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Abstract

The aim of this paper is made of two part. First, we introduce the concept of quanternion
valued rectangular S metric spaces which generalizes both real and complex valued metric
spaces. Secondly, we establish and prove some fixed point theorems in the newly introduced
spaces. This concept generalizes many known results in literature.
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1 Introduction
A metric space can be seen as a distance space having a geometric structure, with only a

few axioms. In this paper we introduce the concept of quaternion valued rectangular S metric
spaces. The paper treats material concerning quaternion valued rectangular S metric spaces that
is important for the study of fixed point theory in Clifford analysis. We introduce the basic ideas of
quaternion valued rectangular S metric spaces and Cauchy sequences and discuss the completion
of a quaternion valued rectangular S metric space.
In this work, we will work on H, the skew field of quaternions. This means we can write each element
q ∈ H in the form q = a + bi + cj + dk where a, b, c, d ∈ R and i, j, and k are the fundamental
quaternion units. For these elements we have the multiplication rules i2 = j2 = k2 = −1, ij =
−ji = k, kj = −jk = −i and ki = −ik = j. The conjugate element is given by q = a− bi− cj−dk.
The quaternion modulus has the form of |q|=

√
a2 + b2 + c2 + d2.

Quaternions can be defined in several different equivalent ways. Quaternion is non commutative in
multiplication. There is also more abstract possibilty of treating quaternions as simply quadruples
of real numbers [a, b, c, d], with operation of addition and multiplication suitably defined. The
components naturally group into the imaginary part (b, c, d), for which we take this part as a vector
and the purely real part, a, which called a scalar. Sometimes, we write a quaternion as [a, V ] with
V = (b, c, d). For more information about metric spaces, its generalization and quaternion analysis,
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see [1–32].
We define a partial order ⪯ on H as follows:
Let H be the set of quaternions and q1, q2 ∈ H. Define a partial order ⪯ on H as follows:
q1 ⪯ q2 if and only if Re(q1) ≤ Re(q2) and Ims(q1) ≤ Ims(q2), q1, q2 ∈ H, s = i, j, k where
Imi = b, Imj = c, Imk = d.
It follows that q1 ⪯ q2, if one of the following conditions is satisfied:

(i) Re(q1) = Re(q2) and Ims1(q1) = Ims1(q2), where s1 = j, k, Imi(q1) < Imi(q2);

(ii) Re(q1) = Re(q2) and Ims2(q1) = Ims2(q2), where s2 = i, k, Imj(q1) < Imj(q2);

(iii) Re(q1) = Re(q2) and Ims3(q1) = Ims3(q2), where s3 = i, j, Imk(q1) < Imk(q2);

(iv) Re(q1) = Re(q2) and Ims1(q1) = Ims1(q2), Imi(q1) = Imi(q2);

(v) Re(q1) = Re(q2), Ims1(q1) = Ims1(q2) and Imj(q1) = Imj(q2);

(vi) Re(q1) = Re(q2), Ims1(q1) = Ims1(q2) and Imk(q1) = Imk(q2);

(vii) Re(q1) = Re(q2) and Ims(q1) < Ims(q2);

(viii) Re(q1) < Re(q2) and Ims(q1) = Ims(q2);

(ix) Re(q1) < Re(q2), Ims1(q1) = Ims1(q2) and Imi(q1) < Imi(q2);

(x) Re(q1) < Re(q2), Ims2(q1) = Ims2(q2) and Imj(q1) < Imj(q2);

(xi) Re(q1) < Re(q2), Ims3(q1) = Ims3(q2) and Imk(q1) < Imk(q2);

(xii) Re(q1) < Re(q2), Ims1(q1) < Ims1(q2) and Imi(q1) = Imi(q2);

(xiii) Re(q1) < Re(q2), Ims2(q1) < Ims2(q2) and Imi(q1) = Imi(q2);

(xiv) Re(q1) < Re(q2), Ims3(q1) < Ims3(q2) and Imi(q1) = Imi(q2);

(xv) Re(q1) < Re(q2) and Ims(q1) < Ims(q2);

(xiv) Re(q1) = Re(q2) and Ims(q1) = Ims(q2).

