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Abstract

The aim of this article is to investigate fixed point problem, maximal monotone operators and
generalized mixed equilibrium problems by considering the generalized f− projection technique.
We propose a modified inertial based algorithm for finding a common solution in respect of
this problem. Also, we prove a strong convergence of the sequence generated by the proposed
modified inertial iterative algorithm in uniformly smooth and uniformly convex Banach spaces.
Finally, we give some applications of our theorem.
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1 introduction
The fixed point theory has played an important role in the field of Mathematics, especially in
the area of nonlinear analysis and other related areas in pure and applied mathematics. Due
to its importance, many researchers have considered it as one of the most interesting area in
mathematics. Many authors have developed several iterative processes for approximating fixed
points of nonexpansive mappings including their generalizations: for more detail see [1–13] and the
reference therein.

Let E a real Banach space with its dual as E∗, R denote the set of real numbers and Q be a
nonempty closed convex subset of E. We consider GMEP [1] as the generalized mixed equilibrium
problem: find ω ∈ Q such that

B(ω, ϑ) + ⟨Aω, ϑ− ω⟩+ b(ω, ϑ)− b(ω, ω) ≥ 0,∀ϑ ∈ Q,
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where B, b : Q × Q −→ R are bifunctions and A : Q −→ E∗ is a nonlinear mapping. The set of
solutions of generalized mixed equilibrium problem is denoted by

GMEP (B,A, b) = {ω ∈ Q : B(ω, ϑ) + ⟨Aω, ϑ− ω⟩+ b(ω, ϑ)− b(ω, ω) ≥ 0,∀ϑ ∈ Q}.

Furthermore, if A ≡ 0 and b ≡ 0, then the generalized mixed equilibrium problem (GMEP ) reduces
to equilibrium problem, denoted by EP [14] which is defined as to find an element ω ∈ Q such that

B(ω, ϑ) ≥ 0,∀ϑ ∈ Q.

The solutions set of equilibrium problems is given by

EP (B) = {ω ∈ Q : B(ω, ϑ) ≥ 0,∀ϑ ∈ Q}.

Generalized mixed equilibrium problems have been considered as a cornerstone for research in the
field of science and engineering. Also, it is used in structural analysis, physics, economics and other
science and social sciences. More so, it is found in optimization problems, Nash equilibrium problem
in non cooperative game, variational inequality problem, variational inclusion problem, fixed point
problem etc (for details see [1, 3, 8]).
For the purpose of fast convergence of the iterative algorithm, an inertial- type extrapolation tech-
nique was first introduced by Polyak [15] as a process of accelerating the rate of convergence of the
sequence. Due to the importance of this technique along this direction, many authors have been
studied this techniques extensively (for details see [4, 5, 16,17]).
Consider E as a Banach space and S as a maximal monotone operator then the problem for solving
a zero point of a maximal monotone operator: u∗ ∈ E such that

0 ∈ S(u∗).

S−10 denotes the set of all point u∗ ∈ E such that 0 ∈ S(u∗). This considered as efficient tool for
solving problems arising in optimization, analysis and other related field of research.
By considering ω ∈ E and ω∗ ∈ E∗, then ⟨ω, ω∗⟩ is the set valued of ω∗ at ω. Therefore J : E −→ 2E

∗

denoted as the normalized duality mapping and defined by

J(ω) =
{
ω∗ ∈ E∗ : ⟨ω, ω∗⟩ = ∥ω∥2, ∥ω∗∥ = ∥ω∥

}
,∀ω ∈ E.

For E as a Hilbert space, we observe that J = I, where I denote the identity map. The Lyapunov
functional ϕ : E × E −→ R defined by

ϕ(ϑ, ω) = ∥ϑ∥2 − 2⟨ϑ, Jω⟩+ ∥ω∥2,∀ω, ϑ ∈ E. (1.1)

An operator S ⊂ E × E∗ is called monotone if ⟨ω − ϑ, ω∗ − ϑ∗⟩ ≥ 0, whenever (ω, ω∗), (ϑ, ϑ∗) ∈ S.
A monotone S is called maximal if its graph G(S) is not properly contained in the graph of
any other monotone operator. A mapping T : Q −→ Q is said to be nonexpansive [2, 18] if
∥ Tω−Tϑ ∥≤∥ ω−ϑ ∥,∀ω, ϑ ∈ Q, we denote F (T ) = {ω ∈ Q : Tω = ω} as the set of fixed point of
T . A point p ∈ Q is said to be an asymptotic fixed point of T, if Q contains a sequence {ωn} which
converges weakly to p such that lim

n→∞
∥ ωn − Tωn ∥= 0. F̂ (T ) denote the set of asymptotic fixed

point of T, and a mapping T is said to be L−Lipschitz continuous if there exists a constant L > 0
such that ∥ Tω − Tϑ ∥≤ L ∥ ω − ϑ ∥,∀ω, ϑ ∈ Q. S is called closed if for any sequence {ωn} ⊂ Q
with ωn −→ ω and Sωn −→ ϑ then ϑ = Sω.

Definition 1.1. Let {Ti}∞i=1 : Q −→ Q be a sequence of mapping. Then {Ti}∞i=1 is said to be:

(1) A family of uniformly quasi-ϕ-asymptotically nonexpansive [2,18], if Γ := ∩∞
i=1F (Ti) ̸= ∅ and

there exists a sequence {kn} ⊂ [1,∞) with kn −→ 1 as n −→ ∞ such that for each i ≥ 1

ϕ(p, Tn
i ω) ≤ knϕ(p, ω), ∀ω ∈ Q, p ∈ Γ, n ≥ 1;
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(2) A family of uniformly total quasi-ϕ-asymptotically nonexpansive [2,18], if Γ := ∩∞
i=1F (Ti) ̸= ∅

and there exists nonnegative real sequences ζn, µn with ζn −→ 0, µn −→ 0 as n −→ ∞ and
strictly increasing continuous function ψ : R+ −→ R+ with ψ(0) = 0 such that for each i ≥ 1

ϕ(p, Tn
i ω) ≤ ϕ(p, ω) + ζnψ

(
ϕ(p, ω)

)
+ µn,∀ω ∈ Q, p ∈ Γ, n ≥ 1.

(3) A mappings T : Q −→ Q is said to be uniformly L- Lipschits continuous, if there exists a
constant L > 0 such that

∥ Tnω − Tnϑ ∥≤ L ∥ ω − ϑ ∥,∀ω, ϑ ∈ Q,∀n ≥ 1.

Alber [19] introduced and studied that the generalised projection ΠQ : E −→ Q is a map assigns to
an arbitrary point ω ∈ E the minimum point of the functional ϕ(ϑ, ω); that is, ΠQ(ω) = ω∗, where
ω∗ is the solution to the minimization problem

ϕ(ω∗, ω) = min
ω0∈Q

ϕ(ϑ, ω).

Existence and the uniqueness of the operator ΠQ follows from the strict monotonicity of the mapping
J and properties of the functional ϕ(ϑ, ω) . If E is a real Hilbert space H, then ϕ(ϑ, ω) = ∥ϑ−ω∥2
and ΠQ become the metric projection of E onto Q ( for details see [5, 20,21] ).

