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Abstract

In this paper, we used tropical geometry on a partial transformation semigroup to create a
tropical polynomial on a partial contraction mapping. Then we used the tropical polynomial
to obtain a contraction mapping and plot tropical curves. Finally, we were able to find the
roots of the tropical curve and determine their multiplicities.
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1 Introduction
A semigroup is an algebraic structure that consists of a set and an associative binary operation. It
is a generalization of a group, but without the need for an identity element and inverses. This is
why it’s called a semigroup.
Let N = {1, 2, 3, · · · , n} be a finite chain a map α which has a domain and image both subset of
N is said to be partial. The collection of all partial transformation of N is known as semigroup of
partial transformation usually denoted by Pn

Let CPn = {α ∈ Pn :| xα − yα |≤| x − y | ∀x, y ∈ Dom(α)} is known to be subsemigroup of Pn

(partial contraction transformation semigroup). The study of this semigroup and their respective
subsemigroup was first initiated by Adeshola and Umar [1].

The study of semigroups is a relatively recent development, with researchers only beginning to
explore them in the early 1900s. This was driven by the realization that it was important to analyze
universal transformations, not just invertible ones. Early discoveries in the field include Cayley’s
theorem, which shows that any semigroup can be realized as a transformation semigroup, where
functions of any kind replace the bijections of group theory. In this paper, we focus on the efforts
of [2, 3] to bring out the contraction element from transformation semigroups.

The name ”tropical” was coined by French mathematician. Tropical geometry has established itself
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as an important new field bridging algebraic geometry whose techniques have been used to attack
problems, these include enumerative geometry and arithmetic geometry. It builds on the older
area of tropical mathematics more commonly known as max-plus algebra which arises in semigroup
theory, computer science and optimization [4]. Tropical algebraic geometry is an intriguing new
area of research in Mathematics that is focused on studying piecewise-linear functions that act like
algebraic variety. The concept behind this area has been around for some time, with early ideas
appearing in the works of [5–8]. However, it wasn’t until the late 1900s that a concerted effort
was made to solidify the basic definition of this theory. Interestingly, this effort was largely driven
by the application of tropical algebraic geometry to enumerative algebraic geometry, as discovered
by [9].

It’s fascinating to see how tropical geometry has evolved into a distinct field of mathematics in
such a short amount of time. What’s even more impressive is the numerous connections that have
been made to other areas of pure and applied mathematics. It’s exciting to think about what new
discoveries and applications will come from this field in the future.

2 Preliminary Notes
Contraction transformation semigroup has been studied by many researchers [4, 10–12]. Some of
their results are given below:

Theorem 2.1. [11] Let α, β ∈ S. Then

i αL∗β if and only if Imα = Imβ.

ii αR∗β if and only if kerα = kerβ.

iii αH∗β if and only if Imα = Imβandkerα = kerβ.

iv αD∗β if and only if |Imα| = |Imβ|.

for α =

(
A1 A2 · · · Ap

x1 x2 · · · xp

)
and β =

(
B1 B2 · · · Bp

y1 y2 · · · yp

)
Corollary 2.1 [12] The semigroup DCTn is not regular. Let F (n, r) = |{α ∈ DCTn : |imα| = r}|.
Then we have the following trivial results.

Lemma 2.1 [12] If S = DCTn then F (n, r) =

{
1 if r = 1
1 if r = n

Lemma 2.2 [10] Let α ∈ OCPn. Then, for each α ∈ DOm(α),

i if α < min(f(α)) , then xα > x;

ii if α > max(f(α)) , then xα < x;.

Theorem 2.2 [10] Let α ∈ OCPn. Then α can be decomposed as a product of three factors in
OCPn as α = α1α2α3, where α1 is an order-increasing partial map, α2 is a partial identity and α3

is an order-decreasing partial map.
Theorem 2.3. [4] Let S = Dγη, |τ |be the order of the roots of the tropical polynomial in Dγ4.
Then, for all elements in Dγ4 atisfy |τ | < 4 has unique multiplicity of height two.

