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Abstract

This study addresses portfolio optimization through a comparative analysis of models. Utiliz-
ing 15 stocks from S&P 500 over 12 years, it contrasts optimal weights and objective values of
five models: Konno and Yamazaki (KY), Feinstein and Thapa (FT), Adjusted Feinstein and
Thapa (AFT), and Adjusted ChiangLin et al. (ALC). Employing Pyomo in Python with GLPK
solver, findings reveal KY and LC models have identical outcomes. AFT model approximates
KY and LC solutions. Modified AFT and ALC models, with short selling and risk-neutral
interest rates, closely mimic KY’s results. The study recommends KY’s model or a modified
ALC model for portfolio optimization.

Keywords: Portfolio optimization, Short selling, Risk neutral interest rate, Mean absolute devia-
tion, Investor.
MSC2010: 13P25.

1 Introduction
Investors strive to balance risk and return while managing diverse portfolios across various industries
and financial instruments. They use a strategy called diversification to protect against risk, and
sometimes they include risk-free assets. Diversification can be done in different ways, including
simple approaches or more complex mathematical models like the Mean Absolute Deviation (MAD)
approach, which is based on Harry Markowitz’s pioneering Mean-Variance theory.
Markowitz’s theory changed the way we think about portfolios by showing how returns and risk are
related. He introduced the concept of portfolio risk and explained how diversification can lower the
risk of a portfolio. This led to the idea that portfolios should be built based on their overall risk
and return characteristics, not just the individual assets’ characteristics. The Markowitz Efficient
Frontier helps investors find the best portfolios for a specific level of risk, helping them make better
investment decisions [1].
Building on Markowitz’s ideas, this paper explores the evolution of portfolio theory, addressing
its limitations and presenting new models that consider different viewpoints and the concept of
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risk neutrality. It examines the assumptions of Markowitz’s model based on investor behavior and
market dynamics and then explores alternative models that aim to overcome the limitations. These
models offer refined ways to optimize portfolio strategies.
This research aims to review and expand on the literature about modifying Mean Absolute Deviation
(MAD) portfolio optimization models. The focus is on creating a similar optimization model that
includes the idea of short-selling and risk-neutral interest rates.
This research contributes new insights to our understanding of portfolio optimization, offering a
deeper look at model effectiveness in various situations. These insights will be valuable to investors
and financial experts as they make decisions about building and optimizing portfolios.

2 Literature Review
Harry Markowitz [2] showed that the individual assets’ risk does not solely determine the risk of an
investment portfolio but also by the covariance between the assets. He established that the return
of a portfolio is determined by the weighted average return of the assets, while the risk is based on
the covariance between the assets in the portfolio. Markowitz’s model is expressed as a non-linear
quadratic programming model:

min
∑
i∈N

∑
j∈N

xixjσij

s.t. ∑
j∈N

xjrj ≥ w0M0 (2.1)

∑
j∈N

xj = M0

xj ≥ 0

Parameters
N = (1, 2, ..., n) is the set of assets
σij= covariance between returns i and j
rj= average expected return of asset j
w0= minimum return required by the investor
M0= the capital available for investment
xi = capital proportion allocated to invest in asset i
xj = capital proportion allocated to invest in asset j
σij represents the covariance between assets i and j

The objective function seeks to minimize portfolio risk by optimizing capital allocations (xi and
xj), which are represented as a weighted sum of covariances between asset returns. Simultaneously,
constraints define the boundaries and requirements for constructing the optimal portfolio. These
constraints ensure a minimum expected return, full capital allocation, and non-negativity restric-
tions. The optimization problem aims to find values for xi and xj that satisfy these constraints
while minimizing overall portfolio risk according to the objective function.
To simplify the computational challenge posed by Markowitz’s nonlinear model [1, 2], some re-
searchers have suggested using alternative risk measures that are more flexible. One such measure
is the mean absolute deviation (MAD) introduced by [3], which results in a linear programming
model equivalent to Markowitz’s model but more computationally flexible. The linear programming
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model is given below:

min
∑
t∈T

ptyt

s.t.
yt +

∑
j∈N

(rjt − rj)xj ≥ 0, t ∈ T (2.2)

yt −
∑
j∈N

(rjt − rj)xj ≥ 0, t ∈ T, 0 ≤ xj ≤ uj , j ∈ N

yt ≥ 0, t ∈ T

where,
yt =

∣∣∣∑j∈N (rjt − rj)xj

∣∣∣
rj =

1
T

∑
t∈T rjt is the expected rate of return of asset j

rjt is the return of asset j at time t ∈ T
T = 1, 2, . . . , t is the set of periods relative to the asset
realisations
uj is the upper bound of the amount invested in asset j
N = (1, 2, ..., n) is the number of assets
pt= probability of scenario t.

Here, the objective function seeks to minimize portfolio risk, which is represented by the absolute
differences between asset returns and their expected values, weighted by probabilities across differ-
ent time periods. The constraints ensure that portfolio risk remains manageable while adhering to
investment allocation limits and maintaining non-negative risk measures. In essence, the optimiza-
tion aims to strike a balance between risk reduction and investment constraints.
Feistein and Thapa revised the MAD model proposed by [3] by adding non-negative surplus vari-
ables at and bt, resulting in the following MAD model [4]:

min
∑
t∈T

at + bt

s.t.
bt +

∑
j∈N

(rjt − rj)xj = at (2.3)

∑
j∈N

xj = M0∑
j∈N

rjxj ≥ w0M0

xj ≥ 0, j ∈ N

0 ≤ xj ≤ uj , j ∈ N

bt ≥ 0, t ∈ T.

Furthermore, ChiangLin et al (1998) [5, 6] modified the model (2.3) as follows:

min 2
∑
t∈T

bt

s.t. (2.4)

bt −
∑
j∈N

(rjt − rj)xj ≥ 0.

Chin-Ter Chang [7] presented a modified version of model (2.3) in 2005, which can be expressed as
follows:
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min
∑
t∈T

2at −
∑
j∈N

(rjt − rj)xj

s.t.
at −

∑
j∈N

(rjt − rj)xj ≥ 0

∑
j∈N

xj = 1 (2.5)

∑
j∈N

rjxj ≥ 0

xj ≥ 0, j ∈ N

0 ≤ xj ≤ uj , j ∈ N

at ≥ 0, t ∈ T.

Recent research by Danjuma et al. [8] underscores the importance of optimizing wealth allocation
for financial institutions in varying interest rate scenarios. Using stochastic optimization theory,
particularly for CRRA utility functions, and data from CBN statistical bulletin and the Nigeria
Stock Exchange FactBook, they highlight the need to shift investments from riskier assets (security
and loans) to safer assets (treasury) in volatile markets, while also noting the impact of investor
risk preferences on allocation.
In addition, Ogbogbo and Anokye [9] contributed insights from their study on the Ghana Stock Ex-
change. They used CAPM to analyze asset performance and risk, particularly in different sectors.
Their findings aid investors by providing a better understanding of sector dynamics and relative
risk levels.
These advancements in portfolio optimization, driven by theory and empirical research, equip finan-
cial decision-makers with versatile models to tailor investment strategies based on risk, return, and
constraints. As markets evolve, ongoing innovations in portfolio theory will enhance the precision
and practicality of wealth allocation strategies.