Conspicuously, we will write q1 ⋨ q2 if q1 ̸= q2 and one from (i), to (xvi) is satisfied and we will
write q1 ≺ q2 if only (xv) is satisfied. It should be noted that

q1 ⪯ q2 ⇒ |q1|≤ |q2|.

2 Main results
We introduce the following:

Definition 2.1 Let X be a non-empty set and S : X3 → H, a function satisfying the following
properties:

(i) S(x, y, z) = 0 if and only if x = y = z

(ii) S(x, y, z) ⪯ S(x, x, a) + S(y, y, a) + S(z, z, a) ∀x, y, z ∈ X and all distinct points a ∈
X − {x, y.z}..
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Then (X,S) is called a quanterion valued rectangular S-metric space.
Definition 2.1 extends the work of Adewale and Iluno in [1].

Example 2.2. Let X = Q and define S : X ×X ×X → H ∪ {0} by

S(a, b, c) =

 0, a = b = c;

1 + ai+ bj + ck, otherwise

Then (X,S) is a quanterion valued rectangular S-metric space but neither a G-metric space nor
rectangular metric space because

S(a, b, c) ∈ H.

Example 2.3. Let X = N ∪ {0} and define S : X ×X ×X → H ∪ {0} by

S(x, y, z) =

 0, x = y = z;

x+ y + z, otherwise

Then (X,S) is a quanterion valued rectangular S-metric space but neither a G-metric space nor
rectangular metric space because

G(6, 4, 2) = G(6, 6, 2).

Example 2.4. Let X = R and define S : X ×X ×X → H ∪ {0} by

S(x, y, z) =

 0, x = y = z;

√
x+

√
y +

√
z, otherwise

Then (X,S) is a quanterion valued rectangular S-metric space but neither a G-metric space nor
rectangular metric space because

G(x, y, z) ∈ R.

Definition 2.5. Let (X,S) be a quanterion valued rectangular S-metric space. For y ∈ X, r > 0,
the S-sphere with centre y and radius r is

SS(y, r) = {z ∈ X : S(y, z, z) < r}

Definition 2.6. Let (X.S) be a quanterion valued rectangular S-metric space. A sequence
{xn} ⊂ X is S-convergent to z if it converges to z in the quanterion valued rectangular S-metric
topology.

Definition 2.7. Let (X,S) and (X,S) be two quanterion valued rectangular S-metric spaces,
a function T : X → X is S-continuous at a point x ∈ X if T−1(SS(T (x), r)) ∈ T (X), for all r > 0.
T is S-continuous if it is S-continuous at all points of X.

Lemma 2.8. Let (X,S) be a quanterion valued rectangular S-metric space and {xn} a sequence
in X. Then {xn} converges to x if and only if S(xn, x, x) → 0 as n→ ∞.
Proof:
Suppose {xn} converges to x, then given ϵ > 0 there exists α such that S(xn, x, x) ≺ ϵ for all n ≥ α.
So, S(xn, x, x) ≺ ϵ =⇒ S(xn, x, x) → 0 as n→ ∞. It is easy to show that the converse is true.

Lemma 2.9. Let (X,S) be a quanterion valued rectangular S-metric space and {xn} a sequence
in X. Then {xn} is said to be a Cauchy sequence if and only if S(xn, xm, xl) → 0 as n,m, l → ∞.
Proof:
Using (ii) of Definition 2.1,

60

 https://doi.org/10.5281/zenodo.10937247


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(2), 2024, Pages 58 - 70
https://doi.org/10.5281/zenodo.10937247

S(xn, xm, xl) ⪯ S(xn, xn, x) + S(xm, xm, x) + S(xl, xl, x). The conclusion of the proof is obvious
from Lemma 2.8.

Theorem 2.10. LetX be a complete quanterion valued rectangular S-metric space and T : X → X
a map for which there exist the real number, q satisfying 0 ≤ q < 0.5 such that for each pair
x, y, z ∈ X.

