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Abstract

The role of heat and mass transfer in moving fluid is important in view of several physical
problems such as those dealing with chemical reactions and those encountered with dissociating
fluids. A lot of interest has been built in the study of the flow of heat and mass transfer. The
aim of present investigation was to study the effects of heat and mass transfer on steady hydro-
magnetic boundary layer flow over an impermeable horizontal surface with ohmic and viscous
heat dissipation. The model formulated taking into consideration the viscous energy dissipa-
tion. The surface is assumed to be impermeable. The governing equations formulated based
on the conservation of momentum, species and energy were considered in steady state form
and solved analytically using direct integration. The results obtained are presented graphically
and discussed. The results revealed the effects of operating parameters on the flow and heat
transfer over an impermeable surface. Our findings showed that there is a continuous increase
in fluid velocity and a decrease in medium temperature along the distance while fluid velocity
decreases and medium temperature increases as values of magnetic parameter and Reynolds
number increases. These results might be used for interpretation or experiments planning of
the more complex flow and heat transfer processes.
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1 Introduction
Heat and mass transfer from a heated moving surface to a quiescent ambient medium occurred in
many manufacturing processes such as hot rolling, wire drawing and crystal growing [1]. Hydro-
magnetic flow is one of the fundamental problems in heat and mass transfer [2]. Investigations on
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hydrodynamic boundary layer flow and heat transfer over a stretching surface have gained apprecia-
ble attention due to its extensive applications in industry and its importance to several technological
processes which include the aerodynamic extrusion of plastic sheets, cooling of metallic sheets in
a cooling bath, and crystal growing. Crane [3] investigated the steady boundary layer flow due to
stretching surface with linear velocity. Many researchers such as Gupta and Gupta [4], Vleggaar [5],
and Chen and Char [6] extended the work of Crane [3] by considering the effects of heat and mass
transfer analysis under different physical situations.
Simultaneous heat and mass transfer from different geometries may arise during industrial oper-
ations where the surface is sometimes stretched because of the process of drawing, for example,
the process of cooling continuous strips or filament by drawing them through quiescent fluid where
simultaneous heat and mass transfer may occur during the cooling. Hence, it can be deduced that
the combined heat and mass transfer can play a vital role in the problems of hydromagnetic flow
over an impermeable surface. A new facet of approaching such problems can be given by considering
the effect of thermal radiation. Thermal radiation effect might play a significant role in controlling
heat process in polymer processing industry. The quality of the final product depends greatly on
the heat controlling factors and the knowledge of radiative heat transfer can perhaps lead to a
desired product with a sought characteristic.
Many works have been reported on flow and heat transfer over a stretched surface in the presence of
radiation. An analytical solution of MHD flow with radiation over a stretching sheet embedded in a
porous medium was given by Anjali Devi and Kayalvizhi [7]. Makinde and Sibanda [8] investigated
the chemical reaction effects over the stretching surface in the presence of internal heat generation.
Seini and Makinde [9] studied the radiation and chemical reaction effects on MHD boundary layer
flow over a stretching surface. Abdul Hakeem et al. [10] investigated the thermal radiation effects
on hydromagnetic flow over a stretching surface. Influence of thermal radiation on MHD flow over
a stretching surface was studied by Jonnadula et al. [11].
Taking consideration of dissipation effects in the study of heat and mass transfer boundary layer
problems adds new dimension to it. Gebhart [12] was the first who studied the problem taking
into account the viscous dissipation. Kayalvizhi et al. [13] and Dessie and Kishan [14] examined
the effects of viscous dissipation and ohmic dissipation on MHD flow over a stretching surface with
thermal radiation effects.
All the above-mentioned studies are confined to the steady state flow problems. But, in certain
practical problems, the motion of the stretched surface may start impulsively from rest. In such
cases, the transient or unsteady aspects become more interesting. Effects of radiation and heat
transfer over an unsteady stretching surface in the presence of heat source or sink were studied by
Elbashbeshy and Emam [15]. Makinde ( [16], [17]) analyzed the chemically reacting hydromagnetic
unsteady flow of a radiating fluid. Yusof et al. [18] analyzed the radiation effect on unsteady MHD
flow over a stretching surface. Mass transfer and MHD effect on an unsteady stretching surface were
investigated by Ramana Reddy and Bhaskar Reddy [19]. Recently, unsteady MHD flow and heat
transfer over a stretching permeable surface were investigated by Choudhary et al. [20]. Reddy et
al. [21] considered the thermal radiation and viscous dissipation effects on unsteady MHD flow over
a stretching surface. Durojaye and Agee [22] investigated the one-dimensional, positive temperature
coefficient (PTC) thermistor equation, using the hyperbolic-tangent function as an approximation
to the electrical conductivity of the device. They observed that the steady state solution using
the new approximation yielded a distribution of device temperature over the spatial dimension and
all the phases of the temperature distribution of the device without having to look for a moving
boundary. They analysed the steady state solution and the numerical solution of the unsteady
state.
Durojaje et al. [23] also presented a mathematical model for free racial polymerization in the pres-
ence of material diffusion. They proved the existence and uniqueness of solution of the model. They
used parameter expanding method and seek direct eigenfunctions expansion to obtain analytical
solution of the model. The results were presented graphically and discussed. It was discovered that
the mixture temperature and monometer concentration were significantly influenced by Kamenet-
skii number and thermal diffusivity of the mixture. Durojaye and Ayeni [24] consider a steady
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state solution reaction kinetics model of polymerization in the presence of material diffusion. They
obtained steady state equations for the resulting partial differential equations. Criteria for existence
and Uniqueness of solutions of the equations and numerical results were also provided. They con-
cluded that steady state equation is bounded and has solution under reasonable physical conditions.
Adeniyan and Adigun [25] conducted numerically analysis on forced-convective heat and reactive
solute mass transfer of a steady incompressible, electrically conducting, chemically reacting and
Joule dissipating viscous fluid streaming towards a stationary porous planar surface embedded in
a saturated non-Darcian porous medium in the presence of surface mass flux, pressure stress-work
and velocity slip. Fatunmbi et al. [26] investigated stagnation-point flow in magneto-Williamson
nanofluid along a convectively heated nonlinear stretchable material in a porous medium. The
impacts of Joule heating, thermophoresis together with Brownian motion are also checked in this
investigation.
However, to the best of author’s knowledge, no attempt has been made to investigate the effects
of thermal radiation, viscous dissipation, ohmic dissipation and heat and mass transfer effects on
steady hydromagnetic flows over an impermeable surface. Being motivated by the extensive appli-
cations, this paper seeks to investigate the heat and mass transfer effects on steady two-dimensional
hydromagnetic flow over an impermeable surface.
The objective of this paper is to provide an analytical solutions capable of describing steady two-
dimensional hydromagnetic flow over an impermeable surface with ohmic and viscous heat dissipa-
tion.

