Fourth Teoplitz Determinant for Analytic Function Defined by Gegenbauer Polynomial involving the Sine function

O. R. Oluwaseyi ${ }^{1 *}$, W. T. Ademosu ${ }^{2}$, O. A. Fadipe-Joseph ${ }^{3}$

1-3. Department of Mathematics, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.

* Corresponding author: olanike20@gmail.com, tinuadewuraola114@gmail.com, famelov@unilorin.edu.ng

Article Info

Received: 02 August 2023 Revised: 27 October 2023
Accepted: 28 October 2023 Available online: 15 November 2023

Abstract

In this work, a new class of analytic function was defined by the Gegenbauer polynomial involving the sine function. The initial coefficient estimates were obtained and the fourth Toeplitz determinants was presented.

Keywords: Analytic function, Sine function, Gegenbauer polynomial, Toeplitz determinant. MSC2010: 30C45.

1 Introduction

Orthogonal polynomials were discovered by Legendre in 1784 [1]. Under specific model restrictions, orthogonal polynomials are frequently employed to discover solutions of ordinary differential equations. Moreover, orthogonal polynomials are a critical feature in approximation theory. Two polynomials $P n$ and $P m$, of order n and m, respectively, are orthogonal if

$$
\left\langle P_{n}, P_{m}\right\rangle=\int_{c}^{d} P_{n}(x) P_{m}(x) r(x) d x=0
$$

for $n \neq m$ where $r(x)$ is non-negative function in the interval (c, d); therefore, all finite order polynomials $P_{n}(x)$ have well-defined integral. An example of an orthogonal polynomial is a Gegenbauer polynomial (GP) [2]. Several authors have carried out research on the Gegenbauer polynomial, see [3], [4], [5], [6], [7], [8] and [9].
Many researchers have studied several Hankel and Toeplitz determinants for various classes of functions. For example, Janteng et al. [10] investigated second Hankel determinant for a function with a positive real part and starlike and convex functions, respectively; Bansal [11], Lee et al. [12] and Shaharuddin et al [13] discussed the second Hankel determinant for certain analytic functions; Zaprawa [14], Zhang et al. [15] and Babalola [16] derived third-order Hankel determinant for certain different univalent functions; Raza and Malik. [17] and Shi et al. [18], [19], and Breaz et al [20], studied upper bounds of the third Hankel determinant for some classes of analytic functions related

This work is licensed under a Creative Commons Attribution 4.0 International License.
http://ijmso.unilag.edu.ng/article
to lemniscate of Bernoulli, cardioid domain and exponential function; Mahmood et al. [21] found third Hankel determinant for a subclass of q-starlike functions. Following the above work, Zhang et al. [22] recently considered fourth-order Hankel determinants of starlike functions related to the sine function. On the other hand, Ramachandran and Kavitha [23] and Ali et al. [24] studied Toeplitz matrices whose elements are the coefficients of starlike, close-to-convex, and univalent functions. Besides, Tang et al., [25] studied third-order Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order ; Zhang et al. [26] considered third-order Hankel and Toeplitz determinants of starlike functions, which are defined by using the sine function; Ramachandran et al. [27] derived an estimation for the Hankel and Topelitz determinant with domains bounded by conical sections involving Ruscheweygh derivative; Srivastava et al. [28] found the Hankel determinant and the Toeplitz matrices for a newly defined class of analytic q-starlike functions.
Motivated by the work of Al-Hawary et al [2], Al-Shbeil et al [8], Olatunji et al [29] and Zhang and Tang [30], it is established that Gegenbauer polynomial also promotes the advancement of geometric function theory. In this paper, we aim to investigate the second, third and fourth-order Toeplitz determinant for this function class $K_{\mu, s}$ associated with sine function and obtain the upper bounds for the determinants.

2 Preliminaries

Let \mathbb{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{2.1}
\end{equation*}
$$

in the unit disk $\mathbb{D}, \mathbb{D}=(z \in \mathbb{C}:|z| \leq 1)$.
which are analytic in the unit disc \mathbb{D} with conditions $f(0)=f^{\prime}(0)-1=0$. Recall that, S is representing a univalent function with some of the above conditions. With simple modificaton and differentiation, various subclasses of \mathbb{A} are known such as starlike function, convex function, close-to-convex just to mention but a few with representations below 1001[31].
[32] A function $f(z) \in \mathbb{A}$ is said to be starlike if it satisfies the condition

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0 \quad(z \in \mathbb{D})
$$

Denote this class by \mathcal{S}^{*}.
[32] A function $f(z) \in \mathbb{A}$ is said to be convex if it satisfies the condition

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \quad(z \in \mathbb{D})
$$

Denote this class by \mathcal{C}.
[32] A function $f(z) \in \mathbb{A}$ is called close-to-convex, if there exist a convex function ϕ such that

$$
\Re\left(\frac{f^{\prime}(z)}{\phi^{\prime}(z)}\right)>0 \quad(z \in \mathbb{D})
$$

Kaplan's definition does not require that the function ϕ is normalized, but since the majority of results obtained for close-to-convex functions assume this, we will suppose that ϕ so that $\phi(0)=0$ and $\phi^{\prime}(0)=1$.
$1001[32], 1001[33], 1001[34]$ and $1001[35]$. A function $f(z) \in \mathbb{A}$ is called close-to-convex, if there exist a function $g \in \mathcal{S}^{*}$ such that

$$
\Re\left(\frac{f^{\prime}(z)}{g(z)}\right)>0 \quad(z \in \mathbb{D})
$$

Denote this class by \mathcal{K}_{0}. Choosing $g(z)=f(z)$, it is clear that $\mathcal{S}^{*} \subset \mathcal{K}_{0}$ and so $\mathcal{C} \subset \mathcal{S}^{*} \subset \mathcal{K}_{0}$. [32] Let ρ be analytic in \mathbb{D}, with $p(0)=1$. Denote by P the class of functions ρ with Taylor series expansion