However, in this paper we are going to focus on the root and multiplicity of partial contraction
transformation semigroups of P2 and P3 by obtaining the tropical graph with the help of MATLAB
R2019 V9.6.0.

Definition 2.1: Semigroup [13]: A semigroup in mathematics is an algebraic structure made
up of a set and an associative binary operation. The most common multiplicative notation for the
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binary operation of a semigroup is x.y, or just xy, which represents the outcome of applying the
semigroup operation to the ordered pair (x, y). Formally, associativity is defined as (xy)z = x(yz)
for any x, y, andz in the semigroup.
Definition 2.2: Transformations: [13] Let X and Y be the two non empty sets such that there
is some rule F which assigns to each element y ∈ Y , a unique element x ∈ X, then this rule is said
to be a transformation or mapping.
Definition 2.3 [14] A point x0 ∈ T is a tropical root of order at least k of a tropical polynomial
P (x) = ”(x + x0)

kq(x)” for some k. The largest k for which this is possible is the multiplicity of
the root x0

Definition 2.4 [14] Let P (x, y) = ”
∑

i,j ai,jx
iyj” be a tropical polynomial. The tropical curve

C defined by P (x, y) is the set of points (x0, y0)in R2 such that there exist pairs (i, j) ̸= (k, j)
satisfying P (x0, y0) = ai,j + ix0 + iy0 = ak,l + kx0 + ly0.

3 Main Results

Tropical Polynomial
A tropical monomial in k variable is an expression which takes the form xq1

1 , xq2
2 , · · ·xqk

k . A tropical
polynomial is the tropical linear addition of the tropical monomials i.e.

F (x) =
∑
k

akxk = max
k

{ak + xk}

Partial Contraction Transformation Semigroup Pn

This can be denoted by Pn. It can be expressed by using the formula below to obtain different Pn.

Pn = (n+ 1)n

When n = 1

P1 = (1 + 1)1

= 21

= 2

P1 has 2 elements, then we form one mapping by setting the image of two elements as column and
express it as tropical polynomial.

P1 =

(
1
1

)(
1
−

)
When n = 2

P2 = (2 + 1)2

= 32

= 9

P2 has 9 elements, then we form one mapping by setting the image of two elements as column and
express it as tropical polynomial.

P2 =

(
1 2
1 1

)(
1 2
1 2

)(
1 2
2 1

)(
1 2
2 2

)
(
1 2
− 1

)(
1 2
− 2

)(
1 2
1 −

)(
1 2
2 −

)
(
1 2
− −

)
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When n = 3

P3 = (3 + 1)3

= 43

= 64

P3 has 64 elements, then we form one mapping by setting the image of two elements as column and
express it as tropical polynomial.(