3 MAD Models with Short-selling and Risk-neutral Interest
Rate

This section presents the introduction of short-selling and risk-neutral interest rate to the modified
MAD models (2.3) and (2.4). The Enhanced Variance Model with Short-selling and Risk-neutral
rates (EMMSR) as proposed by T.Almaadeed et al. (2022) [10,11], is given by:

min λ(
1

T

T∑
t=1

yt)− (1− λ)(

N∑
j=1

rjxj − rchjxj)

s.t. yt +
∑
j∈N

(rjt − rj)xj ≥ 0, t ∈ T

yt −
∑
j∈N

(rjt − rj)xj ≥ 0, t ∈ T

∑
j∈N

xj = 1

εjzj ≤ xj ≤ δjzj , j = 1, 2, ..., N

yt ≥ 0, t ∈ T

if xj ≥ 0, then hj = 0

if xj < 0, then 0 < hj < 1

(3.1)
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where,
N and T denote the number of stocks and the end of investment time, respectively
xj is the proportion of investment in jth stock
rjt is the return of the jth stock at time t, (t = 1, ..., T ; j = 1, ..., N)
rj is the expected return of the jth stock (j = 1,...,N)
rc is risk-neutral interest rate
εj and δj are the lower and upper bounds of the jth stock, respectively
λ ∈ [0, 1] is the risk aversion parameter
εj is negative for short-selling
rc(

∑N
j=1 hjxj) shows the short rebate

0 < hj < 1,∀j, denotes the portion of the investor of the interest on the proceeds from the short-sale of stock j
In Equation (3.1), the objective function seeks to strike a delicate balance between expected re-
turns and risk in a portfolio. It minimizes a composite expression where the first term represents
the expected return scaled by a risk aversion parameter (λ), and the second term accounts for
the difference between total returns and a risk-adjusted cost for each stock. The accompanying
constraints cover several crucial conditions. They ensure the capital allocation sums to 1, restrict
capital proportions to specified bounds, enforce non-negativity for auxiliary variables, and address
short-selling by introducing an associated variable hj for stocks with negative xj . These constraints
collectively guide the portfolio optimization process, considering investment time-frames, risk tol-
erance, and investment limits. The goal is to determine the optimal values of xj and yt that strike
the right trade-off between returns and risk while adhering to these multifaceted constraints.
To linearize the above equation, the objective function was modified with additional constraints as
follows:

min F1(x, y) = λ(
1

T

T∑
t=1

yt)− (1− λ)(

N∑
j=1

rjxj − rcdj)

s.t. yt +
∑
j∈N

(rjt − rj)xj ≥ 0, t ∈ T

yt −
∑
j∈N

(rjt − rj)xj ≥ 0, t ∈ T

∑
j∈N

xj = 1

εjzj ≤ xj ≤ δjzj , j = 1, 2, ..., N

yt ≥ 0, t ∈ T

dj −Mwj ≤ 0, j = 1, 2, ..., N

cxj − dj +Mwj ≥ M, j = 1, 2, ..., N

−cxj + dj ≤ 0, j = 1, 2, ..., N

dj +Mwj ≥ 0, j = 1, 2, ..., N

xj ≥ −Mwj , j = 1, 2, ..., N

xj ≤ M(1− wj), j = 1, 2, ..., N

wj ∈ 0, 1, j = 1, 2, ..., N

dj = hjxj

if xj ≤ 0, then wj = 1 and thus,
if xj ≤ 0, we have wj = 0

(3.2)

Where h′
js are equal to c ∈ (0, 1) and M is a large positive constant.

The given model is a Mixed Integer Linear Programming Problem with Short Selling and Risk
Neutral rate (MMSR) that includes N binary variables and 8N + 2T + 1 constraints.

Lemma 3.1. [10] Let F ∗
1 and F ∗ be the optimal objective function values of MMSR and EMMSR,
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respectively. Then F ∗
1 = F ∗.

Proof. In both models, based on rjxj ≥ 0, for rj ≥ 0, we have, xj ≥ 0, then hj = 0, and for
rj < 0 we have xj < 0 then hj = c. We let C1 and C2 be the set of feasible points of models
MMSR and EMMSR, respectively. Since any feasible point in MMSR is also feasible for EMMSR,
we conclude that C1 ⊆ C2.
Now, let (x∗, u∗) be the optimal solution of EMMSR. One can see, in MMSR, when xj ≥ 0, from
xj ≤ M(1 − wj) and xj ≥ −Mwj , we conclude wj = 0. Also, when xj < 0 we conclude wj = 1.
Furthermore, if wj = 0, from pj −Mwj ≤ 0 and dj −Mwj ≥ 0 we have dj = 0. Also if wj = 1,,
from −cxj + dj ≤ 0 and cxj − dj +Mwj ≤ M , we have, dj = cxj