In 2006, using the technique of generalized f− projection in Banach space, Wu and Huang [22]
established properties of the generalized f− projection operator as well as extended the definition
of generalized projection operator which was proposed and studied by Alber [19]
Consider the functional G : Q× E∗ −→ R ∪ {+∞} defined by:

G(ϑ, q) =∥ ϑ ∥2 −2⟨ϑ, q⟩+ ∥q ∥2 +2ϖf(ϑ), (1.2)

where ϑ ∈ Q, q ∈ E∗, ϖ is positive number and f : Q −→ R ∪ {+∞} is proper, convex and lower
semi continuous. By considering the definitions G and f, the following properties studied by Wu
and Huang [22] hold:
i) G(ϑ, q) is convex and continuous with respect to q when ϑ is fixed;
ii) G(ϑ, q) is convex and lower semicontinuous with respect to ϑ when q is fixed.

Definition 1.2. Let Q be a nonempty closed convex subset of a real Banach space E with E∗ as
its dual. Then an operator Πf

Q : E∗ −→ 2Q is called generalized f - projection if

Πf
Qq = {v ∈ Q : G(v, q) = inf

y∈Q
G(ϑ, q),∀q ∈ E∗}.

In 2010, Li et al [23] proposed generalized f− projection operator and proved the strong convergence
theorem for relatively nonexpansive mapping. Later Siwaporn and Kumam [24] introduced hybrid
algorithm of generalized f− projection operator for finding the solution of generalized Kly Fan
inequalities and fixed point problem in Banach space.
In 2013, Siwaporm et al [18] consider the following Mann type iterative algorithm for approximating
the totally quasi -ϕ- asymptotically nonexpansive maps by the method of hybrid generalized f−
projection. 

Q1,j = Q, ∀j ≥ 1;
yn,j = J−1(βnJωn + (1− βn)JT

n
j ωn);

Qn+1,j = {u ∈ Qn : G(u, Jyn,j) ≤ G(u, Jωn) + δn};
Qn+1 = ∩∞

j=1Qn+1,j ;

ωn+1 = Πf
Qn+1

ω1,∀n ≥ 1.

They proved that {ωn} converges strongly to Πf
Γω1.

In 2014, Jingling et al [11] considered the following algorithm for approximating the common element
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of generalized mixed equilibrium problem, maximal monotone operator and relatively nonexpansive
map in Banach space.

x ∈ C0, arbitrarily;
yn = J−1(βnJxn + (1− βn)JSnxn);
zn = J−1(γnJxn + (1− γn)JJrnyn);
un ∈ C such thatf(un, y) + ψ(y)− ψ(un) + ⟨Aun, y − un⟩
+ 1

rn
⟨y − un, Jun − Jzn⟩ ≥ 0,∀y ∈ C;

Cn+1 = {u ∈ Cn : G(u, Jun) ≤ γnG(u, Jxn) + (1− γn)G(u, Jyn) ≤ G(u, Jxn)};
xn+1 = Πf

Cn+1
x0,∀n ≥ 0.

It has been proved that {xn} generated by the scheme above converges strongly to Πf
Ωx0.

In 2021, Hammad et al [6] constructed a hybrid iterative algorithm for solving maximal monotone
operators and fixed point problem in Banach space. From the notion of generalized f− projection,
Siwaporn Soewan [25] proposed and studied hybrid algorithm for finding a maximal monotone op-
erator in Banach space, using the following iterative algorithm:


x1 ∈ C, C1 = C,
zn = J−1(γnJxn + (1− γn)JJrnxn),
Cn+1 = {z ∈ C : G(z, Jzn) ≤ G(z, Jxn),

xn+1 = Πf
Cn+1

x1,∀n ≥ 1.

The authors proved that {xn} converges strongly to Πf
Ωx1.

Motivated by the results Siwaporm et al [18], Jingling et al [11], In this article, we propose and
study a modified inertial iterative algorithm for approximating a common fixed point of total
quasi -ϕ- asymptotically nonexpansive mappings, maximal monotone operators and a system of
generalized mixed equilibrium problems. We prove a strong convergence theorem of the proposed
modified inertial iterative algorithm in Banach spaces. The results presented in this work, extend
and improve the results of Siwaporm et al [18], Jingling et al [11] and many other results in the
literature.

2 Preliminaries
In this section, we consider some preliminary definitions and Lemmas that led to the proving of our
main result.

Let E be a real Banach space with ∥ . ∥ and E∗ as the norm and dual space of E respectively,

K := {ω ∈ E : ∥ω∥ = 1} be the unit sphere of E. E is said to be smooth if the lim
t→0

∥ ω + tϑ ∥ − ∥ ω ∥
t

exists for all ω, ϑ ∈ K, it is also said to be uniformly smooth if the limit exists uniformly in ω, ϑ ∈ K.
The modulus of smoothness of E is the function ρE : [0,∞) −→ [0,∞) defined by

ρE(t) = sup
{∥ ω + ϑ ∥ + ∥ ω − ϑ ∥

2
− 1; ∥ω∥ = 1, ∥ϑ∥ ≤ t

}
.

A Banach space E said to be strictly convex if
∥ ω + ϑ ∥

2
< 1 for all ω, ϑ ∈ K with ∥ω∥ = ∥ϑ∥ = 1

and ω ̸= ϑ and E is said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that
∥ ω + ϑ ∥

2
≤ 1− δ for all ω, ϑ ∈ K with ∥ω∥ = ∥ϑ∥ = 1 and ∥ω− ϑ∥ ≥ ε. The modulus of convexity

of E is the function δ : [0, 2] −→ [0, 1] defined by

δ(ε) = inf
{
1− ∥ω + ϑ

2
∥ : ω, ϑ ∈ K, ∥ω∥ = ∥ϑ∥ = 1, ∥ω − ϑ∥ ≥ ε

}
.
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It follows from (1.1) that

(∥ϑ∥ − ∥ω∥)2 ≤ ϕ(ω, ϑ) ≤ (∥ϑ∥+ ∥ω∥)2, ∀ω, ϑ ∈ E; (2.1)

ϕ(ω, ϑ) = ϕ(ω, z) + ϕ(z, ϑ) + 2⟨ω − z, Jz − Jϑ⟩, ∀ω, ϑ, z ∈ E; (2.2)

and

ϕ(ω, ϑ) ≤ ∥ω∥∥Jω − Jϑ∥+ ∥ϑ∥∥ω − ϑ∥, ∀ω, ϑ,∈ E. (2.3)

Remark 2.1. We observe from the basic properties of E,E∗ and J that the following holds [25]:

i) If E is a smooth, then J is single valued and semi continuous;
ii) If E is uniformly smooth, then E is smooth and reflexive;
iii) If E is an arbitrary Banach space, then J is monotone and bounded;
iv) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on bounded subset of
E.
v) E is uniformly smooth if and only if E∗ is uniformly convex;
vi) If E is a strictly convex, then J is strictly monotone;
vii) If E is reflexive, smooth and strictly convex, then the normalized duality mapping J is single
valued, one-to-one and onto.

