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Abstract
This study examines the impact of sensitization on COVID-19 dynamics in Rivers State,

Nigeria, utilizing a mathematical model and data from the Nigeria Centre for Disease Control
(NCDC). Parameter estimation involves meticulous fitting, refining key parameters like βc, cm,
α1, α2, α3, α4, and the reproduction number Rc. The study employs a genetic algorithm for
precise parameter estimation, ensuring the model aligns closely with observed COVID-19 data.
Estimated values for βc, cm, α1, α2, α3, α4, and Rc provide a robust foundation for accu-
rate simulations, enhancing the reliability of the model and facilitating a deeper understanding
of the population dynamics of COVID-19 in human population. Uncertainty and sensitivity
analyses highlight crucial parameters, emphasizing the relative infectiousness of asymptomatic
individuals (ηs), face mask efficacy (ϵm), and sensitization effectiveness (ϵs, cm). Numerical
simulations reveal that a combined strategy of sensitization and face mask use can significantly
curtail the disease progression. Targeting susceptible and exposed individuals in sensitization
efforts proves most beneficial, aligning with sensitivity analysis results. Notably, the combina-
tion of sensitization and face mask use results in a remarkable 98% reduction in cumulative
cases. Sensitization emphasizing various preventive measures, when doubled, shows a 99% re-
duction. These findings suggest that a comprehensive sensitization approach can profoundly
impact COVID-19 control. Policymakers can leverage these insights to optimize sensitization
programs, emphasizing the role of preventive measures beyond face mask use, ultimately guid-
ing effective public health strategies in Rivers State and beyond.
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1 Introduction
The COVID-19 outbreak, caused by the highly contagious Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2), resulted in 12,322,395 confirmed cases as of July 11, 2020 [1]. Start-
ing in China in December 2019, the virus quickly spread worldwide, leading the World Health
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Organization (WHO) to declare it a Public Health Emergency of International Concern on January
30, 2020 [2]. COVID-19 is transmitted through direct contact with contaminated surfaces and by
inhaling respiratory droplets from infected individuals [3, 4]. To minimize its spread, various mea-
sures were promoted, including strict social (physical) distancing, community lockdowns, contact
tracing, quarantine of suspected cases, isolation of confirmed cases, and the use of face masks in
public [5–7].

In recent years, mathematical modeling has become a crucial tool for studying the dynamics of
infectious diseases and developing strategies for control [8–14]. As a result, numerous mathemati-
cal models have been created and utilized to comprehend the mechanisms behind the spread and
control of COVID-19 in different populations. For instance, the authors in [15] developed one of
the earliest mathematical models to investigate the transmission dynamics of COVID-19. Using
an SEIR model, the authors examined the effects of individual and government reactions, as well
as a time-varying reporting rate, on the disease dynamics in Wuhan, China. Another study [16]
formulated an epidemic model to analyze the outbreak of COVID-19 in Mexico. They assessed the
theoretical impact of potential control measures like home quarantine, social distancing, cautious
behavior, environmental cleaning, disinfection, government-imposed isolation of infected individ-
uals, and other self-imposed measures. Results from their work suggested that social distancing
and quarantine are effective controls, especially when using a Bayesian approach. The work in [5]
employed a multi-group disease model to investigate the impact of mask usage in public places on
reducing the spread of COVID-19 in the United States. Their findings indicated that the general
public’s use of face masks has a high potential for curbing community transmission and reducing
the overall burden of the pandemic. Moreover, combining face masks with high public compliance
and other non-pharmaceutical interventions was found to have a greater impact on reducing the
disease’s burden.

In another study, the study in [7] conducted a study focusing on evaluating the community-wide
impact of non-pharmaceutical interventions (NPIs), such as quarantine, isolation, contact tracing,
social distancing, and the use of face masks, on the burden of COVID-19. They used data from the
United States for their assessment. In a different study, the authors in [6] developed a mathematical
model to explore whether the use of an imperfect vaccine could lead to the elimination of COVID-
19 in the United States. Their findings suggested that disease elimination is feasible if the vaccine
coverage is high enough to achieve herd immunity. Specifically, they determined that a vaccine
coverage of 90%, assuming a vaccine efficacy of 80%, is required to reach herd immunity in the US.
The authors in [4] formulated a mathematical model for COVID-19 population dynamics in Lagos,
Nigeria, using data specific to the region. Through numerical simulations, they demonstrated that
if at least 55% of the population complies with social distancing and face mask use, the disease will
eventually die out. Additionally, an increase in the case detection rate for symptomatic individuals
to about 0.8 per day, coupled with 55% compliance with social distancing regulations, resulted in
a reduction in the incidence (and prevalence) of COVID-19.