On the other hand, we consider w∗
j = 0 for x∗

j ≥ 0 and w∗
j = 1 for x∗ < 0 and by considering

d∗j = hjx
∗
j , if x∗

j ≥ 0, then hj = 0; and if x∗
j < 0, then hj = c, (x∗, u∗, w∗, d∗) is feasible for DC.

Now, we show it is also optimal for EMMSR. Suppose by contradiction that (x∗∗, u∗∗, w∗∗, d∗∗) is
an optimal solution for EMMSR, then λ

T

∑T
t=1 u

∗∗
t − (1−λ)(

∑N
j=1 rjx

∗∗
j − d∗∗j ) ≤ λ

T

∑T
t=1 u

∗
t − (1−

λ)(
∑N

j=1 rjx
∗
j − rcd

∗
j ) Since, d∗∗j = hjx

∗∗
j and d∗j = hjx

∗j, if x∗
j ≤ 0 and x∗∗

j ≤ 0, then hj = 0,

and if x∗
j ≥ 0 and x∗∗

j ≥ 0, then hj = c, we have, λ
T

∑T
t=1 u

∗∗
t − (1 − λ)(

∑N
j=1 rjx

∗∗
j − rchjx

∗∗
j ) ≤

λ
T

∑T
t=1 u

∗
t − (1− λ)(

∑N
j=1 rjx

∗
j − rchjx

∗∗
j ) The above statement shows that (x∗, u∗) is feasible for

EMMSR, which contradicts the optimality of (x∗, u∗). Thus, the proof is complete.

3.1 Feinstein and Thapa (FT) and ChiangLin et al (LC) Modified MAD
Models

The following is the modified MAD model (FT) as proposed by Feistein and Thapa with the
inclusion of short-selling and risk-neutral interest rate:

min F 0
1 (x, y) = λ

T∑
t=1

(at + bt))− (1− λ)(

N∑
j=1

rjxj − rchjxj)

s.t. bt −
∑
j∈N

(rjt − rj)xj = at, t ∈ T

∑
j∈N

xj = 1

∑
j∈N

rjxj ≥ 0

xj ≥ 0, j ∈ N

εjzj ≤ xj ≤ δjzj , j = 1, 2, ..., N

if xj ≥ 0, then hj = 0

if xj < 0, then 0 < hj < 1

(3.3)
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Furthermore, the LC modified MAD model with the inclusion of short selling and risk-neutral
interest rate:

min F 0
2 (x, y) = 2λ

T∑
t=1

bt − (1− λ)(

N∑
j=1

rjxj − rchjxj)

s.t. bt −
∑
j∈N

(rjt − rj)xj ≥ 0

∑
j∈N

xj = 1

∑
j∈N

rjxj ≥ 0

xj ≥ 0, j ∈ N

bt ≥ 0

εjzj ≤ xj ≤ δjzj , j = 1, 2, ..., N

if xj ≥ 0, then hj = 0

if xj < 0, then 0 < hj < 1

(3.4)

3.2 Formulation of Adjusted FT and LC (AFT and ALC) MAD models
with Short-Selling and Risk Neutral Interest rate (EMMSR)

To tackle a linear programming problem, surplus variables are used to subtract from the constraint
equations with ≥, while slack variables are added to the constraint equations with ≤. In the above
MILP, we introduced two surplus variables pt and bt accordingly.

yt −
∑
j∈N

(rjt − rj)xj = 2at, t ∈ T

yt +
∑
j∈N

(rjt − rj)xj = 2bt, t ∈ T
(3.5)