Remark 2.2. If E is a reflexive, strictly convex and smooth Banach space, for each ω, ϑ ∈ E,
ϕ(ω, ϑ) = 0 if and only if ω = ϑ. It is enough to conclude that for ϕ(ω, ϑ) = 0, then we have ω = ϑ.
By (i), we notice that ∥ ω ∥2=∥ ϑ ∥2 . This gives ⟨ω, Jϑ⟩ = ∥ω∥2 = ∥Jϑ∥2. Observe by definition of
J that Jω = Jϑ. Hence, this lead to ω = ϑ ( see for example [25,31] and therein)

Lemma 2.3. (see [26]) Let E be a smooth and uniformly convex Banach space and let {ωn} and
{ϑn} be sequences in E such that either {ωn} or {ϑn} is bounded. If lim

n→∞
ϕ(ωn, ϑn) = 0, then

lim
n→∞

∥ ωn − ϑn ∥= 0.

Remark 2.4. If {ωn} and {ϑn} are bounded, from (2.3) it is obvious that the converse of Lemma
2.3 is also true.

Lemma 2.5. (see [2]) Let Q be a nonempty closed and convex subset of a uniformly convex and
uniformly smooth Banach space E. Let T : Q −→ Q be a closed and total quasi-ϕ-asymptotically
nonexpansive mapping with sequences {ζn}, {µn} of nonnegative real numbers with ζn −→ 0, µn −→
0 as n −→ ∞ and a strictly increasing continuous function ψ : R+ −→ R+ with ψ(0) = 0. If µ1 = 0,
then the fixed point set F (T ) is a closed convex subset of Q.

Lemma 2.6. (see [22]) Let E be a reflexive Banach space with its dual E∗ and Q be a nonempty
closed convex subset of E. The following statements hold:
i) Πf

Qq is nonempty closed convex subset of Q for all q ∈ E∗;

ii) If E is smooth, then for all q ∈ E∗, ω ∈ Πf
Qq if and only if

⟨ω − ϑ, q − Jϑ⟩+ϖf(ϑ)−ϖf(ω) ≥ 0,∀ϑ ∈ Q;

iii) If E is strictly convex and f : Q −→ R ∪ {+∞} is positive homogeneous (i.e.,f(ξω) = ξf(ω)

for all ξ > 0 such that ξω ∈ Q where ω ∈ Q ), then Πf
Q is single valued mapping.

Lemma 2.7. (see [27]) Let Q be nonempty closed convex subset of a reflexive Banach space E and
E∗ be the dual space of E. If E is strictly convex, then Πf

Qq is single valued.

Recall that if E is a smooth Banach space, then J is single valued mapping. Therefore, there exists
a unique element q ∈ E∗ such that q = Jω for ω ∈ E. Now, by substituting q = Jω in (1.2), we
obtain

G(ϑ, Jω) =∥ ϑ ∥2 −2⟨ϑ, Jω⟩+ ∥Jω∥2 + 2ϖf(ϑ). (2.4)
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It follows from the definition of G that

G(ϑ, Jω) = G(ϑ, Jz) + ϕ(z, ω) + 2⟨ϑ− z, Jz − Jω⟩,∀ω, ϑ, z ∈ E. (2.5)

Also, by the notion of the second generalized f - projection in Banach spaces,

Definition 2.8. (see [23]) Let Q be a nonempty closed convex subset of a real smooth Banach space
E. An operator Πf

Q : E −→ 2Q is said to be generalized f - projection if

Πf
Qω = {v ∈ Q : G(v, Jω) = inf

ϑ∈Q
G(ϑ, Jω),∀ω ∈ E}.

Lemma 2.9. (see [28]) Let E be a Banach space and f : E −→ R∪{+∞} be a lower semicountin-
uous convex functional. There exists z∗ ∈ E∗, η ∈ R such

f(ω) ≥ ⟨ω, z∗⟩+ η,∀ω ∈ E.

Lemma 2.10. (see [23]) Let Q be a nonempty closed convex subset of a reflexive smooth Banach
space E. Then, the following statements hold:
i) Πf

Qω is nonempty closed convex subset of Q for all ω ∈ E;

ii) for all ω ∈ E, ω̂ ∈ Πf
Q if and only if

⟨ω̂ − ϑ, Jω − Jω̂⟩+ϖf(ϑ)−ϖf(ω̂) ≥ 0,∀ϑ ∈ Q;

iii) If E is strictly convex, then Πf
Q is single valued mapping.

Lemma 2.11. (see [23]) Let Q be a nonempty closed convex subset of a reflexive smooth Banach
space E. and ω̂ ∈ Πf

Q for all ω ∈ E. Then

ϕ(ϑ, ω̂) +G(ω̂, Jω) ≤ G(ϑ, Jω),∀ϑ ∈ Q.

Remark 2.12. Let E be a uniformly smooth and uniformly convex Banach space, f(ω) = 0,∀ω ∈ E.
It follows from Alber [19] that Lemma 2.11 reduces to the property of the generalized projection
operator.

If f(ϑ) ≥ 0,∀ϑ ∈ C and f(0) = 0, then it follows from the definition of totally quasi-ϕ-asymptotically
nonexpansive mapping T that T is equivalent to the following:
If F (T ) ̸= ∅ and there exists nonnegative real sequences {ζn}, {µn} with ζn −→ 0, µn −→ 0 as
n −→ ∞ and a strictly increasing continuous function ψ : R+ −→ R+ with ψ(0) = 0 such that

G(p, JTnω) ≤ G(p, Jω) + ζnψ(G(p, Jω)) + µn, ∀ω ∈ Q, p ∈ F (T ), n ≥ 1.

Lemma 2.13. (see [23]) Let E be a Banach space and f : E −→ R ∪ {+∞} be a proper, convex
and lower semicountinuous mapping with domain D(f). If {ωn} ⊂ D(f) such that ωn ⇀ ω̂ ∈ D(f)
and G(ωn, Jϑ) −→ G(ω̂, Jϑ) ( as n→ ∞), then ∥ ωn ∥−→∥ ω̂ ∥ ( as n→ ∞).

Lemma 2.14. (see [29]) Let Q be a nonempty closed convex subset of strictly convex, smooth
and reflexive Banach space E, let S ⊂ E × E∗ be a monotone operator satisfying D(S) ⊂ Q ⊂
J−1(∩r>0R(J + rS)). Let Jr and Sr, for all r > 0 be the resolvent and the Yosida approximation
of S, respectively. The following statements hold:
i) ϕ(v, Jrω) + ϕ(Jrω, ω) ≤ ϕ(v, ω),∀ω ∈ Q, v ∈ S−10;
ii) (Jrω, Srω) ∈ S, ∀ω ∈ Q, where (ω, ω∗) ∈ S denotes the value of ω∗ at ω(ω∗ ∈ Sω) iii) F (Jr) =
S−10.

Lemma 2.15. (see [25]) Let E be a strictly convex, smooth and reflexive Banach space, S ⊂ E×E∗

be a monotone operator with S−10 ̸= ∅, and for each r > 0, Jr = (J + rS)−1J. Then

G(q, JJrω) + ϕ(Jrω, ω) ≤ G(q, Jω),∀ω ∈ E, q ∈ S−10.
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Lemma 2.16. (see [14, 21]) Let E be a smooth, strictly convex and reflexive Banach space, and
Q be a nonempty closed convex subset of E. Let B : Q × Q −→ R be a bifunction satisfying the
conditions (B1)− (B4). Let r > 0 be any given number and ω ∈ E be any given point. Then, there
exists z ∈ Q such that

B(z, ϑ) +
1

r
⟨ϑ− z, Jz − Jω⟩ ≥ 0,∀ϑ ∈ Q.