1 2 3
1 1 1

)(
1 2 3
1 1 2

)(
1 2 3
1 1 3

)(
1 2 3
1 2 1

)
(
1 2 3
1 2 2

)(
1 2 3
1 2 3

)(
1 2 3
1 3 1

)(
1 2 3
1 3 2

)
(
1 2 3
1 3 3

)(
1 2 3
2 1 1

)(
1 2 3
2 1 2

)(
1 2 3
2 1 3

)
(
1 2 3
2 2 1

)(
1 2 3
2 2 2

)(
1 2 3
2 2 3

)(
1 2 3
2 3 1

)
(
1 2 3
2 3 2

)(
1 2 3
2 3 3

)(
1 2 3
3 1 1

)(
1 2 3
3 1 2

)
(
1 2 3
3 1 3

)(
1 2 3
3 2 1

)(
1 2 3
3 2 2

)(
1 2 3
3 2 3

)
(
1 2 3
3 3 1

)(
1 2 3
3 3 2

)(
1 2 3
3 3 3

)(
1 2 3
− 1 1

)
(
1 2 3
− 1 2

)(
1 2 3
− 1 3

)(
1 2 3
− 2 1

)(
1 2 3
− 2 2

)
(
1 2 3
− 2 3

)(
1 2 3
− 3 1

)(
1 2 3
− 3 2

)(
1 2 3
− 3 3

)
(
1 2 3
1 − 1

)(
1 2 3
1 − 2

)(
1 2 3
1 − 3

)(
1 2 3
2 − 1

)
(
1 2 3
2 − 2

)(
1 2 3
2 − 3

)(
1 2 3
3 − 1

)(
1 2 3
3 − 2

)
(
1 2 3
3 − 3

)(
1 2 3
− − 1

)(
1 2 3
− − 2

)(
1 2 3
− − 3

)
(
1 2 3
1 1 −

)(
1 2 3
1 2 −

)(
1 2 3
1 3 −

)(
1 2 3
2 1 −

)
(
1 2 3
2 2 −

)(
1 2 3
2 3 −

)(
1 2 3
3 1 −

)(
1 2 3
3 2 −

)
(
1 2 3
3 3 −

)(
1 2 3
1 − −

)(
1 2 3
2 − −

)(
1 2 3
3 − −

)
(
1 2 3
− 1 −

)(
1 2 3
− 2 −

)(
1 2 3
− 3 −

)(
1 2 3
− − −

)
Now using the elements to find the contraction

Contraction transformation Semigroup in P2

All the matrices above in P2 are contraction.
Using P2 to form a polynomial
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Taking the image of the first and second matrices of P2 to form tropical.

1. P2(x) =

x 1

x
1

1 1
1 2


= x2 + x+ x+ 2
= x2 + 2x+ 2
max{2x, 2 + x, 2}

2. P2(x) =

x2 x 1

x
1

1 1 2
1 2 1


= x3 + x2 + 2x+ x2 + 2x+ 1
= x3 + 2x2 + 4x+ 1
max{3x, 2 + 2x, 4 + x, 1}

3. P2(x) =

x3 x2 x 1

x
1

1 1 2 2
1 2 1 2


= x4 + x3 + 2x2 + 2x+ x3 + 2x2 + x+ 2
= x4 + 2x3 + 4x2 + 3x+ 2
max{4x, 2 + 3x, 4 + 2x, 3 + x, 2}

4. P2(x) =

x4 x3 x2 x 1

x
1

1 1 2 2 0
1 2 1 2 1


= x5 + x4 + 2x3 + 2x2 + 0 + x4 + 2x3 + x2 + 2x+ 1
= x5 + 2x4 + 4x3 + 3x2 + 2x+ 1
max{5x, 2 + 4x, 4 + 3x, 3 + 2x, 2 + x, 1}

5. P2(x) =

x5 x4 x3 x2 x 1

x
1

1 1 2 2 0 0
1 2 1 2 1 2


= x6 + x5 + 2x4 + 2x3 + x5 + 2x4 + x3 + 2x2 + x+ 2
= x6 + 2x5 + 4x4 + 3x3 + 2x2 + x+ 2
= max{6x+ 2 + 5x, 4 + 4x, 3 + 3x, 2 + 2x, x, 2}

6. P2(x) =

x6 x5 x4 x3 x2 x 1

x
1

1 1 2 2 0 0 1
1 2 1 2 1 2 0


= x7 + x6 + 2x5 + 2x4 + x+ x6 + 2x5 + x4 + 2x3 + x2 + 2x
= x7 + 2x6 + 4x5 + 3x4 + 2x3 + x2 + 3x
max{7x, 2 + 6x, 4 + 5x, 3 + 4x, 2 + 3x, 2x, 3}
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Contraction transformation semigroup in P3(
1 2 3
1 1 1