2 Model Formulation
The two-dimensional, transient hydromagnetic flow of a viscous, incompressible, electrically con-
ducting, and radiating fluid along with heat and mass transfer over an impermeable surface with
ohmic and viscous dissipation is considered. A constant magnetic field B is applied in the direction
perpendicular to that of the fluid flow.

The formulation of our model is being guided by the following assumptions:

(i) The fluid is considered to be grey

(ii) The radiative heat flux in the x-direction is negligible in comparison with that in the y-
direction

Under these assumptions, the governing equations that are based on the laws balancing mass, linear
momentum, energy, and concentration for the present investigation are given as follows:

∂u

∂x
+

∂v

∂y
= 0 (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB2u

ρ
= 0 (2.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α0

∂2T

∂y2
− 1

ρcP

∂qr
∂y

+
v

ρcP

(
∂u

∂y

)2

+
σB2u2

ρcP
(2.3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(2.4)

Rosseland approximation is used to simplify the radiative heat flux term in the energy equation
which has the form

qr = −4σ∗

3k1

∂T 4

∂y
(2.5)
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The temperature difference within the flow is assumed to be sufficiently small such that T 4 may be
expressed as a linear function of temperature. On expanding T 4 in a Taylor series about T∞ and
thereby neglecting the higher order terms, it is obtained as follows:

T 4 ≈ 4T 3
∞T − 3T 4

∞ (2.6)

The above governing equations are associated with the following initial and boundary conditions:

u(x, y, t) = 0, T (x, y, t) = T0, C(x, y, t) = C0, x ≥ 0, y ≥ 0, t = 0.