By replacing ω with J−1(Jω − rAω), where A is a monotone mapping from Q into E∗, then there
exists z ∈ Q such that

B(z, ϑ) + ⟨ϑ− z,Az⟩+ 1

r
⟨ϑ− z, Jz − Jω⟩ ≥ 0.∀ϑ ∈ Q.

Assumption B: Consider the bifunction B : Q×Q −→ R satisfies the following assumptions:
(B1) B(ω, ω) = 0,∀ω ∈ Q;
(B2) B is monotone, 1.e, B(ω, ϑ) +B(ϑ, ω) ≤ 0, ∀ω, ϑ ∈ Q;
(B3) for each ω, ϑ, z ∈ Q, lim sup

π→0
B(πz + (1− π)ω, ϑ) ≤ B(ω, ϑ);

(B4) for each ω ∈ Q,ϑ 7→ B(ω, ϑ) is convex and lower semicontinuous.

Assumption b: Also consider b : Q×Q −→ R as a bifunction satisfying the following assumptions:
(b1) b is skew-symmetric, i.e., b(ω, ω)− b(ω, ϑ)− b(ϑ, ω) + b(ϑ, ϑ) ≥ 0,∀ω, ϑ ∈ Q;
(b2) b is convex in the second argument;
(b3) b is continuous.

Lemma 2.17. (see [10, 30]) Let Q be a nonempty closed convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E . Let A : Q −→ E∗ be a continuous and monotone
mapping, B : Q×Q −→ R be a bifunction satisfying Assumptions (B1)− (B4) and b : Q×Q −→ R
be a bifunction satisfying Assumptions (b1)− (b3). For any given number r > 0 and ω ∈ E, define
a mapping Tr : E −→ Q by

Tr(ω) = {z ∈ Q : B(z, ϑ) + ⟨ϑ− z,Az⟩+ 1

r
⟨ϑ− z, Jz − Jω⟩+ b(z, ϑ)− b(z, z) ≥ 0,∀ϑ ∈ Q},

∀ω ∈ E.
The mapping Tr has the following properties:
(p1) Tr is single-valued;
(p2) Tr is a firmly nonexpansive - type mapping, for all ω, ϑ ∈ E

⟨Trω − Trϑ, JTrω − JTrϑ⟩ ≤ ⟨Trω − Trϑ, Jω − Jϑ⟩

(p3) F (Tr) = GMEP (B,A, b);
(p4) GMEP (B,A, b) is a closed convex set of Q.
(p5) ϕ(p, Trω) + ϕ(Trω, ω) ≤ ϕ(p, ω), ∀p ∈ F (Tr), ω ∈ E.

3 Main result
Theorem 3.1. Let Q be a nonempty closed and convex subset of a uniformly smooth and uniformly
convex real Banach space E. Let f : E −→ R be a convex and lower semicontinuous function with
Q ⊂ int(D(f)), where D(f) is the domain of f and Si ⊂ E × E∗, i = 1, 2, 3, ... be a sequence
of maximal monotone operators satisfying D(Si) ⊂ Q and Jrn = (J + rnSi)

−1J, for all rn > 0
and i = 1, 2, 3, ... Let Bi : Q × Q −→ R, i = 1, 2, 3, ... be a sequence of bifunctions satisfying
assumptions (B1) − (B4), bi : Q × Q −→ R, i = 1, 2, 3, ... be a sequence of bifunctions satisfying
assumptions (b1) − (b3) and Ai : Q −→ E∗, i = 1, 2, 3, ... be a sequence of continuous monotone
maps. Let {Ti}∞i=1 : Q −→ Q be an infinite family of closed uniformly L- Lipschitz continuous
and uniformly total quasi -ϕ-asymptotically nonexpansive mappings with nonnegative real numbers

78

 https://doi.org/10.5281/zenodo.XXXXXXXX


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(1), 2024, Pages 72 - 92
https://doi.org/10.5281/zenodo.XXXXXXXX

sequences ζn, µn such that ζn −→ 0, µn −→ 0 as n −→ ∞ and stricly increasing continuous
function ψ : R+ −→ R+ with ψ(0) = 0. Assume that Γ :=

(
∩∞
i=1 F (Ti)

)
∩
(
∩∞
i=1 S

−1
i 0

)
∩
(
∩∞
i=1

GMEP (Bi, Ai, bi)
)
̸= ∅ Let {xn} be a sequence defined as follows:

ω1 ∈ Q1 = E;
wn = ωn + αn(ωn − ωn−1);

ϑn = J−1(ρ0,nJwn +

∞∑
i=1

ρi,nJT
n
i wn);

zn = J−1(γnJwn + (1− γn)JJrnϑn);
un ∈ C such that Bi(un, ϑ) + ⟨Aiun, ϑ− un⟩
+

1

ri,n
⟨ϑ− un, Jun − Jzn⟩+ bi(un, ϑ)− bi(un, un) ≥ 0,∀ϑ ∈ Q;

Qn+1 = {u ∈ Qn : G(u, Jun) ≤ G(u, Jwn) + δn};
ωn+1 = Πf

Qn+1
ω1, ∀n ≥ 1,

(3.1)

where αn ⊂ (0, 1), {γn} and {ρi,n} ⊂ [0, 1] such that
∞∑
i=0

ρi,n = 1, {rn} is a sequence in (0,∞) with

{ri,n} ⊂ [a,∞) for some a > 0, ∀i = 1, 2, 3, .... and δn = ζnψ
(
G(p̂, Jwn)

)
+ µn, p̂ ∈ Γ. Assume

that lim inf
n→∞

ρ0,nρi,n > 0,∀i ≥ 1, lim inf
n→∞

(1−γn) > 0 and lim
n→∞

rn = ∞. Then {ωn} converges strongly

to Πf
Γω1, where Πf

Γ is the generalized f - projection of E onto Γ.

Proof. Consider Ωi : Q×Q −→ R and Ti,r : E −→ Q as functions defined by

Ωi(z, ϑ) = Bi(z, ϑ) + ⟨Aiz, ϑ− z⟩, ∀z, ϑ ∈ Q

and

Ti,r(ω) = {z ∈ Q : Ωi(z, ϑ) +
1

ri,n
⟨ϑ− z, Jz − Jω⟩+ bi(z, ϑ)− bi(z, z) ≥ 0, ∀ϑ ∈ Q},

∀i ≥ 1, ω ∈ E,

respectively. We present the functions Ωi which satisfies Assumptions (B1)−(B4) and the functions
Ti,r which satisfies properties (p1)− (p5) of Lemma 2.17 (see [10,21] for more details).

We present the proof in the following steps:

Step 1 : we show that for all n ≥ 1, Qn+1 is closed and convex. Clearly Q1 = Q is closed and
convex. Supposed that Qn is closed and convex for all n ∈ N. For any u ∈ Qn, the inequality below
is from definition of Qn+1 :

G(u, Jun)−G(u, Jwn) ≤ δn,

which implies that

∥ u ∥2 −2⟨u, Jun⟩+ ∥un∥2 + 2ϖf(u)− ∥ u ∥2 +2⟨u, Jwn⟩ − ∥wn∥2 − 2ϖf(u) ≤ δn.

which gives

2⟨u, Jwn⟩ − 2⟨u, Jun⟩+ ∥un∥2 − ∥wn∥2 ≤ δn,

hence, we have

2⟨u, Jwn − Jun⟩ ≤∥ wn ∥2 − ∥ un ∥2 +δn.