)(
1 2 3
1 1 2

)(
1 2 3
1 2 1

)(
1 2 3
1 2 2

)
(
1 2 3
2 1 1

)(
1 2 3
2 1 2

)(
1 2 3
2 2 1

)(
1 2 3
2 2 2

)
(
1 2 3
2 2 3

)(
1 2 3
2 3 2

)(
1 2 3
2 3 3

)(
1 2 3
3 2 1

)
(
1 2 3
3 2 2

)(
1 2 3
3 2 3

)(
1 2 3
3 3 2

)(
1 2 3
3 3 3

)
(
1 2 3
− 1 1

)(
1 2 3
− 1 2

)(
1 2 3
1 − 1

)(
1 2 3
− − 1

)
(
1 2 3
− − 2

)(
1 2 3
− − 3

)(
1 2 3
1 1 −

)(
1 2 3
2 1 −

)
(
1 2 3
1 − −

)(
1 2 3
2 − −

)(
1 2 3
3 − −

)(
1 2 3
− 1 −

)
(
1 2 3
− 2 −

)(
1 2 3
− 3 −

)(
1 2 3
− − −

)
1. Using P3 to form a tropical polynomial

Taking the image of the first, second and third element of P3 and for their tropical.

P3 =

x2 x 1

x2

x
1


2 3 3
3 2 2
3 1 2


= 2x4 + 3x3 + 3x2 + 3x3 + 2x2 + 2x+ 3x2 + x+ 2

= 2x4 + 6x3 + 8x2 + 3x+ 2

max{2 + 4x, 6 + 3x, 8 + 2x, 3 + x, 2}

2. Forming the tropical by the images of some other element.

P3 =

x2 x 1

x2

x
1


1 2 2
2 1 1
2 1 2


= x4 + 2x3 + 2x2 + 2x3 + x2 + x+ 2x2 + x+ 2

= x4 + 4x3 + 5x2 + 2x+ 2

max{4x, 4 + 3x, 5 + 2x, 2 + x, 2}

3. Forming the tropical by the images of some other elements.

P3 =

x2 x 1

x2

x
1


2 2 2
2 2 3
2 3 2


= 2x4 + 2x3 + 2x2 + 2x3 + 2x2 + 3x+ 2x2 + 3x+ 2

= 2x4 + 4x3 + 6x2 + 6x+ 2

max{2 + 4x, 4 + 3x, 6 + 2x, 6 + x, 2}
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4. Using P3 to form a tropical polynomial
Taking the image of first, second and third elements of P3 and form their tropical

P3(x) =

x2 x 1

x2

x
1


2 2 2
2 2 3
2 3 2


= 2x4 + 2x3 + 2x2 + 2x3 + 2x2 + 3x+ 2x2 + 3x+ 2

= 2x4 + 4x3 + 6x2 + 6x+ 2

max{2 + 4x, 4 + 3x, 6 + 2x, 6 + x, 2}

5. P3(x) =

x2 x 1

x2

x
1


3 3 3
2 3 3
3 2 3


= 3x4 + 3x3 + 3x2 + 2x3 + 3x2 + 3x+ 3x2 + 2x+ 3
= 3x4 + 5x3 + 9x2 + 5x+ 3
max{3 + 4x, 5 + 3x, 9 + 2x, 5 + x, 3}

3.1 Tropical graph and mulitiplicity of P2

To sketch the tropical curve and find the multiplicity of each root, we will use some of the tropical
polynomial obtained from P2

Considering the tropical polynomial of max{2x, 2 + x, 2}. we have the tropical curve as
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GRAPH I

Figure 1: Max[2x, 2+x, 2]

We have from the above curve that the roots of the curve are r1 = 0 and r2 = 2. Hence,to obtain
the multiplicity of the roots,we have

M(r1 = 0) = |m1 −m2|, when m1 = 0 and m2 = 1

= |0− 1| = | − 1| = 1

M(r2 = 2) = |m2 −m3|, when m2 = 1 and m3 = 2

= |1− 2| = | − 1| = 1

Hence,the multiplicity of the tropical polynomial of max{2x, 2 + x, 2} is (1,1).
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GRAPH II

Figure 2: max{3x, 2 + 2x, 4 + x, 2}

We have from the above curve that the roots of the curve are r1 = −1 and r2 = 2. Hence,to obtain
the multiplicity of the roots,we have

M(r1 = −1) = |m1 −m2|
= |0− 1| = | − 1| = 1

M(r2 = 2) = |m2 −m3|
= |1− 3| = | − 2| = 2

Hence,the multiplicity of the tropical polynomial of max{3x, 2 + 2x, 4 + x, 2} is (1,2).
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GRAPH III

Figure 3: max{4x, 2 + 3x, 4 + 2x, 3 + x, 2}

We have from the above curve that the roots of the curve are:r1 = −1 and r2 = 2.