∂u

∂x
= 0,

∂u

∂y
= 0,

∂T

∂x
= 0,

∂T

∂y
= 0,

∂C

∂x
= 0,

∂C

∂y
= 0,


. x = 0, y = 0, t > 0.

u(x, y, t) = U∞, T (x, y, t) = T∞, C(x, y, t) = C∞, x = L, y = H, t ≥ 0.


. (2.7)

Where u is the velocity component along the x-axis, v is the velocity component along the y-axis, ν
is the kinematic coefficient of viscosity, σ is the electrical conductivity of the fluid, B is the strength
of the applied variable magnetic field, ρ is the fluid density, T is the temperature of the fluid,
α0 = K

ρcρ
is the thermal diffusivity with K as the thermal conductivity of the fluid, cρ is the specific

heat capacity at constant pressure, qr is the radiative heat flux, C is the concentration, D is the
coefficient of mass diffusivity, qr is the radiative heat flux, σ∗ is the Stefan-Boltzman constant, k1
is the mean absorption coefficient.

3 Method of Solution

3.1 Transformation
Introducing the following new space variable [27]

z = x+ y (3.1)

The equations (1) – (6) together with initial and boundary conditions (7) become

∂U

∂z
= 0 (3.2)

∂u

∂t
+ U

∂u

∂z
= ν

∂2u

∂z2
− σB2u

ρ
(3.3)

∂T
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+ U

∂T

∂z
= α0

∂2T

∂z2
=

16σ∗T∞

3k1ρcp

∂2T

∂z2
+

V
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(
∂u

∂z

)2

+
σB2u2

ρcp
(3.4)

∂C

∂t
+ U

∂C

∂z
= D

∂2C

∂z2
(3.5)

u(z, t) = 0, T (z, t) = T0, C(z, t) = C0 z ≥ 0, t = 0.

∂u

∂z
= 0,

∂T

∂z
= 0,

∂C

∂z
= 0 z = 0, t > 0.

u(z, t) = U∞, T (z, t) = T∞, C(z, t) = C∞ z = h, t ≥ 0.

 . (3.6)

Where U = u+ v
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3.2 Dimensional Analysis
Introducing the following non-dimensional variables:

t′ =
Ut

h
, z′ =

z

h
, u′ =

u

U
, θ =

T − T0

T∞ − T0
, ϕ =

C − C0

C∞ − C0
(3.7)

Then, equations (9) to (13) become:

∂u

∂t
+

∂u

∂z
=

1

Re

∂2u

∂z2
−Mu (3.8)
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∂ϕ
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∂ϕ

∂z
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1
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∂2ϕ

∂z2
(3.10)
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∂u

∂z

∣∣∣∣
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∂z
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ϕ(z, 0) = 0,
∂ϕ

∂z

∣∣∣∣
z=0

= 0, ϕ(1, t) = 1


(3.11)

Where
Re =

hv
ν =Reynolds Number,M = σB2h

ρv =Magnetic Parameter, pe = hv
α0

= Peclet Number,

Ec =
v2

cp(T∞−T0)
= Eckert Number, pem = hv

D =Peclet Mass Number,

R = 16σ∗T∞
3k1ρcphv

=Radiation Number, α = U∞
U

For steady state ∂⋆
∂t = 0 ⋆ = {u, ϕ, θ}, equations (15) - (18) reduce to
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−ReMu = 0

du

dz
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3.3 Analytical Solution
By direct integration, we solving equations (19)- (21) and obtain the following solutions:

u(z) = a1e
m1z + b1e

m2z (3.15)

ϕ(z) = 1 (3.16)

θ(z) = a2 + b2e
pz +Ae2m1z +Be(m1+m2)z + Ce2m2z. (3.17)