Therefore, Qn+1 is closed and convex, ∀n ≥ 1. Which lead to Πf
Cn+1

ω1 is well defined.
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Step 2 : We show by induction that Γ ⊂ Qn,∀n ≥ 1. It obvious that Γ ⊂ Q1 = Q. Suppose that
Γ ⊂ Qn for some n ≥ 1. Assume that un = Ti,rnzn for all i ≥ 1 and vn = Jrnϑn for all n ≥ 1. Let
p̂ ⊂ Γ and by Lemma 2.11, we get the following estimate:

G(p̂, Jun) = G(p̂, JTi,rnzn)

≤ G(p̂, Jzn)

= G(p̂, γnJwn + (1− γn)Jvn)

= ∥ p̂ ∥2 −2⟨p̂, γnJwn + (1− γn)Jvn⟩
+ ∥γnJwn + (1− γn)Jvn ∥2 +2ϖf(p̂)

≤ ∥ p̂ ∥2 −2γn⟨p̂, Jwn⟩ − 2(1− γn)⟨p̂, Jvn⟩+ γn ∥ Jwn ∥2

+ (1− γn) ∥ Jvn ∥2 +2ϖf(p̂)

= γnG(p̂, Jwn) + (1− γn)G(p̂, Jvn)

= γnG(p̂, Jwn) + (1− γn)G(p̂, JJrnϑn)

≤ γnG(p̂, Jwn) + (1− γn)G(p̂, Jϑn) (3.2)

Now, from the fact that {Ti},∀i ≥ 1 is total quasi-ϕ-asymptotically nonexpansive maps, then we
obtain

G(p̂, Jϑn) = G(p̂, ρ0,nJwn +

∞∑
i=1

ρi,nJT
n
i wn)

= ∥ p̂ ∥2 −2⟨p̂, ρ0,nJwn +

∞∑
i=1

ρi,nJT
n
i wn⟩+ ∥ ρ0,nJwn +

∞∑
i=1

ρi,nJT
n
i wn∥2

+ 2ϖf(p̂)

≤ ∥ p̂ ∥2 −2ρ0,n⟨p̂, Jwn⟩ − 2

∞∑
i=1

ρi,n⟨p̂, JTn
i wn⟩+ ρi,n∥Jwn∥2

+

∞∑
i=1

ρi,n∥JTn
i wn∥2 + 2ϖf(p̂)

= ρi,nG(p̂, Jwn) +

∞∑
i=1

ρi,nG(p̂, JT
n
i wn)

≤ ρi,nG(p̂, Jwn) +
∞∑
i=1

ρi,n
[
G(p̂, Jwn) + ζnψ

(
G(p̂, Jwn)

)
+ µn

]
≤ ρi,nG(p̂, Jwn) +

∞∑
i=1

ρi,nG(p̂, Jwn) +

∞∑
i=1

ρi,n
[
ζnψ

(
G(p̂, Jwn)

)
+ µn

]
= ρi,nG(p̂, Jwn) +

∞∑
i=1

ρi,nG(p̂, Jwn) + (1− ρ0,n)
[
ζnψ

(
G(p̂, Jwn)

)
+ µn

]
≤ ρi,nG(p̂, Jwn) +

∞∑
i=1

ρi,nG(p̂, Jwn) + ζnψ
(
G(p̂, Jwn)

)
+ µn

= G(p̂, Jwn) + ζnψ
(
G(p̂, Jwn)

)
+ µn. (3.3)
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Therefore, putting (3.3) in (3.2), we get

G(p̂, Jun) ≤ γnG(p̂, Jwn) + (1− γn)
[
G(p̂, Jwn) + ζnψ

(
G(p̂, Jwn)

)
+ µn

]
= γnG(p̂, Jwn) + (1− γn)G(p̂, Jwn) + (1− γn)

[
ζnψ

(
G(p̂, Jwn)

)
+ µn

]
= G(p̂, Jwn) + (1− γn)

[
ζnψ

(
G(p̂, Jwn)

)
+ µn

]
≤ G(p̂, Jwn) + ζnψ

(
G(p̂, Jwn)

)
+ µn

= G(p̂, Jwn) + δn. (3.4)

Which lead to p̂ ∈ Qn+1, gives that Γ ⊂ Qn+1, therefore Γ ⊂ Qn,∀n ≥ 1.

Step 3 : we show that the sequence {ωn} is cauchy and ωn −→ ω̂ as (n −→ ∞).
Now, since f : E −→ R is convex and lower semi continuous mapping, then, by Lemma 2.9 there
exists z∗ ∈ E∗ and η ∈ R such that

f(ω) ≥ ⟨ω, z∗⟩+ η,∀ω ∈ E.

Therefore, for ωn ∈ E, we have

G(ωn, Jω1) = ∥ ωn ∥2 −2⟨ωn, Jω1⟩+ ∥ω1∥2 + 2ϖf(ωn)

≥ ∥ ωn ∥2 −2⟨ωn, Jω1⟩+ ∥ω1∥2 + 2ϖ⟨ωn, z
∗⟩+ 2ϖη

= ∥ ωn ∥2 −2⟨ωn, Jω1 −ϖz∗⟩+ ∥ω1∥2 + 2ϖη

≥ ∥ ωn ∥2 −2 ∥ ωn ∥∥ Jω1 −ϖz∗ ∥ + ∥ ω1 ∥2 +2ϖη

= (∥ ωn ∥ − ∥ Jω1 −ϖz∗ ∥)2+ ∥ ω1 ∥2 − ∥ Jω1 −ϖz∗ ∥2 +2ϖη. (3.5)

Hence, from the definition of Qn and (3.5), since p̂ ∈ Γ and ωn = Πf
Qn
ω1, then we obtain

G(p̂, Jω1) ≥ G(ωn, Jω1)

≥ (∥ ωn ∥ − ∥ Jω1 −ϖz∗ ∥)2+ ∥ ω1 ∥2 − ∥ Jω1 −ϖz∗ ∥2 +2ϖη.

Implies {ωn} is bounded and so are {un}, {zn}, {ϑn}, {wn}, and {G(ωn, Jω1)}.
Therefore, since ωn+1 = Πf

Qn+1
ω1 ∈ Qn+1 ⊂ Qn, ωn = Πf

Qn
ω1, then by Lemma 2.11, we obtain

0 ≤ (∥ ωn+1 − ωn ∥)2

≤ ϕ(ωn+1, ωn)

≤ G(ωn+1, Jω1)−G(ωn, Jω1). (3.6)

Which implies that {G(ωn, Jω1)} is non decreasing. Therefore lim
n→∞

G(ωn, Jω1) exists. Now, since

ωn = Πf
Qn
ω1, ωm = Πf

Qm
ω1 ∈ Qm ⊂ Qn, for any m > n, then from (3.6) we get

ϕ(ωm, ωn) ≤ G(ωm, Jω1)−G(ωn, Jω1).

By taking m,n −→ ∞, we conclude that

lim
n→∞

ϕ(ωm, ωn) = 0.

Then, by Lemma 2.3, we have

lim
n→∞

∥ ωm − ωn ∥= 0.