S(Tx, Ty, Tz) ⪯ qS(x, y, z) (2.1)

Then T has a unique fixed point.
Proof:
Considering (1),

S(Tx, Ty, Ty) ⪯ qS(x, y, y) (2.2)

Suppose T satisfies condition (2) and x0 ∈ X be an arbitrary point and define a sequence xn by
xn = Tnx0, then
S(xn, xn, xn+1) = S(Txn−1, Txn−1, Txn) ⪯ qS(xn−1, xn−1, xn)
Setting Hn = S(xn, xn, xn+1) we have

Hn ⪯ qHn−1 (2.3)

We deduce that

Hn ⪯ qHn−1 (2.4)
Hn ⪯ q[QHn−2] (2.5)

Hn−1 ⪯ q2Hn−2 (2.6)
Hn ⪯ q3Hn−3 (2.7)
Hn ⪯ qnHn−n (2.8)
Hn ⪯ qnH0∀n ∈ N. (2.9)

Suppose there exists n ∈ N such that x0 = xn.

S(x0, x0, Tx0) = S(xn, xn, Txn)

S(x0, x0, x1) = S(xn, xn, xn+1)

H0 = Hn

H0 ⪯ qnH0.

Contradiction since k < 1. Hence ∀n ∈ N, x0 ̸=xn. Repeating this argument, we have that ∀n,m ∈ N
with n ̸= m,xn ̸= xm. Then the terms of a sequence {xn} are distinct.
By repeated use of (ii) in Definition 2.1 and all distinct points xn+1, xn+2, ..., xm−1 with m > n, we
have

S(xn, xm, xm) ⪯ S(xn, xn, xn+1) + S(xm, xm, xn+1) (2.10)
+S(xm, xm, xn+1) (2.11)

= S(xn, xn, xn+1) + 2S(xm, xm, xn+1) (2.12)
= Hn + 2S(xm, xm, xn+1) (2.13)
⪯ Hn + 2Hn+1 + 22S(xm, xm, xn+2) (2.14)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23S(xm, xm, xn+3) (2.15)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23Hn+3 + ...+ 2m−1Hm. (2.16)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23Hn+3 + ... (2.17)
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From (5) and (13), we have

S(xn, xm, xm) ⪯ qnH0 + 2qn+1H0 + 22qn+2H0 + ...+ 2m−1qm−1H0 (2.18)
⪯ [qn + 2qn+1 + 22qn+2 + ...+ 2m−1qm−1]H0 (2.19)
⪯ qn[1 + 2q + (2q)2 + ...+ (2q)m−n−1]H0 (2.20)
⪯ qn[1 + 2q + (2q)2 + (2q)3 + ...]H0 (2.21)
⪯ qn(1− 2q)−1H0. (2.22)

Taking the limit of S(xn, xm, xm) as n,m→ ∞, we have

lim
n,m→∞

S(xn, xm, xm) = lim
n,m→∞

[qn(1− 2q)−1]S(x0, x0, x1) = 0 (2.23)

For n,m, l ∈ N with n > m > l,

S(xn, xm, xl) ⪯ S(xn, xn, xn−1) + S(xm, xm, xn−1) + (2.24)
S(xl, xl, xn−1). (2.25)

Taking the limit of S(xn, xm, xl) as n,m, l → ∞, we have

lim
n,m,l→∞

S(xn, xm, xl) = 0. (2.26)

So, {xn} is a S-Cauchy Sequence.
By completeness of (X,S), there exist u ∈ X such that xn is S-convergent to u.
Suppose Tu ̸= u

S(xn, Tu, Tu) ⪯ qS(xn−1, u, u). (2.27)

Taking the limit as n → ∞ and using the fact that function is S-continuous in its variables, we get

S(u, Tu, Tu) ⪯ qS(u, u, u). (2.28)

Hence,
S(u, Tu, Tu) ⪯ 0. (2.29)

This is a contradiction. So, Tu = u.
To show the uniqueness, suppose v ̸= u is such that Tv = v, then

S(Tu, Tv, Tv) ⪯ qS(u, v, v). (2.30)

Since Tu = u and Tv = v, we have
S(u, v, v) ⪯ 0. (2.31)

which implies that v = u.

Remark 2.11. Let (X,S) be a rectangular S-metric space and d : X × X → [0,∞) a func-
tion defined by d(x, y) = S(x, y, y), then Theorem 2.10 reduces to Banach contraction principle in
rectangular-metric space(an analogue of Banach contraction principle in metric space).