In other related studies, the authors in [17] investigated how the dynamics of the virus in a
community were affected by inadequate adoption of preventive measures and insufficient knowledge
of the virus’s mode of transmission. Furthermore, the authors in [18] used mathematical models to
explore the effects of non-pharmaceutical treatments on the dynamics of infection through trans-
mission by symptomatic and asymptomatic infected patients [18]. Additionally, a mathematical
model integrating age-specific COVID-19 transmission dynamics was developed by [19] to assess
the effectiveness of treatment and immunization approaches in lowering the COVID-19 burden.

Nigeria reported its first case of COVID-19 on February 27, 2020, while Rivers State, situated
in the southern Niger Delta region, recorded its first case on March 25, 2020 [1]. As of June
24, 2020, Nigeria had reported 22,020 cases of COVID-19, with 542 deaths, 13,865 active cases
undergoing treatment, and 7,613 discharged cases [1]. Specifically, Rivers State had reported 930
confirmed cases, with 35 deaths, 441 active cases, and 454 discharged cases as of the same date [1].
Despite being one of the early epicenters of the disease in the southern part of Nigeria, Rivers State
implemented preventive measures like border closure and early use of face masks in public during
March and May, respectively. However, by June 24, the state had recorded about 930 confirmed
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cases. Despite these preventive measures, Rivers State experienced a surge in COVID-19 cases,
prompting a critical question: why did cumulative cases increase despite early interventions? This
study addresses this gap by specifically exploring the impact of sensitization on disease dynamics
in Rivers State. Understanding the pivotal role of public compliance and awareness is crucial for
refining and optimizing future interventions. This emphasizes the need to bridge the gap between
implemented measures and public response in the ongoing fight against the pandemic.

Having sufficient knowledge on COVID-19 is crucial to encourage individuals to make decisions
that can prevent and mitigate the pandemic. Understanding infection pathways and taking relevant
precautions, such as regular hand washing, using hand sanitizers, wearing face masks, practicing
respiratory etiquette, maintaining social distancing, and self-isolating when sick, plays a vital role
in reducing widespread infection [20]. Research has shown that an individual’s knowledge about
an infectious disease can influence their behavior in ways that prevent infection. Therefore, it is
essential to inform individuals about the potential risks of infections to encourage the adoption of
the right precautionary measures [20]. It is noteworthy that in Nigeria, a significant number of
people still consider the coronavirus disease as a scam, orchestrated by political leaders to embezzle
public funds. This perception may contribute to the low compliance with some of the measures
proposed by the government to curb the spread of the disease. Consequently, there is a pressing
need to assess the impact of sensitization and awareness programs to address these misconceptions
and improve public adherence to preventive measures.

Evaluating the impact of sensitization is crucial, given its central role in bridging the gap between
implemented preventive measures and their reception by the public. Public compliance plays a
vital role in pandemic control, and understanding how sensitization influences behavior is key.
Dispelling misinformation, especially debunking the notion that COVID-19 is a scam, becomes
essential for building trust and promoting adherence to health guidelines. This study illuminates
the effectiveness of awareness campaigns in shaping behavior, offering valuable insights for future
strategies to optimize sensitization efforts. The knowledge gained aims to inform authorities on
tailoring sensitization to resonate with the community, ultimately enhancing pandemic control.
By unraveling the intricate relationship between sensitization and public compliance, this research
aspires to provide actionable data for authorities, empowering them to navigate and mitigate the
challenges posed by the ongoing pandemic.

The widespread impact of COVID-19 has encouraged extensive research into its dynamics and
control strategies. Mathematical modeling has emerged as a crucial tool for comprehending disease
spread and devising effective interventions [1, 6, 9, 10, 20]. Numerous models globally have delved
into factors influencing transmission and the effectiveness of control measures [2,11]. In this context,
our study focuses on Rivers State, Nigeria, probing into its unique dynamics and evaluating the
impact of awareness and sensitization on the spread of COVID-19.

2 Model Formulation
Our mathematical model divides the entire human population into distinct compartments, effec-

tively capturing the dynamics of infection, sensitization, and behavioral changes. The interactions
between unsensitized and sensitized individuals, coupled with the progression through various dis-
ease stages, are systematically represented by a set of differential equations (refer to model (2.1)).
This framework enables us to delve into the influence of awareness campaigns on epidemic control,
offering valuable insights for shaping future interventions.