This shows {ωn} is cauchy. Therefore using the fact Q is closed subset of Banach space E and Qn

is closed and convex, we can assume that there exists an element ω̂ ∈ Q such that

lim
n→∞

ωn = ω̂. (3.7)
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Step 4 : we show that ω̂ ∈ Γ. Now, since lim
n→∞

G(ωn, Jω1) exists from Step 3 then, it follows from
(3.6) that

lim
n→∞

ϕ(ωn+1, ωn) = 0. (3.8)

Using Lemma 2.3, we get

lim
n→∞

∥ ωn+1 − ωn ∥= 0. (3.9)

Taking advantage of J as uniformly norm-to-norm continuous on bounded subsets of E, we conclude
that

lim
n→∞

∥ Jωn+1 − Jωn ∥= 0. (3.10)

Observe that, by the definition of wn from (3.1), we get

∥ wn − ωn ∥=∥ αn(ωn − ωn−1) ∥≤∥ ωn − ωn−1 ∥ .

Gives

lim
n→∞

∥ wn − ωn ∥= 0. (3.11)

Notice that (3.7) and (3.11), we get

lim
n→∞

wn = ω̂. (3.12)

Since {ωn} is bounded, by considering Remark 2.4 and (3.11), we obtain

lim
n→∞

ϕ(wn, ωn) = 0. (3.13)

From (3.9) and (3.11), we have

lim
n→∞

∥ ωn+1 − wn ∥= 0. (3.14)

Also, since J is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

lim
n→∞

∥ Jωn+1 − Jwn ∥= 0. (3.15)

By Remark 2.4 and (3.14), we obtain

lim
n→∞

ϕ(ωn+1, wn) = 0. (3.16)

Also, by (3.12) and (3.14), we conclude that

lim
n→∞

ωn+1 = ω̂. (3.17)

Observe that from the definition of Qn+1 in (3.1) and ωn+1 = Πf
Qn+1

ω1, we get

G(ωn+1, Jun) ≤ G(ωn+1, Jwn).

Which lead to

∥ ωn+1 ∥2 − 2⟨ωn+1, Jun⟩+ ∥un∥2 + 2ϖf(ωn+1)

≤ ∥ ωn+1 ∥2 −2⟨ωn+1, Jwn⟩+ ∥wn∥2 + 2ϖf(ωn+1).
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This gives

∥ ωn+1 ∥2 − 2⟨ωn+1, Jun⟩+ ∥un∥2

≤ ∥ ωn+1 ∥2 −2⟨ωn+1, Jwn⟩+ ∥wn∥2,

which implies that

ϕ(ωn+1, un) ≤ ϕ(ωn+1, wn).

By considering (3.16), we observe that

lim
n→∞

ϕ(ωn+1, un) = 0.

Now using Lemma 2.3, we obtain

lim
n→∞

∥ ωn+1 − un ∥= 0. (3.18)

Following from the fact that J is uniformly norm-to-norm continuous on bounded subsets of E, we
obtain

lim
n→∞

∥ Jωn+1 − Jun ∥= 0. (3.19)

By triangular inequality, we have

∥ ωn − un ∥≤∥ ωn − ωn+1 ∥ + ∥ ωn+1 − un ∥ . (3.20)

Now. putting (3.9) and (3.18) in (3.20), we get

lim
n→∞

∥ ωn − un ∥= 0. (3.21)

Using (3.7) and (3.21), we obtain

lim
n→∞

un = ω̂. (3.22)

We also observe that from (3.11) and (3.21), we get

lim
n→∞

∥ wn − un ∥= 0. (3.23)

From J is uniformly continuous on bounded subset of E, we conclude that

lim
n→∞

∥ Jwn − Jun ∥= 0. (3.24)

Noticing that by definition of Qn+1 and ωn+1 = Πf
Qn+1

ω1, we have

G(ωn+1, Jzn) ≤ G(ωn+1, Jwn).

Equivalent to

∥ ωn+1 ∥2 − 2⟨ωn+1, Jzn⟩+ ∥zn∥2 + 2ϖf(ωn+1)

≤ ∥ ωn+1 ∥2 −2⟨ωn+1, Jwn⟩+ ∥wn∥2 + 2ϖf(ωn+1),

gives

∥ ωn+1 ∥2 − 2⟨ωn+1, Jzn⟩+ ∥zn∥2

≤ ∥ ωn+1 ∥2 −2⟨ωn+1, Jwn⟩+ ∥wn∥2,
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implies that

ϕ(ωn+1, zn) ≤ ϕ(ωn+1, wn).

By (3.16), we get

lim
n→∞

ϕ(ωn+1, zn) = 0.

Using Lemma 2.3, we obtain

lim
n→∞

∥ ωn+1 − zn ∥= 0. (3.25)

By considering J as uniformly norm-to-norm continuous on bounded subsets of E, we conclude
that

lim
n→∞

∥ Jωn+1 − Jzn ∥= 0. (3.26)

Taking into account that

∥ ωn − zn ∥≤∥ ωn − ωn+1 ∥ + ∥ ωn+1 − zn ∥ . (3.27)

Using (3.9) and (3.25) in (3.27), we have

lim
n→∞

∥ ωn − zn ∥= 0. (3.28)

From (3.7) and (3.28), we conclude that

lim
n→∞

zn = ω̂. (3.29)

Also, since J is uniformly norm-to- norm continuous on bounded subsets of E and by (3.28), we
have

lim
n→∞

∥ Jωn − Jzn ∥= 0. (3.30)

We also observe that by (3.19) and (3.26), we get

lim
n→∞

∥ Jun − Jzn ∥= 0. (3.31)

Also, from ωn+1 = Πf
Qn+1

ω1 and by definition of Qn+1, we have

G(ωn+1, Jϑn) ≤ G(ωn+1, Jwn).

Then, we get that

∥ ωn+1 ∥2 − 2⟨ωn+1, Jϑn⟩+ ∥ϑn∥2 + 2ϖf(ωn+1)

≤ ∥ ωn+1 ∥2 −2⟨ωn+1, Jwn⟩+ ∥wn∥2 + 2ϖf(ωn+1),

therefore, we have

∥ ωn+1 ∥2 − 2⟨ωn+1, Jϑn⟩+ ∥ϑn∥2

≤ ∥ ωn+1 ∥2 −2⟨ωn+1, Jwn⟩+ ∥wn∥2,

hence

ϕ(ωn+1, ϑn) ≤ ϕ(ωn+1, wn).
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By (3.16), we have

lim
n→∞

ϕ(ωn+1, ϑn) = 0.