Theorem 2.12. Let X be a complete rectangular S- metric space and T : X → X a map for which
there exist the real number, b satisfying 0 ≤ b < 0.2 such that for each pair x, y, z ∈ X.

S(Tx, Ty, Tz) ⪯ b[S(x, Tx, Tx) + S(y, Ty, Ty) + S(z, Tz, Tz)] (2.32)

Then T has a unique fixed point.
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Proof:
Considering (28),

S(Tx, Ty, Ty) ⪯ b[S(x, Tx, Tx) + S(y, Ty, Ty) + S(z, Tz, Tz)]. (2.33)

Suppose T satisfies condition (29) and x0 ∈ X be an arbitrary point and define a sequence xn by
xn = Tnx0, then we have

S(xn, xn, xn+1) ⪯ b[S(xn−1, xn−1, xn) + S(xn−1, xn−1, xn) + S(xn, xn, xn+1)]. (2.34)

We deduce that
S(xn, xn, xn+1) ⪯

2b

1− b
S(xn−1, xn−1, xn) (2.35)

Let p = 2b
1−b <

1
2

S(xn, xn, xn+1) ⪯ rS(xn−1, xn−1, xn) (2.36)
⪯ r2S(xn−2, xn−2, xn−1) (2.37)

S(xn, xn, xn+1) ⪯ r3S(xn−3, xn−3, xn−2) (2.38)
S(xn, xn, xn+1) ⪯ rnS(x0, x0, x1) (2.39)

Hn ⪯ rnH0. (2.40)

Suppose there exists n ∈ N such that x0 = xn.

S(x0, x0, Tx0) = S(xn, xn, Txn)

S(x0, x0, x1) = S(xn, xn, xn+1)

H0 = Hn

H0 ⪯ rnH0.

Contradiction since p < 1
2 . Hence ∀n ∈ N, x0 ̸=xn. Repeating this argument, we have that ∀n,m ∈ N

with n ̸= m,xn ̸= xm. Then the terms of a sequence {xn} are distinct.
By repeated use of (ii) in Definition 2.1 and all distinct points xn+1, xn+2, ..., xm−1, we have

S(xn, xm, xm) ⪯ S(xn, xn, xn+1) + S(xm, xm, xn+1) (2.41)
+S(xm, xm, xn+1) (2.42)

= S(xn, xn, xn+1) + 2S(xm, xm, xn+1) (2.43)
= Hn + 2S(xm, xm, xn+1) (2.44)
⪯ Hn + 2Hn+1 + 22S(xm, xm, xn+2) (2.45)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23S(xm, xm, xn+3) (2.46)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23Hn+3 + ...+ 2m−1Hm. (2.47)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23Hn+3 + ... (2.48)

From (36) and (44), we have

S(xn, xm, xm) ⪯ rnH0 + 2rn+1H0 + 22rn+2H0 + ...+ 2m−1rm−1H0 (2.49)
⪯ [rn + 2rn+1 + 22rn+2 + ...+ 2m−1rm−1]H0 (2.50)
⪯ rn[1 + 2r + (2r)2 + (2r)3 + ...+ (2r)m−n−1]H0 (2.51)
⪯ rn[1 + 2r + (2r)2 + (2r)3 + (2r)4 + ...]H0 (2.52)
⪯ rn(1− 2r)−1H0. (2.53)

Taking the limit of S(xn, xm, xm) as n,m→ ∞, we have

lim
n,m→∞

S(xn, xm, xm) = lim
n,m→∞

[rn(1− 2r)−1]S(x0, x0, x1) = 0. (2.54)
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For n,m, l ∈ N with n > m > l,

S(xn, xm, xl) ⪯ S(xn, xn, xn−1) + S(xm, xm, xn−1) + (2.55)
S(xl, xl, xn−1). (2.56)

Taking the limit of S(xn, xm, xl) as n,m, l → ∞, we have

lim
n,m,l→∞

S(xn, xm, xl) = 0. (2.57)