$$
\begin{equation*}
\rho(z)=1+\sum_{n=1}^{\infty} d_{n} z^{n} \tag{2.2}
\end{equation*}
$$

satisfying

$$
\Re(\rho(z))>0 \quad(z \in \mathbb{D})
$$

(Derek et al., 2018). Functions in P are referred to as functions with positive real parts in \mathbb{D} or Caratheodory functions. [32] For two functions f and g analytic in \mathbb{U}, we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U} and write

$$
\begin{equation*}
f(z) \prec g(z) \tag{2.3}
\end{equation*}
$$

$(z \in \mathbb{U})$ if there exists a Schwartz function $w(z)$ analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1(z \in \mathbb{U})$ such that

$$
f(z)=g(w(z))
$$

In particular, if the function g is univalent in \mathbb{U}, the above subordination is equivalent to $f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.

For non-zero real constant λ, a generating function of Gegenbauer polynomials.

$$
\begin{equation*}
\kappa_{\lambda}(m, z)=\frac{1}{\left(1-2 m z+z^{2}\right)^{\lambda}} \tag{2.4}
\end{equation*}
$$

where $\mathrm{m} \in[-1,1]$ and $\mathrm{z} \in U$. For fixed m the function $\kappa_{\lambda, m}$ is analytic in U, so it can be expanded on a Taylor series as

$$
\begin{equation*}
\kappa_{\lambda, m}=\sum_{n=0}^{\infty} C_{n}^{\lambda}(m) z^{n} \tag{2.5}
\end{equation*}
$$

where $C_{n}^{\lambda}(m)$ is Gegenbauer polynomial of degree n .
Obviously κ_{λ} generates nothing when $\lambda=0$. Therefore, the generating function of the Gegenbauer polynomial is set to be

$$
\begin{equation*}
\kappa_{0}(m, z)=1-\log \left(1-2 m z+z^{2}\right)=\sum_{n=0}^{\infty} C_{n}^{0}(m) z^{n} \tag{2.6}
\end{equation*}
$$

for $\lambda=0$ and Gegenbauer polynomials can also be defined by the following recurrence relations:

$$
\begin{equation*}
C_{n}^{\lambda}(m)=\frac{1}{n}\left[2 m(n+\lambda-1) C_{n-1}^{\lambda}(m)-(n+2 \lambda-2) C_{n-1}^{\lambda}(m)\right] \tag{2.7}
\end{equation*}
$$

with initial values

$$
\begin{align*}
C_{0}^{\lambda}(m)=1, C_{1}^{\lambda}(m)=2 \lambda m, \quad C_{2}^{\lambda}(m)= & 2 \lambda(1+\lambda) m^{2}-\lambda \\
& \text { and } C_{3}^{\lambda}(m)=\frac{4 \lambda(\lambda+1)(\lambda+2)}{3} m^{2}-2 \lambda(\lambda+1) m \tag{2.8}
\end{align*}
$$

see details in [36]
Szynal [37] introduced the class $T(\lambda)$ as a subclass consisting of functions of the form

$$
\begin{equation*}
c(z)=\int_{-1}^{1} k(z, m) d \sigma(m) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
k(z, m)=z+\sum_{n=2}^{\infty} c_{n-1}^{\lambda}(m) z^{n} \tag{2.10}
\end{equation*}
$$

Let

$$
\begin{equation*}
\zeta_{\lambda, m} f(z)=k(z, m) * f=z+\sum_{n=2}^{\infty} c_{n-1}^{\lambda}(m) a_{n} z^{n} \tag{2.11}
\end{equation*}
$$

(2.11) denotes the Hadarmard product of (2.1) and (2.10).

To prove our desired results, we require the following lemmas and definitions.
Lemma 2.1. [30]. If $p(z) \in P$ from 2.2, then $\left|d_{n}\right| \leq 2, n=1,2, \ldots$.
Lemma 2.2. [30] Let $p(z) \in P$, then $2 d_{2}=d_{1}^{2}+\left(4-d_{1}^{2}\right) \xi$. and $4 d_{3}=d_{1}^{3}+2 d_{1}\left(4-d_{1}^{2}\right) \xi-d_{1}(4-$ $\left.d_{1}^{2}\right) \xi^{2}+2\left(4-d_{1}^{2}\right)\left(1-|\xi|^{2}\right) \eta$. for some ξ, η satisfying $|\xi| \leq 1,|\xi| \leq 1$ and $d_{1} \in[0,2]$.

Lemma 2.3. [30] If $p(z) \in P$, then

$$
\begin{gather*}
\left|d_{2}-\frac{d_{1}^{2}}{2}\right| \leq 2-\frac{\left|d_{1}^{2}\right|}{2} \tag{2.12}\\
\left|d_{n+k}-\mu d_{n} d_{k}\right|<2,0 \leq \mu \leq 1 \tag{2.13}\\
\left|d_{n+2 k}-\mu d_{n} d_{k}^{2}\right| \leq 2(1+2 \mu) \tag{2.14}
\end{gather*}
$$

Lemma 2.4. [36]. If $g(z) \in S^{*}$, then $\left|b_{n}\right| \leq n, n \geq 2$.
[32] Let ρ be analytic in \mathbb{D}, with $p(0)=1$. Denote by P the class of functions ρ with Taylor series expansion

$$
\begin{equation*}
\rho(z)=1+\sum_{n=1}^{\infty} d_{n} z^{n} \tag{2.15}
\end{equation*}
$$

satisfying

$$
\Re(\rho(z))>0 \quad(z \in \mathbb{D})
$$

(Derek et al., 2018).
Now we define the following new subclass of $K_{\mu, s}$ as follows [30]. Let $\zeta_{\lambda, m} \in K_{\mu, s}$, if $\zeta_{\lambda, m} \in A$ and there exists $g(z) \in S^{*}$ such that

$$
\left|\frac{z\left(\zeta_{\lambda, m} f\right)^{\prime}(z)}{g(z)}-1\right| \prec \sin z
$$

where $\lambda \geq 0, m \in[1,-1]$ and $K_{\mu, s}$ denotes the natural close- to-convex analogue of S_{μ}^{*}. Note that s denotes the Sine function.

