values:∣∣∣Nn=0Pn (x) (u
(n)
N (x)− u(n) (x))

∣∣∣ ≤ ∣∣∣−R
r=0qr (x) (u

(r)
N (x)− u(r) (x))M

∣∣∣
+

∣∣∣∣∫ x

0

K (x, t) (uN (t)− u (t))dt

∣∣∣∣+ ∣∣∣∣∫ 1

0

w (x, t) (uN (t)− u (t))dt

∣∣∣∣
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≤ − sup
x,t∈J

R
r=0

∣∣∣qr (x) (u
(r)
N (x)− u(r) (x))

∣∣∣ |M|+ sup
x,t∈J

∫ x

0

|K (x, t)| sup
t∈J

|(uN (t)− u (t))| dt

+ sup
x,t∈J

∫ 1

0

|w (x, t)| sup
t∈J

|(uN (t)− u (t))| dt

∥∥∥Nn=0Pn(u
(n)
N − u(n))

∥∥∥
∞

≤ −R
r=0

∥∥∥qr(u
(r)
N − u(r))

∥∥∥
∞

|M|

+K∗ ∥uN − u∥∞ +w∗ ∥uN − u∥∞

Therefore, ∥∥N
n=0PnE

(n)
∥∥
∞ + |M|

∥∥R
r=0qrE

(r)
∥∥
∞

∥E∥∞
≤ K∗ +w∗,

where E = uN − u. This implies that the error is bounded.

5 Illustrative Examples
In this section, we present numerical examples to test the efficiency and simplicity of the method.
Let uN (x) and u (x) be the approximate and exact solutions respectively, eN is the error function,
then abs − eN = |uN − u| is the absolute error at N . All results are presented in tables except
where the abs− eN = 0. All computations are done with the aid of program written in MATLAB
(2015a).

Example 5.1. : [12]. We considered a second order system of initial value integro differential
equations with variable coefficients

y
(2)
1 (x)− xy

(1)
2 (x)− y1 (x) = (x− 2) sinx+

∫ 1

0

(x cos t y1 (t)− x sin t y2 (t)) dt

y
(2)
2 (x)− 2xy

(1)
1 (x) + y2 (x) = −2x cosx+

∫ 1

0

(sinx cos t y1 (t)− sinx sin t y2 (t)) dt

subject to the conditions y1 (0) = 0, y
(1)
1 (0) = 1, y2 (0) = 1, y

(1)
2 (0) = 0.

The exact solution is y1 (x) = sinx, y2 (x) = cosx. When N = 2,

(2.7) gives, p2 =

[
1 0
0 1

]
, p1 =

[
0 −x

−2x 0

]
, p0 =

[
−1 0
0 1

]
, G =

[
(x− 2) sinx
−2x cosx

]
, K = 0,

qr = 0 w =

[
x cos t −x sin t

sinx cos t − sinx sin t

]
, xi =

[
0 1

2 1
]
. (3.5) gives

D (xi) =


−1 0 2 0 0 0
0 0 0 1 0 2

−1.42 −0.691 1.63 0.23 −0.349 −0.388
−0.403 −1.18 −1.11 1.22 0.644 2.36
−1.84 −1.38 0.761 0.46 −0.699 −1.78
−0.708 −2.32 −4.2 1.39 1.25 3.19

 ,

Di =


0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 and λ =
[
0 1 1 0

]T
.

G (xi) =
[
0 0 −0.719 −0.878 −0.841 −1.08

]T
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and (3.6) gives V =


−1 0 2 0 0 0
0 0 0 1 0 2
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 , γ =
[
0 0 0 1 1 0

]T
,

A =
[
0 1 0 1 0 −1

2

]T
. Hence, u (x) =

[
x 1− 0.5x2

]T
.