Using elimination or substitution method, we have respectively

yt = at + bt, t ∈ T

bt −
∑
j∈N

(rjt − rj)xj = at, or

at +
∑
j∈N

(rjt − rj)xj = bt

(3.6)
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Using substitution or elimination method, AFT is given as:

min F2(x, y) =
λ

T

T∑
t=1

(at + bt)− (1− λ)(

N∑
j=1

rjxj − rchjxj)

s.t. bt −
∑
j∈N

(rjt − rj)xj = at∑
j∈N

xj = 1

∑
j∈N

rjxj ≥ 0

xj ≥ 0, j ∈ N

εjzj ≤ xj ≤ δjzj , j = 1, 2, ..., N

at, bt ≥ 0

if xj ≥ 0, then hj = 0

if xj < 0, then 0 < hj < 1

(3.7)

Furthermore, substituting bt into equation, we have ALC, as follows:

min F3(x, y) =
λ

T

T∑
t=1

(2bt −
N∑
j=1

(rjt − rj)xj)

−(1− λ)(

N∑
j=1

rjxj − rchjxj)

s.t. bt −
∑
j∈N

(rjt − rj)xj ≥ 0
∑
j∈N

xj = 1

∑
j∈N

rjxj ≥ 0

xj ≥ 0, j ∈ N

εjzj ≤ xj ≤ δjzj , j = 1, 2, ..., N

if xj ≥ 0, then hj = 0

if xj < 0, then 0 < hj < 1

(3.8)

Proposition 3.2. Let F1 and F2 be the optimal solutions of EMMSR and adjusted FT EMMSR
models, respectively. Then, F1 is equivalent to F2.

Proof. From the objective function and the first and second constraints equations of equation (3.2),
when

∑
j∈N (rjt − rj)xj ≥ 0, yt ≥ −

∑
j∈N (rjt − rj)xj and yt ≥

∑
j∈N (rjt − rj)xj respectively.

Since yt ≥ 0, we substitute yt =
∑

j∈N (rjt − rj)xj into MMSR objective function, we have
F1 = λ

T

∑T
t=1

∑
j∈N (rjt − rj)xj − (1− λ)(

∑N
j=1 rjxj − rcdj)

Similarly, from the objective function and the first and second constraints of equation (3.7) , when∑
j∈N (rjt−rj)xj ≥ 0, bt−

∑
j∈N (rjt−rj)xj = at and since at ≥ 0 it implies bt ≥

∑
j∈N (rjt−rj)xj

, then bt + at = 2
∑

j∈N (rjt − rj)xj −
∑

j∈N (rjt − rj)xj =
∑

j∈N (rjt − rj)xj .
The Adjusted FT (AFT) EMMSR optimal becomes:
F2(x, y) =

λ
T

∑T
t=1

∑
j∈N (rjt − rj)xj − (1− λ)(

∑N
j=1 rjxj − rcdj)

Since F1 = F2, we conclude that F1 is equivalent to F2. This completes the proof.

Proposition 3.3. Let F2 and F3 be the optimal solutions of AFT EMMSR and ALC EMMSR
models respectively, then, F2 is equivalent to F3.
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Proof. From the objective function and the first and second constraints of equation (3.8), If
∑

j∈N (rjt−
rj)xj ≥ 0,bt ≥

∑
j∈N (rjt − rj)xj , then 2bt =

∑
j∈N (rjt − rj)xj .

Similarly, if
∑

j∈N (rjt − rj)xj ≤ 0,bt ≥ −
∑

j∈N (rjt − rj)xj , then 2bt = −
∑

j∈N (rjt − rj)xj but
since

∑
j∈N (rjt − rj)xj ≤ 0,finally, we have bt =

∑
j∈N (rjt − rj)xj ≤ 0.

Therefore, F3(x, y) =
λ
T

∑T
t=1

∑
j∈N (rjt − rj)xj − (1− λ)(

∑N
j=1 rjxj − rcdj)

Since F2 = F3,then F2 is equivalent to F3. In conclusion, since F1 is equivalent to F2 and F2 is
equivalent to F3, therefore, we say that F1 is equivalent to F3.