3 Main Results

Theorem 3.1. If $\zeta_{\lambda, m} \in K_{\mu, s}$ where $m \in[1,-1]$, then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{3}{2\left|c_{1}^{\lambda}(m)\right|} \\
& \left|a_{3}\right| \leq \frac{5}{3\left|c_{2 \mid}^{\lambda}(m)\right|} \\
& \left|a_{4}\right| \leq \frac{53}{24\left|c_{3}^{\lambda}(m)\right|} \\
& \left|a_{5}\right| \leq \frac{92}{15\left|c_{4}^{\lambda}\right|(m)}
\end{aligned}
$$

Proof: From Definition 2.8, $g(z) \in S^{*}$ and according to subordination relationship, there exists a Schwarz function $w(z)$ with $w(0)=0$ and $|w(z)|<1$ such that

$$
\begin{gather*}
\left|\frac{z\left(\zeta_{\lambda, m} f\right)^{\prime}(z)}{g(z)}-1\right| \prec \sin z \\
z\left(\zeta_{\lambda, m} f\right)^{\prime}(z)=g(z)(1+\sin \omega(z)) \\
\zeta_{\lambda, m} f(z)=z+\sum_{n=2}^{\infty} c_{n-1}^{\lambda}(m) a_{n} z^{n} \\
\zeta_{\lambda, m} f^{\prime}(z)=1+\sum_{n=2}^{\infty} n c_{n-1}^{\lambda}(m) a_{n} z^{n-1} \\
z \zeta_{\lambda, m} f^{\prime}(z)=z+\sum_{n=2}^{\infty} n c_{n-1}^{\lambda}(m) a_{n} z^{n} \tag{3.1}
\end{gather*}
$$

Now, if $g(z) \in S^{*}$

$$
\begin{gather*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{3.2}\\
\exists p(z)=\frac{1+\omega}{1-\omega}=1+d_{1} z+d_{2} z^{2}+\ldots \text { such that } p(z) \in P
\end{gather*}
$$

$$
\begin{aligned}
& \text { and } \begin{array}{c}
\omega(z)=\frac{p(z)-1}{1+p(z)}=\frac{d_{1} z+d_{2} z^{2}+\ldots}{2+d_{1} z+d_{2} z^{2}+\ldots} \\
\begin{aligned}
& \Rightarrow \omega(z)=\frac{d_{1}}{2} z+\left(\frac{d_{2}}{2}-\frac{d_{1}^{2}}{4}\right) z^{2}+\left(\frac{d_{1}^{3}}{8}-\frac{d_{1} d_{2}}{2}+\frac{d_{3}}{2}\right) z^{3} \\
&+\left(\frac{3 d_{1}^{2} d_{2}}{8}-\frac{d_{1} d_{3}}{2}-\frac{d_{1}^{4}}{16}-\frac{d_{2}^{2}}{4}+\frac{d_{4}}{2}\right) z^{4}+\ldots \\
&=\quad\left(\frac{1}{48} d_{1}^{3}\right) z^{3}+\left(\frac{d_{2} d_{1}^{2}}{16}-\frac{d_{1}^{4}}{32}\right) z^{4}+\left(\frac{3 d_{3} d_{1}^{2}}{8}-\frac{3 d_{2} d_{1}^{3}}{4}+\frac{d_{1} d_{2}^{2}}{4}+\frac{3 d_{1}^{5}}{16}\right) z^{5} \ldots
\end{aligned} \\
\begin{array}{r}
(\omega(z))^{3}+
\end{array} \\
\quad(\omega(z))^{5}=\frac{d_{1}^{5}}{32} z^{5}
\end{array} \\
& \sin \omega(z)=\omega(z)-\frac{\omega(z)^{3}}{3!}+\frac{\omega(z)^{5}}{5!}+\ldots
\end{aligned}
$$

Substituting for $\omega(z)$ in $\sin \omega(z)$,

$$
\begin{aligned}
\sin \omega(z)=\frac{d_{1}}{2} z+\left(\frac{d_{2}}{2}-\frac{d_{1}^{2}}{4}\right) z^{2} & +\left(\frac{5 d_{1}^{3}}{48}-\frac{d_{1} d_{2}}{2}+\frac{d_{3}}{2}\right) z^{3}+\left(\frac{5 d_{1}^{2} d_{2}}{16}-\frac{d_{1} d_{3}}{2}-\frac{3 d_{1}^{4}}{32}-\frac{d_{2}^{2}}{4}+\frac{d_{4}}{2}\right) z^{4} \\
& +\left(\frac{5 d_{1}^{2} d_{3}}{16}+\frac{5 d_{1} d_{2}^{2}}{16}-\frac{5 d_{1}^{3} d_{2}}{48}+\frac{61 d_{1}^{5}}{3840}-\frac{d_{2} d_{3}}{32}+\frac{d_{5}}{2}+\frac{d_{1} d_{4}}{2}\right) z^{5} \ldots
\end{aligned}
$$

$$
\begin{gathered}
1+\sin \omega(z)=1+\frac{d_{1}}{2} z+\left(\frac{d_{2}}{2}-\frac{d_{1}^{2}}{4}\right) z^{2}+\left(\frac{5 d_{1}^{3}}{48}-\frac{d_{1} d_{2}}{2}+\frac{d_{3}}{2}\right) z^{3}+\left(\frac{5 d_{1}^{2} d_{2}}{16}-\frac{d_{1} d_{3}}{2}-\frac{3 d_{1}^{4}}{32}-\frac{d_{2}^{2}}{4}+\frac{d_{4}}{2}\right) z^{4} \\
+\left(\frac{5 d_{1}^{2} d_{3}}{16}+\frac{5 d_{1} d_{2}^{2}}{16}-\frac{5 d_{1}^{3} d_{2}}{48}+\frac{61 d_{1}^{5}}{3840}-\frac{d_{2} d_{3}}{32}+\frac{d_{5}}{2}+\frac{d_{1} d_{4}}{2}\right) z^{5} \ldots
\end{gathered}
$$