For comparison with [12], we use N = 3, 7 and 12 so that

y3,1 (x) = −0.1628939579524x3 + x

y3,2 (x) = 0.0276492396912x3 − 0.5x2 + 1

y7,1 (x) =
−0.0001849912351x7 − 0.00002016875697x6 + 0.008346135045x5

−0.000003935762126x4 − 0.1666661537x3 + x

y7,2 (x) =
6.916118637e− 5x7 − 0.001466408531x6 + 4.372835616e− 5x5

+0.04165402127x4 + 1.581552737e− 6x3 − 0.5x2 + 1

y12,1 (x) =

8.422674098e− 10x12 − 2.704068073e− 8x11 + 2.757546666e− 9x10

+2.753251326e− 6x9 + 1.512520071e− 9x8 − 0.0001984133328x7

+1.816843037e− 10x6 + 0.008333333299x5 + 3.972132716e− 12x4

−0.1666666667x3 + x

y12,2 (x) =

1.904457069e− 9x12 + 5.816757768e− 10x11 − 2.764833009e− 7x10

+8.733845028e− 10x9 + 2.480103345e− 5x8 + 2.382978721e− 10x7

−0.001388888958x6 + 1.328481409e− 11x5 + 0.04166666667x4

+8.80036864e− 14x3 − 0.5x2 + 1

Table 1: Comparison of Absolute Error with Existing Method for Example 1
[12] Present Method

xi y abs-e3 abs-e7 abs-e12 abs-e3 abs-e7 abs-e12
0.2 y1 2.0231e-05 1.8518e-09 9.9920e-15 2.7518e-05 7.8235e-10 9.7317e-17

y2 1.4732e-04 3.6087e-10 9.9920e-15 1.5461e-04 2.2734e-09 5.0953e-18
0.4 y1 9.8150e-05 1.9768e-08 5.9952e-14 1.5644e-04 1.8186e-09 2.4382e-16

y2 6.5019e-04 1.6751e-08 8.0047e-14 7.0856e-04 4.8438e-09 1.6573e-17
0.6 y1 2.4311e-05 7.2678e-08 2.1994e-13 1.7243e-04 3.2199e-09 3.6121e-16

y2 4.3962e-04 6.8547e-08 2.8999e-13 6.3662e-04 7.4939e-09 1.3188e-17
0.8 y1 1.2241e-03 1.8555e-07 5.6999e-13 7.5780e-04 5.2379e-09 5.4323e-16

y2 3.0173e-03 1.8148e-07 7.1998e-13 2.5503e-03 1.0383e-08 2.4906e-17
1.0 y1 5.0207e-03 5.0207e-07 1.2126e-12 4.3650e-03 9.9254e-08 1.6014e-14

y2 1.3565e-02 6.3006e-07 1.5526e-12 1.2653e-02 2.2203e-07 7.6675e-15

Example 5.2. : [14], considered system of Volterra integro differential equation

y
(2)
1 (x) + 2xy

(1)
1 (x)− y1 (x) = f1 (x) +

∫ x

0

y1 (t) dt−
∫ x

0

y2 (t) dt

y
(2)
2 (x) + y

(1)
2 (x)− 2xy2 (x) = f2 (x) +

∫ x

0

y1 (t) dt+

∫ x

0

y2 (t) dt

f1 (x) = 2 + x − ex + 2xex − cosx, f2 (x) = − sinx + 2 cosx − 3x − 2x sinx − ex, subject to the
conditions y1 (0) = 1, y

(1)
1 (0) = 1, y2 (0) = 1, y

(1)
2 (0) = 1. The exact solution is y1 (x) = ex, y2 (x) =

1 + sinx. (11) gives p2 =

[
1 0
0 1

]
, p1 =

[
2x 0
0 1

]
, p0 =

[
−1 0
0 −2x

]
, K =

[
1 −1
1 1

]
,

G =

[
2 + x− ex + 2xex − cosx

− sinx+ 2 cosx− 3x− 2x sinx− ex

]
, qr = 0 w = 0,
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xi =
[
0 1