So, xn is a S-Cauchy Sequence.
By completeness of (X,S), there exist u ∈ X such that xn is S-convergent to u.
Suppose Tu ̸= u

S(xn, Tu, Tu) ⪯ b[S(xn−1, xn, xn) + S(u, Tu, Tu) + S(u, Tu, Tu)] (2.58)
⪯ b[S(xn−1, xn, xn) + 2S(u, Tu, Tu)]. (2.59)

Taking the limit as n → ∞ and using the fact that function is S-continuous in its variables, we get

S(u, Tu, Tu) ⪯ 2bS(u, Tu, Tu). (2.60)

Hence,
S(u, Tu, Tu) ⪯ 0. (2.61)

This is a contradiction. So, Tu = u.
To show the uniqueness, suppose v̸= u is such that Tv = v, then

S(Tu, Tv, Tv) ⪯ b[S(u, Tu, Tu) + S(v, Tv, Tv) + S(v, Tv, Tv)]. (2.62)

Since Tu = u and Tv = v, we obtain
S(u, v, v) ⪯ 0 (2.63)

and S(u, v, v) ⪯ 0 implies v = u.

Remark 2.13. Let (X,S) be a quanterion valued rectangular S-metric space and d : X × X →
[0,∞) a function defined by d(x, y) = S(x, y, y), then Theorem 2.12 reduces to Kannan’s fixed point
theorem in rectangular-metric space(an analogue of Kannan’s fixed point theorem in metric space).

Theorem 2.14. LetX be a complete quanterion valued rectangular S-metric space and T : X → X
a map for which there exists real numbers a, b, c satisfying 0 ≤ a < 1

2 , 0 ≤ b < 1
2 , 0 ≤ c < 1

2 with
δ = max{a, b

1−b ,
c

1−c} and

ϕ(t) =

 0, if t = 0;

t
3 , if t ̸= 0.

such that for each pair x, y, z ∈ X.

S(Tx, Ty, Tz) ⪯ ϕ(δS(x, y, z) + 2δS(x, x, Tx)) (2.64)

Then T has a unique fixed point.

Proof: Considering (60),

S(Tx, Ty, Ty) ⪯ ϕ(δS(x, y, y) + 2δS(x, x, Tx)) (2.65)
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Suppose T satisfies condition (61) and x0 ∈ X be an arbitrary point and define a sequence xn by
xn = Tnx0, then

S(xn, xn, xn+1) = S(Txn−1, Txn−1, Txn) (2.66)
⪯ ϕ(δS(xn−1, xn−1, xn) + 2δS(xn−1, xn−1, xn)) (2.67)
⪯ ϕ(3δS(xn−1, xn−1, xn)) (2.68)
⪯ δS(xn−1, xn−1, xn) (2.69)

Setting Hn = S(xn, xn, xn+1), then
Hn ⪯ δHn−1. (2.70)

Deducing

Hn ⪯ δHn−1 (2.71)
Hn ⪯ δnH0∀n ∈ N. (2.72)

Suppose there exists n ∈ N such that x0 = xn.

S(x0, x0, Tx0) = S(xn, xn, Txn)

S(x0, x0, x1) = S(xn, xn, xn+1)

H0 = Hn

H0 ⪯ δnH0.

Contradiction since δ < 1
2 . Hence ∀n ∈ N∪ {0}, x0 ̸=xn. Repeating this argument, ∀n,m ∈ N∪ {0}

with n ̸= m,xn ̸= xm. Then the terms of a sequence {xn} are distinct.
By repeated use of (ii) in Definition 2.1 and all distinct points xn+1, xn+2, ..., xm−1 with m > n,

S(xn, xm, xm) ⪯ S(xn, xn, xn+1) + S(xm, xm, xn+1) (2.73)
+S(xm, xm, xn+1) (2.74)

= S(xn, xn, xn+1) + 2S(xm, xm, xn+1) (2.75)
= Hn + 2S(xm, xm, xn+1) (2.76)
⪯ Hn + 2Hn+1 + 22S(xm, xm, xn+2) (2.77)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23S(xm, xm, xn+3) (2.78)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23Hn+3 + ...+ 2m−1Hm. (2.79)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23Hn+3 + ... (2.80)