Also by Lemma 2.3, we conclude that

lim
n→∞

∥ ωn+1 − ϑn ∥= 0. (3.32)

From the fact that J is uniformly norm-to-norm continuous on bounded subsets of E, we get that

lim
n→∞

∥ Jωn+1 − Jϑn ∥= 0. (3.33)

We also notice that

∥ ωn − ϑn ∥≤∥ ωn − ωn+1 ∥ + ∥ ωn+1 − ϑn ∥ . (3.34)

Now, using (3.9) and (3.32) in (3.34), we get

lim
n→∞

∥ ωn − ϑn ∥= 0. (3.35)

We observe that by (3.7) and (3.35), we conclude that

lim
n→∞

ϑn = ω̂. (3.36)

From (3.1), we have the following estimate:

∥ Jωn+1 − Jϑn ∥ = ∥ Jωn+1 −
(
ρ0,nJwn +

∞∑
i=1

ρi,nJT
n
i wn

)
∥

= ∥ Jωn+1 − ρ0,nJwn −
∞∑
i=1

ρi,nJT
n
i wn ∥

= ∥ Jωn+1 +

∞∑
i=1

ρi,nJωn+1 −
∞∑
i=1

ρi,nJωn+1 + ρ0,nJωn+1

− ρ0,nJωn+1 − ρ0,nJwn −
∞∑
i=1

ρi,nJT
n
i wn ∥

= ∥
∞∑
i=1

ρi,nJωn+1 −
∞∑
i=1

ρi,nJT
n
i wn + ρ0,nJωn+1 − ρ0,nJwn ∥

= ∥
∞∑
i=1

ρi,n
(
Jωn+1 − JTn

i wn

)
+ ρ0,n

(
Jωn+1 − Jwn

)
∥

= ∥
∞∑
i=1

ρi,n
(
Jωn+1 − JTn

i wn

)
− ρ0,n

(
Jwn − Jωn+1

)
∥

≥
∞∑
i=1

ρi,n ∥ Jωn+1 − JTn
i wn ∥ −ρ0,n ∥ Jwn − Jωn+1 ∥,

this implies that

∥ Jωn+1 − JTn
i wn ∥≤ 1

∞∑
i=1

ρi,n

[
∥ Jωn+1 − Jϑn ∥ (3.37)

+ ρ0,n ∥ Jwn − Jωn+1 ∥
]
.
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Using (3.15), (3.33) and lim inf
n→∞

∞∑
i=1

ρi,n > 0 in (3.37), we obtain

lim
n→∞

∥ Jωn+1 − JTn
i wn ∥= 0, ∀i ≥ 1. (3.38)

Since J−1 is uniformly norm-to-norm continuous on bounded subsets of E, we get

lim
n→∞

∥ ωn+1 − Tn
i wn ∥= 0, ∀i ≥ 1. (3.39)

From the triangular inequality that for each i ≥ 1, we have

∥ wn − Tn
i wn ∥≤∥ wn − ωn+1 ∥ + ∥ ωn+1 − Tn

i wn ∥ . (3.40)

Putting (3.14) and (3.39) in (3.40), we obtain

lim
n→∞

∥ wn − Tn
i wn ∥= 0, ∀i ≥ 1. (3.41)

Taking into account that for each i ≥ 1, we have

∥ Tn
i wn − ω̂ ∥≤∥ Tn

i wn − wn ∥ + ∥ wn − ω̂ ∥ . (3.42)

Using (3.12) and (3.41) in (3.42), we conclude that

lim
n→∞

∥ Tn
i wn − ω̂ ∥= 0, ∀i ≥ 1. (3.43)

Furthermore, using assumption that Ti is uniformly Li- Lipschitz continuous for each i ≥ 1, lead to

∥ Tn+1
i wn − Tn

i wn ∥ ≤ ∥ Tn+1
i wn − Tn+1

i wn+1 ∥ + ∥ Tn+1
i wn+1 − wn+1 ∥

+ ∥ wn+1 − wn ∥ + ∥ wn − Tn
i wn ∥

≤
(
Li + 1

)
∥ wn+1 − wn ∥ + ∥ Tn+1

i wn+1 − wn+1 ∥ + ∥ wn − Tn
i wn ∥ .(3.44)

Therefore, by using (3.9) and (3.41) in (3.44), we obtain

lim
n→∞

∥ Tn+1
i wn − Tn

i wn ∥= 0, ∀i ≥ 1.

Hence, from (3.43), it yield that

lim
n→∞

∥ Tn+1
i wn − ω̂ ∥= 0, ∀i ≥ 1.

Implies that TiTn
i wn −→ ω̂ as n −→ ∞. Therefore, in view of the Closedness of Ti, we conclude

that Tiω̂ = ω̂, ∀i ≥ 1. Hence,

ω̂ ∈ ∩∞
i=1F (Ti).

Taking the advantage of (3.2) that

G(p̂, Jun) = G(p̂, JTi,rnzn), ∀i ≥ 1.

≤ G(p̂, Jzn)

≤ γnG(p̂, Jwn) + (1− γn)G(p̂, Jvn),

gives

G(p̂, Jvn) ≥
1

1− γn

(
G(p̂, Jun)− γnG(p̂, Jwn)

)
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Moreover, by Lemma 2.15, we observe that

ϕ(vn, wn) = ϕ(Jrnwn, wn)

≤ G(p̂, Jwn)−G(p̂, JJrnwn)

= G(p̂, Jwn)−G(p̂, Jvn)

≤ G(p̂, Jwn)−
1

1− γn

(
G(p̂, Jun)− γnG(p̂, Jwn)

)
=

1

1− γn

(
G(p̂, Jwn)−G(p̂, Jun)

)
=

1

1− γn

(
∥ wn ∥2 − ∥ un ∥2 −2⟨p̂, Jwn − Jun⟩

)
≤ 1

1− γn

(
∥ wn ∥2 − ∥ un ∥2 +2|⟨p̂, Jwn − Jun⟩|

)
≤ 1

1− γn

(
(∥ wn − un ∥)(∥ wn ∥ + ∥ un ∥) + 2 ∥ p̂ ∥∥ Jwn − Jun ∥

)
(3.45)

Since lim inf
n→∞

(1− γn) > 0, now by using (3.23) and (3.24) in (3.45), we obtain

lim
n→∞

ϕ(vn, wn) = 0. (3.46)

It follows from Lemma 2.3 that

lim
n→∞

∥ wn − vn ∥= 0. (3.47)

Since J is uniformly norm-to- norm continuous on bounded subsets of E, we have

lim
n→∞

∥ Jwn − Jvn ∥= 0. (3.48)

It also follows from (3.12) and (3.47) that

lim
n→∞

vn = ω̂.

Now, since rn ≥ a, vn = Jrnwn and by (3.47), we get

lim
n→∞

1

rn
∥ Jwn − Jvn ∥= 0. (3.49)

Then

lim
n→∞

∥ Si,rnwn ∥ = lim
n→∞

1

rn
∥ Jwn − JJrnwn ∥

= lim
n→∞

1

rn
∥ Jwn − Jvn ∥

= 0, ∀i ≥ 1.

Consider (σ, σ∗) ∈ Si, monotonicity of Si and by Lemma 2.14, we get

⟨σ − vn, σ
∗ − Si,rnwn⟩ ≥ 0, ∀n ≥ 0, i ≥ 1.

Now, taking the limit as n −→ ∞, we have ⟨σ − ω̂, σ∗⟩ ≥ 0. It follows from the maximality of Si

that ω̂ ∈ S−1
i 0, ∀i ≥ 1. Hence

ω̂ ∈ ∩∞
i=1S

−1
i 0.
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Next, we show that ω̂ ∈ (∩∞
i=1GMEP (Bi, Ai, bi)

)
. From the equation un = Ti,rnzn, (3.31) and

{rin} ⊂ [a,∞) for some a > 0, we observe that

lim
n→∞

∥ Jun − Jzn
rin

∥= 0, ∀i ≥ 1. (3.50)

By un = Ti,rnzn, we obtain

Ωi(un, ϑ) +
1

rin
⟨ϑ− un, Jun − Jzn⟩+ bi(ϑ, un)− bi(un, un) ≥ 0, ∀ϑ ∈ Q, i ≥ 1.