Multiplied by $(g(z))$, we have

$$
\begin{align*}
g(z)(1+\sin \omega(z))=z+\left(\frac{d_{1}}{2}+\right. & \left.b_{2}\right) z^{2}+\left(\frac{d_{2}}{2}-\frac{d_{1}^{2}}{4}+\frac{d_{1} b_{2}}{2}+b_{3}\right) z^{3} \\
& +\left(\frac{5 d_{1}^{3}}{48}-\frac{d_{1} d_{2}}{2}+\frac{d_{3}}{2}+\frac{d_{2} b_{2}}{2}-\frac{d_{1}^{2} b_{2}}{4}+\frac{d_{1} b_{3}}{2}+b_{4}\right) z^{4}+\ldots \tag{3.3}
\end{align*}
$$

Equating coefficients (3.1) and (3.3); we have that

$$
\begin{gather*}
\left(2 c_{1}^{\lambda}(m) a_{2}\right) z^{2}=\left(\frac{d_{1}}{2}+b_{2}\right) z^{2} \tag{3.4}\\
\left(3 c_{2}^{\lambda}(m) a_{3}\right) z^{3}=\left(\frac{d_{2}}{2}-\frac{d_{1}^{2}}{4}+\frac{d_{1} b_{2}}{2}+b_{3}\right) z^{3} \tag{3.5}\\
\left(4 c_{3}^{\lambda}(m) a_{4}\right) z^{4}=\left(\frac{5 d_{1}^{3}}{48}-\frac{d_{1} d_{2}}{2}+\frac{d_{3}}{2}+\frac{d_{2} b_{2}}{2}-\frac{d_{1}^{2} b_{2}}{4}+\frac{d_{1} b_{3}}{2}+b_{4}\right) z^{4} \tag{3.6}
\end{gather*}
$$

$$
\begin{align*}
& \left(5 c_{4}^{\lambda}(m) a_{5}\right) z^{5}= \\
& \quad\left(\frac{5 d_{1}^{2} d_{2}}{16}+\frac{d_{4}}{2}-\frac{d_{1} d_{3}}{2}-\frac{3 d_{1}^{4}}{32}-\frac{d_{2}^{2}}{4}+\frac{5 d_{1}^{3} b_{2}}{48}-\frac{b_{2} d_{1} d_{2}}{2}+\frac{d_{1} b_{4}}{2}+\frac{b_{2} d_{3}}{2}+\frac{b_{3} d_{2}}{2}-\frac{b_{3} d_{1}^{2}}{4}+b_{5}\right) z^{5} \tag{3.7}
\end{align*}
$$

From equation 3.4

$$
\begin{align*}
a_{2} & =\frac{1}{2 c_{1}^{\lambda}(m)}\left(\frac{d_{1}}{2}+b_{2}\right) \\
\left|a_{2}\right| & \leq \frac{1}{2\left|c_{1}^{\lambda}(m)\right|}\left|\frac{d_{1}}{2}+b_{2}\right| \tag{3.8}\\
\left|a_{2}\right| & \leq\left|\frac{d_{1}}{4\left|c_{1}^{\lambda}(m)\right|}+\frac{b_{2}}{2\left|c_{1}^{\lambda}(m)\right|}\right|
\end{align*}
$$

From equation 3.5

$$
\begin{align*}
a_{3} & =\frac{1}{3 c_{2}^{\lambda}(m)}\left(\frac{d_{2}}{2}-\frac{d_{1}^{2}}{4}+\frac{d_{1} b_{2}}{2}+b_{3}\right) \\
a_{3} & =\frac{1}{3 c_{2}^{\lambda}(m)} \frac{1}{2}\left(d_{2}-\frac{d_{1}^{2}}{2}+\frac{d_{1} b_{2}}{2}+b_{3}\right) \\
\left|a_{3}\right| & \leq\left|\frac{1}{3 c_{2}^{\lambda}(m)}\right|\left|\frac{1}{2}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)+\frac{d_{1} b_{2}}{2}+b_{3}\right| \\
\left|a_{3}\right| & \leq \frac{1}{3\left|c_{2}^{\lambda}(m)\right|} \frac{1}{2}\left|d_{2}-\frac{d_{1}^{2}}{2}\right|+\frac{\left|d_{1}\right|\left|b_{2}\right|}{2}+\left|b_{3}\right| \tag{3.9}
\end{align*}
$$

$$
\begin{gather*}
a_{4}=\frac{1}{4 c_{3}^{\lambda}(m)}\left(\frac{5 d_{1}^{3}}{48}-\frac{d_{1} d_{2}}{2}+\frac{d_{3}}{2}+\frac{d_{2} b_{2}}{2}-\frac{d_{1}^{2} b_{2}}{4}+\frac{d_{1} b_{3}}{2}+b_{4}\right) \\
a_{4}=\frac{1}{4 c_{3}^{\lambda}(m)}\left(\frac{5 d_{1}^{3}}{48}+\frac{d_{1} b_{3}}{2}+\frac{1}{2}\left(d_{3}-d_{1} d_{2}\right)+\frac{b_{2}}{2}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)+b_{4}\right) \\
\left|a_{4}\right| \leq\left|\frac{1}{4 c_{3}^{\lambda}(m)}\right|\left|\frac{5 d_{1}^{3}}{48}+\frac{d_{1} b_{3}}{2}+\frac{1}{2}\left(d_{3}-d_{1} d_{2}\right)+\frac{b_{2}}{2}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)+b_{4}\right| \\
\left|a_{4}\right| \leq \frac{1}{4\left|c_{3}^{\lambda}(m)\right|}\left(\frac{5\left|d_{1}^{3}\right|}{48}+\frac{\left|d_{1}\right|\left|b_{3}\right|}{2}+\frac{1}{2}\left|d_{3}-d_{1} d_{2}\right|+\frac{\left|b_{2}\right|}{2}\left|d_{2}-\frac{d_{1}^{2}}{2}\right|+\left|b_{4}\right|\right) \tag{3.10}
\end{gather*}
$$