M(r1 = −1) = |m1 −m2|, when m1 = 0 and m2 = 2

= |0− 2| = | − 2| = 2

M(r2 = 2) = |m2 −m3|, when m2 = 2 and m3 = 4

= |2− 4| = | − 2| = 2

Hence,the multiplicity of the tropical polynomial of max{4x, 2 + 3x, 4 + 2x, 3 + x, 2} is (2,2).
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GRAPH IV

Figure 4: max{5x, 2 + 4x, 4 + 3x, 3 + 2x, 2 + x, 1}

We have from the above curve that the roots of the curve are:r1 = −1 and r2 = 2.

M(r1 = −1) = |m1 −m2|, when m1 = 0 and m2 = 3

= |0− 3| = | − 3| = 3

M(r2 = 2) = |m2 −m3|, when m2 = 3 and m3 = 5

= |3− 5| = | − 2| = 2

Hence,the multiplicity of the tropical polynomial of max{5x, 2+4x, 4+3x, 3+2x, 2+x, 1} is (3,2).
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GRAPH V

Figure 5: max{6x, 2 + 5x, 4 + 4x, 3 + 3x, 2 + 2x, x, 2}

We have from the above curve that the roots of the curve are r1 = −0.5 and r2 = 2. Hence,to
obtain the multiplicity of the roots,we have

M(r1 = −0.5) = |m1 −m2|, when m1 = 0 and m2 = 4

= |0− 4| = | − 4| = 4

M(r2 = 2) = |m2 −m3|, when m2 = 4 and m3 = 6

= |4− 6| = | − 2| = 2

Hence,the multiplicity of the tropical polynomial of max{6x, 2 + 5x, 4 + 4x, 3 + 3x, 2 + 2x, x, 2} is
(4,2).

3.2 Tropical graph and multiplicity of P3

To sketch the tropical curve and find the multiplicity of each root, we will use some of the tropical
polynomial obtained from P3

Consider the tropical polynomial of max{2+4x, 6+3x, 8+2x, 3+x, 2}. we have the tropical curve
as follows:
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GRAPH I

Figure 6: max{2 + 4x, 6 + 3x, 8 + 2x, 3 + x, 2}

We have from the above curve that the roots of the curve are:r1 = −3, r2 = 2 and r3 = 4.

M(r1 = −3) = |m1 −m2|, when m1 = 0 and m2 = 2

= |0− 2| = | − 2| = 2

M(r2 = 2) = |m2 −m3|, where m3 = 3 and m4 = 4

= |2− 3 = | − 1| = 1

M(r3 = 4) = |m3 −m4|
= |3− 4| = | − 1| = 1

Hence,the multiplicity of the tropical algebra max{2 + 4x, 6 + 3x, 8 + 2x, 3 + x, 2} is (2,1,1).
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GRAPH II

Figure 7: max{4x, 4 + 3x, 5 + 2x, 2 + x, 2}

We have from the above curve that the roots of the curve are:r1 = −1.6, r2 = 1 and r3 = 4.

M(r1 = −1.6) = |m1 −m2|, when m1 = 0 and m2 = 2

= |0− 2| = | − 2| = 2

M(r2 = 1) = |m2 −m3|, where m3 = 3 and m4 = 4

= |2− 3 = | − 1| = 1

M(r3 = 4) = |m3 −m4|
= |3− 4| = | − 1| = 1

Hence,the multiplicity of the tropical algebra max{4x, 4 + 3x, 5 + 2x, 2 + x, 2} is (2,1,1).
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GRAPH III

Figure 8: max{2 + 4x, 4 + 3x, 6 + 2x, 6 + x, 2}

We have from the above curve that the roots of the curve are: r1 = −4, and r2 = 2.