Where

Ωi(un, ϑ) = Bi(un, ϑ) + ⟨Aiun, ϑ− un⟩,

We also observe that by the assumption B2, we get

1

rin
⟨ϑ− un, Jun − Jzn⟩ ≥ −Ωi(un, ϑ)− bi(ϑ, un) + bi(un, un)

≥ Ωi(ϑ, un)− bi(ϑ, un) + bi(un, un)

By taking n −→ ∞, (3.50) and the lower semicontinuity of ϑ −→ f(ϑ, .), we conclude that

Ωi(ϑ, ω̂)− bi(ϑ, ω̂) + bi(ω̂, ω̂), ∀y ∈ Q, i ≥ 1.

Consider ϑπ := πϑ+ (1− π)ω̂, ∀π ∈ (0, 1], then ϑπ ∈ Q, hence

Ωi(ϑπ, ω̂)− bi(ϑπ, ω̂) + bi(ω̂, ω̂) ≤ 0, i ≥ 1.

Also, by the assumptions (B1) − (B4) for all i ≥ 1, we obtain

0 = Ωi(ϑπ, ϑπ)

≤ πΩi(ϑπ, ϑ) + (1− π)Ωi(ϑπ, ω̂)

≤ πΩi(ϑπ, ϑ) + (1− π)
[
bi(ϑπ, ω̂)− bi(ω̂, ω̂)

]
≤ πΩi(ϑπ, ϑ) + (1− π)

[
bi(ϑ, ω̂)− bi(ω̂, ω̂)

]
.

Letting π > 0, it follows from the assumption (B3) that

Ωi(ω̂, ϑ) + bi(ϑ, ω̂)− bi(ω̂, ω̂) ≥ 0, ∀ϑ ∈ Q, i ≥ 1.

This implies that

ω̂ ∈ (GMEP (Bi, Ai, bi)
)
, i ≥ 1.

Hence

ω̂ ∈ (∩∞
i=1GMEP (Bi, Ai, bi)

)
.

Therefore

ω̂ ∈ Γ

Step 5 : we show that ω̂ = Πf
Γω1. Since Γ is closed and convex set, by Lemma 2.10, we have that

Πf
Γω1 is single-valued denoted by x∗. Also from the definition of ωn = Πf

Qn
ω1 and x∗ ∈ Γ ⊂ Qn, we

get that

G(ωn, Jω1) ≤ G(x∗, Jω1), ∀n ≥ 1.
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From the definition of G and f, we note that for any given ω ∈ E, G(ϑ, Jω) is convex and lower
semi continuous with respect to ϑ. Then

G(ω̂, Jω1) ≤ lim inf
n→∞

G(ωn, Jω1)

≤ lim sup
n→∞

G(ωn, Jω1)

≤ G(x∗, Jω1).

By definition of Πf
Γω1 and ω̂ ∈ Γ, we conclude that x∗ = ω̂ = Πf

Γω1 and ωn −→ ω̂ as n→ ∞. This
completes the proof.

4 APPLICATION
Some applications of theorem 3.1 are to be present in this section as follows:

4.1 Countable family of total quasi-phi-asymptotically nonexpansive maps,
maximal monotone operator and system of generalized equilibrium
problems.

We observe that {ωn} defined in theorem 3.1 converges strongly to Πf
Γω1 by setting A ≡ 0 in

theorem 3.1, where Γ :=
(
∩∞
i=1 F (Ti)

)
∩
(
∩∞
i=1 S

−1
i 0

)
∩
(
∩∞
i=1 GEP (Bi, bi)

)
and GEP (B, b) is the

set of solutions of the generalized equilibrium problem for B and b.

4.2 Countable family of total quasi-phi-asymptotically nonexpansive maps,
maximal monotone operators and system of variational inequalities
problems.

We observe that {ωn} defined in theorem 3.1 converges strongly to Πf
Γω1 by setting B ≡ 0, b ≡ 0

in theorem 3.1, where Γ :=
(
∩∞
i=1 F (Ti)

)
∩
(
∩∞
i=1 S

−1
i 0

)
∩
(
∩∞
i=1 V IP (Ai)

)
and V IP (Q,A) is the

set of solutions of variational inequality problem for A over Q.

Application in Hilbert space
We also present the application of theorem 3.1 in Hilbert space as follows:

Theorem 4.1. Let Q be a nonempty closed and convex subset of a Hilbert space H. Let Si ⊂
E × E∗, i = 1, 2, 3, ... be a sequence of maximal monotone operators satisfying D(Si) ⊂ Q and
Jrn = (J + rnSi)

−1J, for all rn > 0, i = 1, 2, 3, ... Let Bi : Q × Q −→ R, i = 1, 2, 3, ... be
a sequence of bifunctions satisfying assumptions (B1) − (B4), bi : Q × Q −→ R, i = 1, 2, 3, ...
be a sequence of bifunctions satisfying assumptions (b1) − (b3) and Ai : Q −→ E∗, i = 1, 2, 3, ...
be a sequence of continuous monotone maps. Let {Ti}∞i=1 : Q −→ Q be an infinite family of
closed uniformly L- Lipschitz continuous and uniformly total quasi-asymptotically nonexpansive
mappings with the sequences ζn, µn of nonnegative real numbers with ζn −→ 0, µn −→ 0 as
n −→ ∞ and stricly increasing continuous function ψ : R+ −→ R+ with ψ(0) = 0. Assume that
Γ :=

(
∩∞
i=1 F (Ti)

)
∩
(
∩∞
i=1 S

−1
i 0

)
∩
(
∩∞
i=1 GMEP (Bi, Ai, bi)

)
̸= ∅. Let {ωn} be a sequence defined
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as follows: 

ω1 ∈ Q1 = E;
wn = ωn + αn(ωn − ωn−1);

ϑn = J−1(ρ0,nJwn +

∞∑
i=1

ρi,nJT
n
i wn);

zn = J−1(γnJwn + (1− γn)JJrnϑn);
un ∈ Q such that Bi(un, ϑ) + ⟨Aiun, ϑ− un⟩
+

1

ri,n
⟨ϑ− un, Jun − Jzn⟩+ bi(un, ϑ)− bi(un, un) ≥ 0,∀ϑ ∈ Q;

Qn+1 = {u ∈ Qn :∥ u− un ∥2≤∥ u− wn ∥2 +δn};
ωn+1 = PQn+1ω1, ∀n ≥ 1,

where αn ⊂ (0, 1), {γn} and {ρi,n} ⊂ [0, 1] such that
∞∑
i=0

ρi,n = 1, {rn} is a sequence in (0,∞) with

{ri,n} ⊂ [a,∞) for some a > 0, ∀i = 1, 2, 3, .... and δn = ζnψ
(
∥ wn − p̂ ∥2

)
+ µn, p̂ ∈ Γ. Assume

that lim inf
n→∞

ρ0,nρi,n > 0,∀i ≥ 1, lim inf
n→∞

(1 − γn) > 0 and lim
n→∞

rn = ∞. Then, {ωn} converges
strongly to PΓω1, where PC is the metric projection of H onto C.
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