Immediately from (3.7)

$$
\begin{align*}
& a_{5}=\frac{1}{5 c_{4}^{\lambda}(m)}\left(\frac{5 d_{1}^{2} d_{2}}{16}+\frac{d_{4}}{2}-\frac{d_{1} d_{3}}{2}-\frac{3 d_{1}^{4}}{32}-\frac{d_{2}^{2}}{4}+\frac{5 d_{1}^{3} b_{2}}{48}-\frac{b_{2} d_{1} d_{2}}{2}+\frac{d_{1} b_{4}}{2}+\frac{b_{2} d_{3}}{2}+\frac{b_{3} d_{2}}{2}-\frac{b_{3} d_{1}^{2}}{4}+b_{5}\right) \\
& \left|a_{5}\right| \leq\left|\frac{1}{5 c_{4}^{\lambda}(m)}\right|\left|\frac{5 d_{1}^{2} d_{2}}{16}+\frac{d_{4}}{2}+\frac{5 d_{1}^{3} b_{2}}{48}+b_{5}+\frac{d_{1} b_{4}}{2}+\frac{b_{2} d_{3}}{2}+\frac{b_{3} d_{2}}{2}-\frac{d_{1} d_{3}}{2}-\frac{3 d_{1}^{4}}{32}-\frac{d_{2}^{2}}{4}-\frac{b_{2} d_{1} d_{2}}{2}-\frac{b_{3} d_{1}^{2}}{4}\right| \\
& \begin{aligned}
&\left|a_{5}\right| \leq \frac{1}{5\left|c_{4}^{\lambda}\right|(m)}\left|\frac{5 d_{1}^{2} d_{2}}{16}+\frac{d_{4}}{2}+\frac{5 d_{1}^{3} b_{2}}{48}+b_{5}+\frac{d_{1} b_{4}}{2}+\frac{b_{2} d_{3}}{2}+\frac{b_{3} d_{2}}{2}\right|+\left|-d_{1}\right|\left|\frac{d_{3}}{2}+\frac{3 d_{1}^{3}}{32}+\frac{b_{2} d_{2}}{2}+\frac{b_{3} d_{1}}{4}\right|+\left|-\frac{d_{2}^{2}}{4}\right| \\
&\left|a_{5}\right| \leq \frac{1}{5\left|c_{4}^{\lambda}\right|(m)}\left[\frac{5\left|d_{1}^{2}\right|\left|d_{2}\right|}{16}+\frac{\left|d_{4}\right|}{2}+\frac{5\left|d_{1}^{3}\right|\left|b_{2}\right|}{48}+\left|b_{5}\right|+\frac{\left|d_{1}\right|\left|b_{4}\right|}{2}+\frac{\left|b_{2}\right|\left|d_{3}\right|}{2}+\frac{\left|b_{3}\right|\left|d_{2}\right|}{2}\right. \\
&\left.+\left|d_{1}\right|\left(\frac{\left|d_{3}\right|}{2}+\frac{3\left|d_{1}^{3}\right|}{32}+\frac{\left|b_{2}\right|\left|d_{2}\right|}{2}+\frac{\left|b_{3}\right|\left|d_{1}\right|}{4}\right)+\frac{1}{4}\left|d_{2}^{2}\right|\right]
\end{aligned}
\end{align*}
$$

If $\zeta_{\lambda, m} \in C_{n}(z)$, then $\left|a_{2}\right| \leq \frac{3}{2 c_{1}^{\lambda}(m)}$

Proof:

setting $n=2$ in (3.1) yeilds (3.8) and applying lemmas 2.1 and 2.4

$$
\left|a_{2}\right| \leq \frac{1}{2\left|c_{1}^{\lambda}(m)\right|}\left|\frac{d_{1}}{2}+b_{2}\right|
$$

the proof follows. This is the result obtained by Olatunji [29].
If $\zeta_{\lambda, m} \in C_{n}(z)$, then

$$
\left|a_{3}\right| \leq \frac{5}{3 c_{2}^{\lambda}(m)}
$$

Proof:

setting $n=3$ in (3.1) yeilds (3.9) and applying lemmas 2.1, 2.3 and 2.4, we have

$$
\left|a_{3}\right| \leq \frac{1}{3\left|c_{2}^{\lambda}(m)\right|} \frac{1}{2}\left|d_{2}-\frac{d_{1}^{2}}{2}\right|+\frac{\left|d_{1}\right|\left|b_{2}\right|}{2}+\left|b_{3}\right|
$$

the proof follows. This is the result obtained by Olatunji [29].
If $\zeta_{\lambda, m} \in C_{n}(z)$, then

$$
\left|a_{4}\right| \leq \frac{53}{24\left|c_{3}^{\lambda}(m)\right|}
$$

Proof:

setting $n=4$ in (3.1) yeilds (3.10) and applying lemmas 2.1, 2.3 and 2.4, we have

$$
\left|a_{4}\right| \leq \frac{1}{4\left|c_{3}^{\lambda}(m)\right|}\left(\frac{5\left|d_{1}^{3}\right|}{48}+\frac{\left|d_{1}\right|\left|b_{3}\right|}{2}+\frac{1}{2}\left|d_{3}-d_{1} d_{2}\right|+\frac{\left|b_{2}\right|}{2}\left|d_{2}-\frac{d_{1}^{2}}{2}\right|+\left|b_{4}\right|\right)
$$