From (68) and (76), we have

S(xn, xm, xm) ⪯ δnH0 + 2δn+1H0 + 22δn+2H0 + ...+ 2m−1δm−1H0 (2.81)
⪯ [δn + 2δn+1 + 22δn+2 + ...+ 2m−1δm−1]H0 (2.82)
⪯ δn[1 + 2δ + (2δ)2 + (2δ)3 + ...+ (2δ)m−n−1]H0 (2.83)
⪯ δn[1 + 2δ + (2δ)2 + (2δ)3 + (2δ)4 + ...]H0 (2.84)
⪯ δn(1− 2δ)−1H0. (2.85)

Taking the limit of S(xn, xm, xm) as n,m→ ∞,

lim
n,m→∞

S(xn, xm, xm) = lim
n,m→∞

[δn(1− 2δ)−1]S(x0, x0, x1) = 0. (2.86)

For n,m, l ∈ N ∪ {0}with n > m > l,

S(xn, xm, xl) ⪯ S(xn, xn, xn−1) + S(xm, xm, xn−1) + (2.87)
S(xl, xl, xn−1). (2.88)
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Taking the limit of S(xn, xm, xl) as n,m, l → ∞, we have

lim
n,m,l→∞

S(xn, xm, xl) = 0. (2.89)

So, {xn} is a S-Cauchy Sequence.
By completeness of (X,S), there exist u ∈ X such that xn is S-convergent to u.
Suppose Tu ̸= u

S(xn, Tu, Tu) ⪯ ϕ(δS(xn−1, u, u) + 2δS(xn−1, xn−1, xn)). (2.90)

Taking the limit as n → ∞ and using the fact that function is S-continuous in its variables,

S(u, Tu, Tu) ⪯ ϕ(δS(u, u, u) + 2δS(u, u, u)). (2.91)

Hence,
S(u, Tu, Tu) ⪯ 0. (2.92)

This is a contradiction. So, Tu = u.
To show the uniqueness, suppose v ̸= u is such that Tv = v, then

S(Tu, Tv, Tv) ⪯ ϕ(δS(u, v, v) + 2δS(u, u, Tu)). (2.93)

Since Tu = u and Tv = v, then
S(u, v, v) ⪯ 0. (2.94)

which implies that v = u

Remark 2.15. Let (X,S) be a quanterion valued rectangular S-metric space and d : X × X →
[0,∞), a function defined by d(x, y) = S(x, y, y) with ϕ(t) = t, then Theorem 2.14 reduces to Zam-
firescu’s fixed point theorem in rectangular-metric space(an analogue of Zamfirescu’s fixed point
theorem in metric space).

Theorem 2.16. Let X be a complete quanterion valued rectangular S- metric space and T :
X → X a map for which there exists real numbers a, b, c satisfying 0 ≤ a < 1

2 , 0 ≤ b < 1
2 , 0 ≤ c < 1

2

with δ = max{a, b
1−b ,

c
1−c} such that for each pair x, y, z ∈ X.

S(Tx, Ty, Tz) ⪯ ϕ(δS(x, y, z)) + ψ(2δS(x, x, Tx)). (2.95)

where δ ∈ [0, 1) and functions ϕ, ψ : H → H with ψ(t) = t
2 and ϕ(t) = t

4 a monotone increasing
sequences. Then T has a unique fixed point.

Proof: Considering (91),

S(Tx, Ty, Ty) ⪯ ϕ(δS(x, y, y)) + ψ(2δS(x, x, Tx)). (2.96)

Suppose T satisfies condition (92) and x0 ∈ X be an arbitrary point and define a sequence xn by
xn = Tnx0, then

S(xn, xn, xn+1) = S(Txn−1, Txn−1, Txn) (2.97)
⪯ ϕ(δS(xn−1, xn−1, xn)) + ψ(2δS(xn−1, xn−1, xn)) (2.98)
⪯ δS(xn−1, xn−1, xn) (2.99)

Setting sn = S(xn, xn, xn+1), then
Hn ⪯ δHn−1. (2.100)

Deducing

Hn ⪯ δHn−1 (2.101)
Hn ⪯ δnH0∀n ∈ N. (2.102)
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Suppose there exists n ∈ N such that x0 = xn.