The total human population at time t, denoted by N(t), is divided into the mutually exclu-
sive compartments of unsensitized susceptible individuals (S1(t)), sensitized susceptible individuals
(S2(t)), unsensitized exposed individuals (E1(t)), sensitized exposed individuals (E2(t)) unsensi-
tized asymptomatic individuals (A1(t)), sensitized asymptomatic individuals (A2(t)), unsensitized
symptomatic individuals(I1(t)), sensitized symptomatic individuals (I2(t)) hospitalized individuals
(H(t)) and recovered individuals (R(t)) individuals. Such that,

N(t) = S1(t) + S2(t) + E1(t) + E2(t) +A1(t) +A2(t) + I1(t) + I2(t) +H(t) +R(t)
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The population of unsensitized susceptible is depleted by being infected and by means of sensi-
tization (α1), while the population of the sensitized susceptible is depleted by being infected too
though at a reduced rate if the sensitization programs result in behavioral change. Again, the
population of unsensitized exposed is increased by the infection of unsensitized susceptible and
diminished by sensitization (α2) and progression (γ1). In the same vein, the population of sensi-
tized exposed individuals is generated by the infection of sensitized susceptibles and sensitization
of unsensitized exposed. It is however decreased by disease progression (γ2). In both cases of the
exposed class, while a fraction progress to the asymptomatic class, the remaining fraction progress
to the symptomatic class. Furthermore, the population of unsensitized asymptomatic individuals
is increased by progression of unsensitized exposed and decreased by sensitization (α3) and recov-
ery. Again, the population of sensitized asymptomatic individuals is also increased by progression
of sensitized exposed individuals as well as sensitization of unsensitized asymptomatic individuals
and diminished by recovery. In addition, the population of unsensitized symptomatic individuals
is increased by progression of unsensitized exposed and decreased by sensitization (α4), recovery,
death and hospitalization (σ1). Again, the population of sensitized symptomatic individuals is also
increased by progression of sensitized exposed individuals as well as sensitization of unsensitized
symptomatic individuals and reduced by hospitalization (σ2), death and recovery. It is important
to state that we have assumed that σ2 > σ1 since the sensitized individuals are more likely to seek
medical attention given that they are familiar with the symptoms of the infection. The population
of hospitalized individuals is generated by the hospitalization of the sensitized and unsensitized
symptomatic individuals and reduced by recovery and death. Finally, the population of the recov-
ered class is generated by the recovery of individuals in the A1, A2, I1, I2 and H classes.Thus, the
model for the transmission dynamics of COVID-19 in a population is given by the following system
of deterministic non-linear differential equations in (2.1), with Table 1 describing the associated
state variables and parameters in the model (2.1) while Figure ?? gives the flow diagram of model
(2.1).

dS1

dt
= −λcS1 − α1S1,

dS2

dt
= α1S1 − ϵsλcS2,

dE1

dt
= λcS1 − (γ1 + α2)E1,

dE2

dt
= α2E1 + ϵsλcS2 − γ2E2,

dA1

dt
= (1− f)γ1E1 − (ϕa1 + α3)A1,

dA2

dt
= (1− q)γ2E2 + α3A1 − ϕa2A2,

dI1
dt

= fγ1E1 − (σ1 + ϕs1 + δ1 + α4)I1,

I2
dt

= qγ2E2 + α1I1 − (σ2 + ϕs2 + δ2)I2,

H

dt
= σ1I1 + σ2I2 − (ϕh + δ3)H,

dR

dt
= ϕa1A1 + ϕa2A2 + ϕs1I1 + ϕs2I2 + ϕhH,

(2.1)

where

λc = (1− cmϵm)βc
(I1 + ρsI2 + ηs(A1 + ρsA2))

Nh −H
(2.2)

is the force of infection.
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It is important to state that we have assumed that individuals in the S2, E2, A2 and I2 compart-
ments do not join the S1, E1, A1 and I1 compartments respectively due to the fact that awareness
programs are continuous in the face of the ongoing pandemic. So, the public is continuously re-
minded of the need to comply to safety measures.

3 Analysis of the model

3.1 Basic properties of the model
The model (2.1) is biologically meaningful, if all its state variables are non-negative for all time

(t) > 0 and that the region C, defined below, is indeed bounded.