hence the proof.
If $\zeta_{\lambda, m} \in C_{n}(z)$, then

$$
\left|a_{5}\right| \leq \frac{92}{15\left|c_{4}^{\lambda}\right|(m)}
$$

Proof:

setting $n=5$ in (3.1) yeilds (3.11) and applying lemmas 2.1, 2.3 and 2.4, we have

$$
\begin{aligned}
\left|a_{5}\right| \leq \frac{1}{5\left|c_{4}^{\lambda}\right|(m)}\left[\frac{5\left|d_{1}^{2}\right|\left|d_{2}\right|}{16}+\frac{\left|d_{4}\right|}{2}+\frac{5\left|d_{1}^{3}\right|\left|b_{2}\right|}{48}\right. & +\left|b_{5}\right|+\frac{\left|d_{1}\right|\left|b_{4}\right|}{2}+\frac{\left|b_{2}\right|\left|d_{3}\right|}{2}+\frac{\left|b_{3}\right|\left|d_{2}\right|}{2} \\
& \left.+\left|d_{1}\right|\left(\frac{\left|d_{3}\right|}{2}+\frac{3\left|d_{1}^{3}\right|}{32}+\frac{\left|b_{2}\right|\left|d_{2}\right|}{2}+\frac{\left|b_{3}\right|\left|d_{1}\right|}{4}\right)+\frac{1}{4}\left|d_{2}^{2}\right|\right]
\end{aligned}
$$

the proof follows.
Toeplitz Determinants of $K_{\mu, s}$
The Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant, this means

$$
T_{q}(n)=\left(\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & a_{n} & a_{n+1} & \ldots \\
\cdot & \cdot & \cdot & \\
\cdot & \ldots & a_{n+1} & \\
\cdot & \cdots & a_{n+1} & \\
a_{n+q-1} & \ldots & a_{n+1} & a_{n}
\end{array}\right)
$$

$n \leq 1, q \leq 1$
This matrix has computational properties and appearances in various areas, 1001[23],1001[38]. In this work, assume $a_{1}=1$, then the estimates for the Toeplitz determinant in the cases of $q=2, n=2, q=3, n=1, q=3, n=2, q=4, n=1$ and $q=4, n=2$ of the analytic function having entries from the class $K_{\mu, s}$ is presented in the following Theorems.

Theorem 3.2. Let $\zeta_{\lambda, m} \in K_{\mu, s}$ where $m \in[1,-1]$, and

$$
T_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{2}
\end{array}\right|
$$

then

$$
\left|a_{3}^{2}-{a_{2}}^{2}\right| \leq \frac{9}{4\left|c_{1}^{2 \lambda}(m)\right|}+\frac{71}{18\left|c_{2}^{2 \lambda}(m)\right|}
$$

Proof: The proof follows from equations 3.8 and 3.9
Theorem 3.3. Let $\zeta_{\lambda, m} \in K_{\mu, s}$ where $m \in[1,-1]$, and

$$
T_{3}(1)=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{2} & a_{1} & a_{2} \\
a_{3} & a_{2} & a_{1}
\end{array}\right|
$$

then,

$$
\left|1+2 a_{2}^{2}\left(a_{3}-1\right)-a_{3}{ }^{2}\right| \leq 1+\frac{1}{36\left|c_{1}^{2 \lambda} c_{2}^{\lambda}(m)\right|}-\frac{5}{2 \mid c_{1}^{2 \lambda}(m)}-\frac{97}{18\left|c_{2}^{2 \lambda}(m)\right|}
$$

Proof: The proof follows from (3.8),(3.9),(3.10) and (3.11)

Theorem 3.4. Let $\zeta_{\lambda, m} \in K_{\mu, s}$ where $m \in[1,-1]$, and

$$
T_{3}(2)=\left|\begin{array}{lll}
a_{2} & a_{3} & a_{4} \\
a_{3} & a_{2} & a_{3} \\
a_{4} & a_{3} & a_{2}
\end{array}\right|
$$

then,

$$
\left|2 a_{3}^{2}\left(a_{4}-a_{2}\right)-a_{2} a_{4}^{2}+a_{2}^{3}\right| \leq \frac{|A|^{3}}{8\left|c_{1}^{3}(m)\right|}+\frac{|B|^{2}|C|}{18\left|c_{2}^{2 \lambda}\right| c_{3}^{\lambda} \mid(m)}+\frac{|A||B|^{2}}{9\left|c_{1}^{\lambda}\right|\left|c_{2}^{2 \lambda}(m)\right|}+\frac{|A||C|^{2}}{32\left|c_{1}^{\lambda}\right|\left|c_{3}^{2 \lambda}(m)\right|}
$$

Proof: The proof follows.
Theorem 3.5. Let $\zeta_{\lambda, m} \in K_{\mu, s}$ where $m \in[1,-1]$, and

$$
T_{4}(1)=\left|\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
a_{2} & a_{1} & a_{2} & a_{3} \\
a_{3} & a_{2} & a_{1} & a_{2} \\
a_{4} & a_{3} & a_{2} & a_{1}
\end{array}\right|
$$