Where

p =

(
Pe

1−RPe

)
, r = Ec

Re
p, s = EcMp, m1,2 =

Re+
√

R2
e+4ReM

2 A =
a2
1(s+rm2

1)
2m1(p−2m1)

,

B = 2a1b1(s+rm1m2)
(m1+m2)(p−(m1+m2))

, C =
b21(s+rm2

2)
2m2(p−2m2)

, a2 = (1− (b2e
p +Ae2m1 +Be(m1+m2) + Ce2m2)),

a1 = −
(

m2

m1em2−m2em1

)
, b1 =

(
m2

m1em2−m2em1

)
, b2 = − 1

p (2((Am1 + Cm2)) +B(m1 +m2))

The computations were done on equations (22) to (24) using computer symbolic algebraic pack-
age MAPLE 2021 Version.

4 Results and Discussion

4.1 Analysis of Results
Steady flow and heat transfer processes over an impermeable surface are simulated analytically
using direct integration. Analytical solutions given by equations (22) - (24) are computed using
computer symbolic algebraic package MAPLE 2021. and graphical simulation are shown in Figures
2 to 8.

4.2 State Variables Dynamics
We performed the analytical simulations of the system of differential equations of the state variables
to determine the changes in the various state variables with space. There seems to be a continuous
increase in the fluid velocity and a decrease in medium temperature along the distance.

Figure 2 depicts the graph of fluid velocity u(z) against distance z for different values of Mag-
netic parameter M . It is observed that the velocity of the fluid increases along the distance and the
maximum fluid velocity decreases as values of Magnetic parameter increases. As noticed M in this
figure, a boost in creates a drag in the fluid motion due to the action of the Lorentz force which is
responsible for the resistance in the fluid motion and at such, a reduction in the velocity.

Figure 3 displays the graph of medium temperature θ(z) against distance z for different values
of Magnetic parameter M . It is observed that the temperature of the medium decreases along the
distance and this medium temperature increases as values of Magnetic parameter increases. Higher
values of M improves heat transfer such that the impermeable surface takes less time to cool.

Figure 4 shows the graph of fluid velocity u(z) against distance z for different values of Reynolds
number Re. It is observed that the velocity of the fluid increases along the distance and the maxi-
mum fluid velocity decreases as Reynolds number increases.

Figure 5 depicts the graph of medium temperature θ(z) against distance z for different values
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of Reynolds number Re . It is observed that the temperature of the medium decreases along the
distance and this medium temperature decreases as Reynolds number increases.

Figure 6 displays the graph of medium temperature θ(z) against distance z for different values
of Peclet energy number Pe. It is observed that the temperature of the medium decreases along the
distance and this medium temperature increases as Peclet energy number increases.

Figure 7 shows the graph of medium temperature θ(z) against distance z for different values of
Radiation number R. It is observed that the temperature of the medium decreases along the dis-
tance and this medium temperature increases as Radiation number increases.

Figure 8 depicts the graph of medium temperature θ(z) against distance z for different values
of Eckert number Ec. It is observed that the temperature of the medium decreases along the dis-
tance and this medium temperature increases as Eckert number increases. An increase in the Eckert
number Ec causes thickness of the thermal boundary layer to swell up due to the friction between
the fluid particles and consequently, the temperature distribution is increased

It is worth pointing out that the effects observed in Figures 2 to 8, are important for studying
the effect of heat generation and absorption on the moving fluids.

5 Conclusion
The effects of mass transfer and radiation heat transfer on steady two-dimensional hydromagnetic
flow over an impermeable surface with ohmic and viscous heat dissipation, are analyzed in this work.
Analytical solutions are obtained for the governing equations and the effects of the concerned phys-
ical parameters over the dimensionless velocity, temperature and concentration distribution are
presented graphically. The study revealed the following:
1. Eckert number, Peclet energy number, Radiation number and Magnetic parameter enhanced the
medium temperature.
2. Magnetic parameter reduced the fluid velocity.
3. Reynolds number reduced both the fluid velocity and medium temperature.
The results of this study may be of importance to engineers and scholars attempting to develop
programming standards and to researchers interested in the theoretical aspects of computer pro-
gramming
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