C =
{
(S1, S2, E1, E2, A1, A2, I1, I2, H,R) ∈ R10

+ : N ≤ N(0)
}
.

We claim the following:

Theorem 3.1. Let the initial data for the model (2.1) be S1(0) ≥ 0, S2(0) ≥ 0, E1(0) ≥ 0,
E2(0) ≥ 0, A1(0) ≥ 0, A2(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0. Then the solutions
(S1(t), S2(t), E1(t), E2(t), A1(t), A2(t), I1(t), I2(t), H(t), R(t)) of the model (2.1) are positive for all
time t > 0.
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Variable Interpretation
S1 Population of unsensitized susceptible individuals
S2 Population of sensitized susceptible individuals
E1 Population of unsensitized exposed individuals
E2 Population of sensitized exposed individuals
A1 Population of unsensitized asymptomatic individuals
A2 Population of sensitized asymptomatic individuals
I1 Population of unsensitized symptomatic individuals
I2 Population of sensitized symptomatic individuals
H Population of hospitalised individuals
R Recovered individuals
Parameter Interpretation
βc Effective contact rate
ϵm Efficacy of face mask
cm Face mask usage (compliance)
ϵs Efficacy of sensitization program
γ1 (γ2) Progression rate for E1 and E2 classes respectively
σ1 (σ2) Hospitalization rate for I1 and I2 classes respectively
ϕa1(ϕa2)(ϕs1)(ϕs2)(ϕh) Recovery rate for A1(A2)(I1)(I2)(H) classes respectively
δ1(δ2)(δ3) Disease induced death rate for I1(I2)(H)

classes respectively
f(q) fraction of unsensitized (sensitized) exposed humans who

show symptoms
ηs Modification parameter for reduced infectiousness of

asymptomatic individuals
ρs Modification parameter for reduced infectiousness of

sensitized individuals
α1,α2, α3, α4 Sensitization rate for S1, E1, A1 and I1 respectively

Table 1: Description of variables and parameters in the model (2.1).

130

 https://doi.org/10.5281/zenodo.11002902


International Journal of Mathematical Sciences and
Optimization: Theory and Applications

10(2), 2024, Pages 125 - 141
https://doi.org/10.5281/zenodo.11002902

Proof. Let

t1 = sup{t > 0 : S1 > 0, S2 > 0, E1 > 0, E2 > 0, A1 > 0, A2 > 0,

I1 > 0, I2 > 0, H > 0, R > 0 ∈ [0, t]}

The first equation in model (2.1),

dS1

dt
= −(λc + α1)S1 can be written as∫

dS1

S1
= −

∫
(λc + α1)dt.

Then,

S1(t1) = S1(0) exp

[
−α1t1 −

∫ t1

0

λc(τ)dτ

]
> 0.

Using the same approach, we can equally show that the other state variables will remain positive
for all time t > 0.

Lemma 3.2. Consider the region

C =
{
(S1, S2, E1, E2, A1, A2, I1, I2, H,R) ∈ R10

+ : N ≤ N(0)
}
.

The closed set C is positively invariant and a global attractor of all positive solution of the model
(2.1).

Proof. Adding the equations of the model (2.1) gives

Ṅ = −δ1I1 − δ2I2 − δ3H. With δm = min(δ1, δ2, δ3)

Ṅ ≤ −δmNh. So that
∫

dN

N
≤

∫
−δmdt. Thus,

N(t) ≤ N(0)e−δmt, and N(t) → N(0) as t → ∞.

Thus, C is a positively invariant set under the flow described by the model. The solutions with
initial condition in C remain in C with respect the model.

3.2 Local asymptotic stability of the disease-free equilibrium (DFE)
The model (2.1) has a disease-free equilibria (DFE), given by

Do = (S∗
1 , S

∗
2 , E

∗
1 , E

∗
2 , A

∗
1, A

∗
2, I

∗
1 , I

∗
2 , H

∗, R∗) = (S1(0), S2(0), 0, 0, 0, 0, 0, 0, 0, 0)

where S1(0) and S2(0) are the initial total sizes of the populations unsensitized and sensitized
susceptible individuals, respectively (so that, N(0) = S1(0) + S2(0)).