S(x0, x0, Tx0) = S(xn, xn, Txn)

S(x0, x0, x1) = S(xn, xn, xn+1)

H0 = Hn

H0 ⪯ δnH0.

Contradiction since δ < 1
2 . Hence ∀n ∈ N∪ {0}, x0 ̸=xn. Repeating this argument, ∀n,m ∈ N∪ {0}

with n ̸= m,xn ̸= xm. Then the terms of a sequence {xn} are distinct.
By repeated use of (ii) in Definition 2.1 and all distinct points xn+1, xn+2, ..., xm−1 with m > n,

S(xn, xm, xm) ⪯ S(xn, xn, xn+1) + S(xm, xm, xn+1) (2.103)
+S(xm, xm, xn+1) (2.104)

= S(xn, xn, xn+1) + 2S(xm, xm, xn+1) (2.105)
= Hn + 2S(xm, xm, xn+1) (2.106)
⪯ Hn + 2Hn+1 + 22S(xm, xm, xn+2) (2.107)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23S(xm, xm, xn+3) (2.108)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23Hn+3 + ...+ 2m−1Hm. (2.109)
⪯ Hn + 2Hn+1 + 22Hn+2 + 23Hn+3 + ... (2.110)

From (98) and (106), we have

S(xn, xm, xm) ⪯ δnH0 + 2δn+1H0 + 22δn+2H0 + ...+ 2m−1δm−1H0 (2.111)
⪯ [δn + 2δn+1 + 22δn+2 + ...+ 2m−1δm−1]H0 (2.112)
⪯ δn[1 + 2δ + (2δ)2 + (2δ)3 + ...+ (2δ)m−n−1]H0 (2.113)
⪯ δn[1 + 2δ + (2δ)2 + (2δ)3 + (2δ)4 + ...]H0 (2.114)
⪯ δn(1− 2δ)−1H0. (2.115)

Taking the limit of S(xn, xm, xm) as n,m→ ∞,

lim
n,m→∞

S(xn, xm, xm) = lim
n,m→∞

[δn(1− 2δ)−1]S(x0, x0, x1) = 0. (2.116)

For n,m, l ∈ N ∪ {0}with n > m > l,

S(xn, xm, xl) ⪯ S(xn, xn, xn−1) + S(xm, xm, xn−1) + (2.117)
S(xl, xl, xn−1). (2.118)

Taking the limit of S(xn, xm, xl) as n,m, l → ∞, we have

lim
n,m,l→∞

S(xn, xm, xl) = 0. (2.119)

So, {xn} is a S-Cauchy Sequence.
By completeness of (X,S), there exist u ∈ X such that xn is S-convergent to u.
Suppose Tu ̸= u

S(xn, Tu, Tu) ⪯ ϕ(δS(xn−1, u, u)) + ψ(2δS(xn−1, xn−1, xn)). (2.120)

Taking the limit as n → ∞ and using the fact that function is S-continuous in its variables,

S(u, Tu, Tu) ⪯ ϕ(δS(u, u, u)) + ψ(2δS(u, u, u)). (2.121)

Hence,
S(u, Tu, Tu) ⪯ 0. (2.122)
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This is a contradiction. So, Tu = u.
To show the uniqueness, suppose v̸= u is such that Tv = v, then

S(Tu, Tv, Tv) ⪯ ϕ(δS(u, v, v)) + ψ(2δS(u, u, Tu)). (2.123)

Since Tu = u and Tv = v, then
S(u, v, v) ⪯ 0 (2.124)

and S(u, v, v) ⪯ 0 implies v = u.
Remark 2.17. Let (X,S) be a quanterion valued rectangular S-metric space and d : X × X →
[0,∞) a function defined by d(x, y) = S(x, y, y) with ϕ(t) = t and ψ(2δS(x, Tx, Tx)) = 0, then
Theorem 2.16 reduces to Banach Contraction Principle in rectangular-metric space.

3 Conclusion
In conclusion, a new abstract space is introduced in this research work and some contractive

mappings are established and used to prove some fixed point results on the newly introduced space.
Examples are given.
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