M(r1 = −2) = |m1 −m2|, when m1 = 0 and m2 = 2

= |0− 4| = | − 4| = 4

M(r2 = 2) = |m2 −m3|, where m2 = 2 and m3 = 4

= |2− 4| = | − 2| = 2

Hence,the multiplicity of the tropical algebra max{2 + 4x, 4 + 3x, 6 + 2x, 6 + x, 2} is (4,2).
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GRAPH IV

Figure 9: max{3 + 4x, 5 + 3x, 9 + 2x, 5 + x, 3}

We have from the above curve that the roots of the curve are: r1 = −4, r2 = 0 and r3 = 2.

M(r1 = −4) = |m1 −m2|, when m1 = 0 and m2 = 1

= |0− 1| = | − 1| = 1

M(r2 = 0) = |m2 −m3|, where m3 = 2 and m4 = 4

= |1− 2| = | − 1| = 1

M(r3 = 2) = |m3 −m4|
= |2− 4| = | − 2| = 2

Hence,the multiplicity of the tropical algebra max{3 + 4x, 5 + 3x, 9 + 2x, 5 + x, 3} is (1,1,2).
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GRAPH V

Figure 10: max{2 + 4x, 4 + 3x, 6 + 2x, 6 + x, 2}

We have from the above curve that the roots of the curve are: r1 = −3 and r2 = 3.

M(r1 = −3) = |m1 −m2|, when m1 = 0 and m2 = 2

= |0− 2| = | − 2| = 2

M(r2 = 3) = |m2 −m3|, where m2 = 2 and m3 = 4

= |2− 4| = | − 2| = 2

Hence,the multiplicity of the tropical algebra max{2 + 4x, 4 + 3x, 6 + 2x, 6 + x, 2} is (2,2).

Lemma 3.1. Let C be a classical tropical curve of degree d then the sum of all points of tropical
multiplicity of C is equal to d.

proof. Let S be the sum of multiplicity of all point in C, consider xd + xd−1 + · · ·+ xd−d to be
classical polynomial of degree d in C with multiplicity of [a1, a2 · · · an] then

S = a1 + a2 + · · ·+ an = d ∀ S, d ∈ C

4 Discussion and Conclusion
In this paper, tropical polynomials were formed on partial contraction transformation semigroup
of P1, P2andP3(thesame method can be apply for P4, P5 etc), and tropical curves were also plotted
using MATLAB 2019 V9.6.0. The root and multiplicity are obtained, lemma 3.1 shows that the
sum of the multiplicity is equal to the number of the highest degree of the classical polynomial and
below is a table showing the summary of the multiplicity.
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Table 1: Order of Tropical Properties
Classical Tropical Multiplicity
x2 + 2x+ 2 max{2x, 2 + x, 2} [1, 1]
x2 + 2x+ 4x+ 1 max{3x, 2 + 2x, 4 + x, 1} [1,2]
x4 + 2x3 + 4x2 + 3x+ 2 max{4x, 2 + 3x, 4 + 2x, 3 + x, 2} [2,2]
2x4 + 6x3 + 8x2 + 3x+ 2 max{2 + 4x, 6 + 3x, 8 + 2x, 3 + x, 2} [2,1,1]
x4 + 4x3 + 5x2 + 2x+ 2 max{4x, 4 + 3x, 5 + 2x, 2 + x, 2} [2,1,1]
2x4 + 4x3 + 6x2 + 6x+ 2 max{2 + 4x, 4 + 3x, 6 + 2x, 6 + x, 2} [2,2]
3x4 + 5x3 + 9x2 + 5x+ 3 max{3 + 4x, 5 + 3x, 9 + 2x, 5 + x, 3} [1,1,2]
x5 + 2x4 + 4x3 + 3x2 + 2x+ 1 max{5x, 2 + 4x, 4 + 3x, 3 + 2x, 2 + x, 1} [3,2]
x6+2x5+4x4+3x3+2x2+x+2 max{6x, 2+5x, 4+4x, 3+3x, 2+2x, x, 2} [4,2]
2x4 + 4x3 + 6x2 + 6x+ 2 max{2 + 4x, 4 + 3x, 6 + 2x, 6 + x, 2} [2,2]
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