then,

$$
\begin{aligned}
& \left|1-3 a_{2}^{2}+2 a_{2}^{2} a_{3}-2 a_{3}^{2}-2 a_{2}^{2} a_{3}^{2}+4 a_{2} a_{3} a_{4}-2 a_{2} a_{3}^{2} a_{4}-2 a_{2}^{3} a_{4}+a_{2}^{4}+a_{3}^{4}+a_{4}^{2}+a_{2}^{2} a_{4}^{2}\right| \\
& \leq 1-\frac{3|A|^{2}}{4\left|c_{1}^{2} \lambda(m)\right|}+\frac{|A|^{2}|B|}{6\left|c_{1}^{2 \lambda}\right| c_{2}^{\lambda} \mid(m)}+\frac{2|B|^{2}}{9\left|c_{2}^{2 \lambda}\right|(m)}+\frac{|A|^{2}|B|^{2}}{36\left|c_{1}^{2 \lambda}\right| c_{2}^{2} \lambda \mid(m)}+\frac{|A||B|^{2}|C|}{36\left|c_{1}^{\lambda}\right|\left|c_{2}^{2} \lambda\right|\left|c_{3}^{\lambda}\right|(m)} \\
& \\
& \quad+\frac{|A|^{3}|C|}{16\left|c_{1}^{3} \lambda\right|\left|c_{3}^{\lambda}\right|(m)}+\frac{|C|^{2}}{16\left|c_{3}^{2 \lambda}\right|(m)}+\frac{|A|^{2}|C|^{2}}{64\left|c_{1}^{2 \lambda}\right|\left|c_{3}^{2} \lambda\right|(m)}
\end{aligned}
$$

Proof: The proof follows from $(3.8),(3.9),(3.10)$ and (3.11).
Theorem 3.6. Let $\zeta_{\lambda, m} \in K_{\mu, s}$ where $m \in[1,-1]$, and

$$
T_{4}(2)=\left|\begin{array}{cccc}
a_{2} & a_{3} & a_{4} & a_{5} \\
a_{3} & a_{2} & a_{3} & a_{4} \\
a_{4} & a_{3} & a_{2} & a_{3} \\
a_{5} & a_{4} & a_{3} & a_{2}
\end{array}\right|
$$

then,

$$
\begin{array}{r}
\left|\left(a_{2}^{2}-a_{3}^{2}\right)^{2}+2\left(a_{3}^{2}-a_{2} a_{4}\right)\left(a_{2} a_{4}-a_{3} a_{5}\right)-\left(a_{2} a_{3}-a_{3} a_{4}\right)^{2}+\left(a_{4}^{2}-a_{3} a_{5}\right)^{2}-\left(a_{3} a_{4}-a_{2} a_{5}\right)^{2}\right| \\
\quad \leq \frac{|A|^{4}}{16\left|c_{1}^{4} \lambda(m)\right|}+\frac{|B|^{4}}{81\left|c_{2}^{4 \lambda}\right|(m)}+\frac{|A||B \| C||D|}{30\left|c_{1}^{\lambda}\right|\left|c_{2}^{\lambda}\right|\left|c_{3}^{\lambda}\right|\left|c_{4}^{\lambda}\right|(m)}+\frac{|A||B|^{2}|C|}{18\left|c_{1}^{\lambda}\right|\left|c_{2}^{2} \lambda\right|\left|c_{3}^{\lambda}\right|(m)}+\frac{|C|^{4}}{256\left|c_{3}^{4 \lambda}\right|(m)}+ \\
\frac{|B|^{2}|D|^{2}}{225\left|c_{2}^{2 \lambda}\right| c_{4}^{2} \lambda \mid(m)}+\frac{|A|^{2}|B|^{2}}{12\left|c_{1}^{2} \lambda\right|\left|c_{2}^{2} \lambda\right|(m)}++\frac{|A|^{2}|C|^{2}}{32\left|c_{1}^{2} \lambda\right|\left|c_{3}^{2} \lambda\right|(m)}+\frac{|A|^{2}|D|^{2}}{100\left|c_{1}^{2} \lambda\right|\left|c_{3}^{2 \lambda}\right|(m)}+\frac{|B|^{2}|C|^{2}}{72\left|c_{2}^{2 \lambda}\right|\left|c_{3}^{2} \lambda\right|(m)}+ \\
\frac{2|B|^{3}|D|}{135\left|c_{2}^{2 \lambda}\right|\left|c_{4}^{\lambda}\right|(m)}+\frac{|B \| C|^{2}|D|}{120\left|c_{2}^{\lambda}\right|\left|c_{3}^{2} \lambda\right|\left|c_{4}^{\lambda}\right|(m)}
\end{array}
$$

Proof: The proof follows from Theorem 3.1

4 Acknowledgement

The authors sincerely thank the the editor and the anonymous reveiwers for their valuable comments and suggestions. Their insightful feedback significantly improved the clarity and quality of this manuscript.