5
2
5

3
5

3
5 1

]
. For comparison with [14], we shall consider the case when N = 5,

so that
y5,1 (x) =

0.0112827160x5 + 0.0397852411x4 + 0.1670814127x3 + 0.5x2

+x+ 1

y5,2 (x) = 0.0079293422x5 + 0.00031747361x4 − 0.1667404937x3 + x+ 1

Table 3: Comparison of Absolute Error with Existing Method for Example 2
[14], N=5 Present Method, N=5

xi y1 y2 y1 y2

0.1 1.0000e-09 0.0000e-00 2.5468e-07 4.6099e-08
0.2 9.1000e-08 1.9999e-09 1.1600e-06 2.0940e-07
0.3 1.0580e-06 1.8200e-06 2.0680e-06 3.6015e-07
0.4 6.0310e-06 3.2500e-07 2.5500e-06 4.1012e-07
0.5 2.4101e-05 1.5440e-06 3.0683e-06 4.6628e-07
0.6 7.0800e-05 5.5270e-06 4.2960e-06 6.8982e-07
0.7 8.1290e-05 1.6230e-05 4.9396e-06 7.6664e-07
0.8 4.0126e-04 4.1242e-05 2.0900e-06 1.1003e-06
0.9 8.4486e-04 9.3840e-05 3.5334e-05 9.7621e-06
1.0 1.6152e-03 1.9568e-04 1.3246e-04 3.5337e-05

Example 5.3. : [15], considered the linear system of Volterra-Fredholm integro differential equa-
tions,

y
(2)
1 (x) = 6x− 3x2

4
− x6

5
+

∫ x

0

xty1 (t) dt+

∫ 1

0

x2ty2 (t) dt

y
(2)
2 (x) = 2− x5

5
− 3

2
x+

∫ x

o

ty1 (t) dt+

∫ 1

0

2xty2 (t) dt

within the interval 0 ≤ x ≤ 1, subject to initial conditions y1 (0) = 0, y(1)1 (0) = 0, y
(1)
2 (0) = 0,

y2 (0) = 1, with exact solution y1 (x) = x3, y2 (x) = x2 + 1.

From (3.5) , for N = 3,

D (xi) =



0 0 2 0 0 0 0 0
0 0 0 0 0 0 2 0
−1
54

−1
243

1943
972

7289
3645

−1
18

−1
27

−1
36

−1
45−1

18
−1
81

−1
324

−1
1215

−1
3

−2
9

11
6

28
15−4

27
−16
143

478
243

14516
3645

−2
9

−4
27

−1
9

−4
45−2

9
−8
81

−4
81

−32
1215

−2
3

−4
9

5
3

56
15−1

2
−1
3

7
4

29
5

−1
2

−1
3

−1
4

−1
5−1

2
−1
3

−1
4

−1
5 −1 −2

3
3
2

28
5


,

Solving for the unkowns yield

V =



0 0 2 0 0 0 0 0
0 0 0 0 0 0 2 0
−1
54

−1
243

1943
972

7289
3645

−1
18

−1
27

−1
36

−1
45−1

18
−1
81

−1
324

−1
1215

−1
3

−2
9

11
6

28
15

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


γ =

[
0 2 1.9 1.5 1 0 0 0

]T

and A =
[
0 0 0 1 0 1 1 −0.0595

]T
.

Substituting the value of A into the approximate solution gives the exact solution.
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6 Discussion of Results and Conclusion
First, we considered a system of initial value integro differential equation with variable coeffi-
cients.We solved this problem for values of N = 3, 7, and 12. The absolute errors presented in
Table 1 shows that as N increases, the absolute errors approaches zero; this means that the solution
converges. The comparison of the Absolute Errors with the existing method as presented in Table
1 for N = 3, 7 and 12 shows that our method gives better approximation. The second example is a
system of initial value second order Volterra IDE with variable coefficients. The result obtained as
shown in Table 2 also has better approximation. Finally, the third example is a Volterra-Fredholm
IDE whose approximate solutions at N = 3 are exact.

Systems of IDEs are difficult to solve analytically. It is often necessary to approximate the
solutions. In this paper we developed a new method that efficiently solved systems of IDEs. In
general, error propagation decreases and fi. There is also great improvement as N increases. The
method gives exact solutions if fi (x) ; i = 1, 2, ..., n is a polynomial as seen in the third example.
The results show that our method gives better approximations than the methods used in [12], [14]
and [15]. All computations were performed with MATLAB (2015a).
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