4 Application of the Models
This section of the study utilized the pyomo optimization package with the GLPK solver in Python
to conduct the analysis. The study involved the use of SP 500 index data on 15 stocks over a
12-year period to compare the optimal weights and objective values of KY, FT, LC, AFT, and
ALC models. The outcomes of the analysis are presented below.

4.1 Comparison of KY Model to the FT and LC Modification (short-
selling allowed)

Table 1: Optimal Weights of KY, FT and LC (short selling allowed)
Assets KY FT LC
AAPL 0.3000 0.1778 0.3000
AMZN 0.3000 0.3000 0.3000
ATCO -0.2091 0.1262 0.2327
GIL -0.3000 -0.3000 0.0380
GILD 0.3000 0.2559 0.1569
GOOGL 0.2724 -0.3000 -0.3000
INTC -0.3000 0.2640 0.3000
LRCX -0.2029 -0.0095 -0.3000
MSFT 0.3000 0.08894 0.3000
MU 0.2653 -0.1393 0.1046
NFLX -0.0159 -0.0857 -0.0614
NVDA 0.3000 -0.0211 0.2791
SU -0.3000 0.3000 -0.3000
TSLA 0.3000 0.0427 -0.0967
TXN -0.0097 0.3000 0.0467
Objective Value -0.1307 0.1402 -0.1057

Based on the table above, it can be observed that the optimal weights for each model are not the
same also with variation in the values of the objective functions. Furthermore, it was observed that
the optimal weights and objective functions of KY and LC models were identical, while AFT’s model
produced approximate results (rounded to the nearest tenth) compared to KY and LC models, as
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shown in the table below.

Table 2: Optimal Weights of KY, AFT and ALC (short selling allowed)
Assets KY AFT ALC
AAPL 0.3000 0.3000 0.3000
AMZN 0.3000 0.3000 0.3000
ATCO -0.2091 -0.1343 -0.2091
GIL -0.3000 -0.0293 -0.3000
GILD 0.3000 0.3000 0.3000
GOOGL 0.2724 0.1044 0.2724
INTC -0.3000 -0.3000 -0.3000
LRCX -0.2029 -0.18 -0.2029
MSFT 0.3000 0.3000 0.3000
MU 0.2653 0.3000 0.2653
NFLX -0.0159 0.0515 -0.0159
NVDA 0.3000 0.3000 0.3000
SU -0.3000 -0.3000 -0.3000
TSLA 0.3000 0.1384 0.3000
TXN -0.0098 -0.1507 -0.0096
Objective Value -0.1307 -0.1221 -0.1307

4.2 Comparison of KY Model to the FT and LC Modification (short-
selling not allowed)

When short selling was disallowed, we set rc = 0 and xi ≥ 0. The outcomes are displayed in the
table below:

Table 3: Optimal Weights of KY, FT and LC (short selling not allowed)
Assets KY FT LC
AAPL 0.0000 0.1000 0.0000
AMZN 0.0000 0.0923 0.0725
ATCO 0.0000 0.1000 0.0000
GIL 0.0000 0.0049 0.0000
GILD 0.4023 0.1000 0.2232
GOOGL 0.0000 0.1000 0.0000
INTC 0.0000 0.1000 0.0000
LRCX 0.0000 0.0000 0.0000
MSFT 0.0000 0.1000 0.0000
MU 0.0000 0.0028 0.0000
NFLX 0.059 0.0000 0.0000
NVDA 0.3485 0.1000 0.0000
SU 0.0000 0.1000 0.1654
TSLA 0.1902 0.0000 0.0000
TXN 0.0000 0.1000 0.5389
Objective Value -0.0586 0.6688 0.5478

Based on the table above, it can be observed that there are varying optimal weight values with
distinct objective values.
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4.3 Comparison of KY Model to our AFT and ALC Modification (short-
selling not allowed)

The table below indicates that the optimal weights and objective values of the adjusted ChiangLin
et al’s model are identical to those of Konno and Yamakazi’s model. On the other hand, there is a
slight difference between the optimal weights and objective values of Feinstein and Thapa’s model
and those of Konno and Yamakazi’s model:

Table 4: Optimal Weights of KY, AFT and ALC (short selling not allowed)
Assets KY FT LC
AAPL 0.0000 0.0000 0.0000
AMZN 0.0000 0.0000 0.0000
ATCO 0.0000 0.0000 0.0000
GIL 0.0000 0.0000 0.0000
GILD 0.4023 0.4872 0.4023
GOOGL 0.0000 0.0000 0.0000
INTC 0.0000 0.0000 0.0000
LRCX 0.0000 0.0000 0.0000
MSFT 0.0000 0.0000 0.0000
MU 0.0000 0.0000 0.0000
NFLX 0.0591 0.0318 0.059
NVDA 0.3485 0.3516 0.3485
SU 0.0000 0.0000 0.0000
TSLA 0.1902 0.1295 0.1902
TXN 0.0000 0.0000 0.0000
Objective Value -0.0586 -0.0571 -0.0571

5 Summary of the Analysis
The result analysis of the portfolio optimization analysis using various models shows that the KY
and ALC models gave the same optimal weights and objective values, while the adjusted Feinstein
and Thapa’s (AFT) model gave approximately similar results to KY and ALC models when short
selling and risk neutral interest rates were included.
Additionally, when short selling was not allowed, the KY, ALC, and AFT models produced similar
results, while the ChiangLin et al (LC) and Feinstein and Thapa’s (FT) models produced different
results. This highlights the importance of considering various features in the optimization process.
Moreover, it was observed that the memory usage of the models varied, with KY using the largest
memory space of 233368 bytes, while LC and ALC used 176583 bytes, and AFT and FT used
165789 bytes. This information may be useful for investors and analysts who need to optimize their
portfolios using different models and have limited memory capacity. Overall, the result analysis
suggests that the KY, ALC, and AFT models may be effective in optimizing portfolios, depending
on the specific features and constraints of the portfolio being analyzed. The use of different models
and the consideration of multiple features may help to achieve better results in the optimization
process.

6 Conclusion
After analyzing 15 stocks for 12 years using various portfolio optimization models, it was discovered
that Feinstein and Thapa’s modified MAD model was not equivalent to Konno and Yamakazi’s
model when additional features were added to the objective functions of both models. However, by
adjusting the Feinstein and Thapa’s model and adding the return to it, an approximately equivalent
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result was obtained to Konno and Yamakazi’s model. Moreover, modifying ChiangLin’s model with
the inclusion of short selling and risk-neutral interest rate gave the same result as Konno and
Yamakazi’s model. The analysis revealed that the optimal weights and objective values of each
model were not equivalent. Furthermore, the memory usage of each model during the analysis was
different, with Konno and Yamakazi’s model using the largest memory space.rates.

7 Recommendation
Based on the findings of this research, the following recommendations are made:

• Researchers and practitioners in the field of portfolio optimization should be cautious when
using the Feinstein and Thapa modified MAD model as it may not always produce equivalent
results to the Konno and Yamakazi model, especially when additional features are added to
the objective function.

• The adjusted Feinstein and Thapa model with the inclusion of short selling and risk-neutral
interest rate produces approximately equivalent results to the Konno and Yamakazi model.
Hence, researchers and practitioners can consider using the adjusted Feinstein and Thapa
model in situations where the inclusion of real features to the objective function is necessary.

• When short selling and risk-neutral interest rates are included in the analysis, the adjusted
ChiangLin et al’s model produces exactly the same optimal weights and objective values as the
Konno and Yamakazi model. Therefore, this model can be used with confidence in situations
where these features are relevant.

• Practitioners and researchers should carefully consider the memory usage of the different
portfolio optimization models, especially when dealing with large datasets, in order to ensure
that they have sufficient computational resources to handle the analysis.

• Future research can be focused on comparing the performance of these models with real
market data to further validate their effectiveness in practical applications.
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