References

[1] Legendre, A.(1785); Recherches sur Laattraction des Sphéroides Homogénes; Mémoires Présentes par Divers Savants a laAcadémie des Sciences de laInstitut de France; Goethe Universitat: Paris, France, 10, 411-434.
[2] Al-Hawary, T., Amourah, A., Alsoboh, A., and Alsalhi O.A. (2023); New Comprehensive Subclass of Analytic Bi-Univalent Functions Related to Gegenbauer Polynomials. Symmetry 15(576). https://doi.org/10.3390/sym15030576
[3] Amourah A., Al Amoush A.G. and Al-Kaseasbeh M. (2021); Gegenbauer polynomials and biunivalent functions. Palestine Journal of Mathematics, 10(2), 625-632
[4] Frasin B.A, Amourah A., Abdeljawad T. (2021); Fekete-Szeg.o Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials. Journal of Function Spaces, Article ID 5574673.
[5] Yousef. F., Amourah A., Alomari M., and Alsoboh A. (2022); Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Mathematical Problems in Engineering, Article ID 6354994.
[6] Bavinck H., Hooghiemstra G., and De Waard E.(1993) An application of Gegenbauer polynomials in queueing theory. Journal of Computational and Applied Mathematics, 49, 1-10.
[7] Oyekan E.A, Olatunji T.A. and Lasode A.O. (2023): Applications of (p, q) Gegenbauer Polynomials on a Family of Bi-univalent Functions; Earthline Journal of Mathematical Sciences, E-ISSN: 2581-8147, 12(2), Pgs 271-284.
[8] Al-Shbeil I., Wanas A.K, Benali A., and Ca ${ }^{\leftrightharpoons}$ tas A. (2022); Coefficient Bounds for a Certain Family of Biunivalent Functions Defined by Gegenbauer Polynomials; Hindawi Journal of Mathematics, Article ID 6946424, https://doi.org/10.1155/2022/6946424.
[9] Wanas A.K., and Cotirla L.I. (2022); New applications of Gegenbauer polynomials on a new family of bi-Bazilevi ${ }^{2}$ c functions governed by the q-Srivastava-Attiya operator, Math. 10, Art. ID 1309. https://doi.org/10.3390/math10081309.
[10] Janteng A., Halim S. and Darus M.(2006) Coefficient inequality for a function whose derivative has a positive real part, Journal of Inequalities in Pure and Applied Mathematics, 7(2), article 50.
[11] Bansal D. (2013); Upper bound of second Hankel determinant for a new class of analytic functions, Applied Mathematics Letters, 26(1), 103-107.
[12] Lee S.K, Ravichandran V., and Supramaniam M. (2013); Bounds for the second Hankel determinant of certain univalent functions, Journal of inequalities and Applications, 1, Article ID 281.
[13] Shaharuddin C. S., Daud M., and Huzaifah D. (2023); Coefficient Estimate on Second Hankel Determinant of the Logarithmic Coefficients for Close-To-Convex Function Subclass with Respect to the Koebe Function: Malaysian Journal of Fundamental and Applied Sciences, 19 (154-163).
[14] Zaprawa P. (2017); Third Hankel determinants for subclasses of univalent functions, Mediterranean Journal of Mathematics, 14(1).
[15] Zhang H.Y., Tang H. and Ma L.N. (2017); Upper bound of third Hankel determinant for a class of analytic functions, Pure and Applied Mathematics, 33(2), pp. 211-220.
[16] Babalola K. O. (2009); On third Hankel determinant for some classes of univalent functions, https://arxiv.org/abs/0910.3779.
[17] Raza M. and Malik S.N. (2013); Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, Journal of Inequalities and Applications, 13(1), Article ID 412.
[18] Shi L., Srivastava H.M., Arif M., Hussain S. and Khan H. (2019); An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function," Symmetry, 11(5), p. 598.
[19] Shi L., Ali I., Arif M., Cho S., Hussain N.E, and Khan H.,(2019); A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics, 7(5), 418.
[20] Daniel B., Adriana C. and Luminita I.C. (2022); On the Upper Bound of the Third Hankel determinant for certain class of analytic functions related with exponential function: Accesso Libero, Sciendo. DOI: https://doi.org/10.2478/auom-2022-0005, 75-89.
[21] Mahmood S., Srivastava H.M., Khan N., Ahmad .Q.Z, Khan B., and Ali I. (2019) Upper bound of the third Hankel determinant for a subclass of q-starlike functions Symmetry, 11(3) article 347.
[22] Zhang H.Y and Tang H., (2021); A study of fourth-order Hankel determinants for starlike functions connected with the sine function, Journal of Function Spaces, Article ID 9991460.
[23] Ramachandran C. and Kavitha D. (2017); Toeplitz determinant for Some Subclasses of Analytic Functions: Global Journal of Pure and Applied Mathematics, ISSN 0973-1768, 13(2) pp. 785-793 (C) Research India Publications http://www. ripublication.com/gjpam.htm
[24] Ali M.F., Thomas D.K., and Vasudevarao A. (2018); Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bulletin of the Australian Mathematical Society, 97(2), pp. 253-264.
[25] Tang H., Khan S., Hussain S. and Khan N. (2021); Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α, AIMS Mathematics, 6(6), pp. 5421-5439.
[26] Zhang H.Y., Srivastava R. and Tang H. (2019); Third-order Hankel and Toeplitz determinants for starlike functions connected with the sine function," Mathematics MDPI 7(5) p. 404.
[27] Ramachandran C. and Annamalai L.(2016); On Hankel and Toeplitz determinants for some special class of analytic functions involving conical domains defined by subordination, International Journal of Engineering Research Technology (IJERT), 5, pp. 553-561.
[28] Srivastava R., Ahmad Q.Z. and Khan B.(2019); Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Mathematics, mdpi.com.
[29] Olatunji S. O. (2022). Analytic univalent function defined by GegenBauer Polynomials. Journal of Mahani Mathematical research. 179-186.
[30] Zhang H. and Tang H. (2021) Fourth Toeplitz Determinants for Starlike Functions Defined by Using the Sine Function: Journal of Function Spaces, Article ID 4103772, https://doi.org/10.1155/2021/4103772.
[31] Goel R.M and Mehrok B.S. (1982). A subclass of univalent functions, Houston J.Math.,8(3): 343-357.
[32] Derek, K.T., Nikola, T. and Allu, V. (2018). Univalent Functions. Deutsche National Bibliografie Walter de Gruyter.
[33] Chichra P.N. (1977); New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62(1), 37-43.
[34] Goyal S. P. and Goswami P. (2022), On certain properties for a subclass of close-to-convex functions, Journal of Classical Analysis, 1(2), 103-112.
[35] Kaplan W. (1952); Close-to-convex schlicht functions, Michigan Math. J. 1, 169-185.
[36] Mehrok B. S., Gagandeep Singh (2013); A subclass of α - close to convex functions: International Journal of Modern Mathematical Sciences, 6(2): 121-131.
[37] Szynal J.(1994); An extension of typically real functions. Ann. Univ. Mariae Curie-Sklodowska, Sect A. 48, 193-201.
[38] Saba N. A., Ali A., Ahmed H. H., Sameer A. A.(2020) Toeplitz Determinant whose Its Entries are the Coefficients for Class of Non-Bazilevic Functions; 1st International Conference on Pure Science (ISCPS-2020) Journal of Physics: Conference Series: doi:10.1088/17426596/1660/1/012091