The local stability of Do can be established using the next generation operator method [21,22].
Using closely related notations in [21], the matrices F and V, for the new infection terms and the
remaining transfer terms are, respectively, given by

F =



0 0 (1−cmϵm)βcηsS1(0)
N(0)

(1−cmϵm)βcηsρsS1(0)
N(0)

(1−cmϵm)βcS1(0)
N(0)

(1−cmϵm)βcρsS1(0)
N(0)

0 0 (1−cmϵm)ϵsβcηsS2(0)
N(0)

(1−cmϵm)ϵsβcηsρsS2(0)
N(0)

(1−cmϵm)ϵsβcS2(0)
N(0)

(1−cmϵm)ϵsβcρsS2(0)
N(0)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,
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V =


g1 0 0 0 0 0
−α2 γ2 0 0 0 0

−(1− f)γ1 0 g2 0 0 0
0 −(1− q)γ2 −α3 ϕa2 0 0

−fγ1 0 0 0 g3 0
0 −qγ2 0 0 −α4 g4

 ,

where

g1 = γ1 + α2, g2 = ϕa1 + α3 + µ, g3 = σ1 + ϕs1 + δ1 + α4,

g4 = σ2 + ϕs2 + δ2, g5 = ϕh + δ3.

Hence it follows from [21] that the reproduction number is given by

Rc =
βc(1− cmϵm)ϵsηsρs(1− q)S2(0)

ϕa2N(0)
+

βc(1− cmϵm)ϵsρsqS2(0)

(σ2 + ϕs2 + δ2)N(0)
+

βc(1− cmϵm)ηsρsα2(1− q)S1(0)

(γ1 + α2)ϕa2N(0)
+

βc(1− cmϵm)(1− f)ηsα3ρsγ1S1(0)

(γ1 + α2)(ϕa1 + α3)ϕa2N(0)
+

βc(1− cmϵm)ρsα2qS1(0)

(γ1 + α2)(σ2 + ϕs2 + δ2)N(0)
+

βc(1− cmϵm)γ1fS1(0)

(γ1 + α2)(σ1 + ϕs1 + δ1 + α4)N(0)
+

βc(1− cmϵm)ηsγ1(1− f)S1(0)

(γ1 + α2)(ϕa1 + α3)N(0)
+

βc(1− cmϵm)ρsα4fγ1S1(0)

(γ1 + α2)(σ2 + ϕs2 + δ2)(σ1 + ϕs1 + δ1 + α4)N(0)

The result below follows from Theorem 2 in [21].

Lemma 3.3. The DFE, Do of the model (2.1) is locally asymptotically stable (LAS) if Rc < 1,
and unstable if Rc > 1.

Rc is the control reproduction number for the model (2.1). It represents the average number
of secondary COVID-19 infections generated by a typical infectious individual both asymptomatic
and symptomatic in a completely susceptible population in the presence of control measures during
the period of infectiousness of the individual [21]. Biologically speaking, by Lemma 3.3 COVID-19
can be eliminated from the population whenever Rc < 1 if the initial sizes of the population of the
model are in the region of attraction of the disease free equilibrium.

4 Model fitting and parameter estimation
The model fitting process utilized a genetic algorithm (GA) [23] as our function optimizer, im-

plemented in MATLAB. The GA algorithm helps identify the correct basin of attraction, providing
initial values for the parameters under estimation. These starting values are then employed in the
lsqnonlin function within the Optimization Toolbox of MATLAB. The model fitting was performed
for the epidemic period, commencing from the announcement of the first COVID-19 case in Rivers
State on March 25, 2020, to June 24, 2020. Plots depicting model predictions alongside observed
cumulative COVID-19 reported cases and active cases for Rivers State are presented in Figure ??.
Table 2 provides the values of the parameters utilized in the simulations. It’s essential to note that
these parameter values were either extracted from the literature or estimated based on available
COVID-19 information.
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Parameter Value Range Ref
ϵm 0.5 (0-1) [6]
ϵs 0.3 (0-1) Inferred from [24]
γ1, γ2 1

5.1
/day ( 1

14
, 1
3
) [6]

σ1 0.0135/day (0.0059-0.0264) Estimated from [4]
σ2 0.0264/day (0.0059-0.0264) Estimated from [4]
ϕa1 0.1429/day ( 1

30
, 1
3
) [6]

ϕa2 0.1429/day ( 1
30
, 1
3
) [6]

ϕs1 0.1429/day ( 1
30
, 1
3
) [6]

ϕs2 0.1429/day ( 1
30
, 1
3
) [6]

ϕh
1
15

/day ( 1
30
, 1
3
) [4]

δ1 0.015/day (0.001-0.1) [4]
δ2 0.011/day (0.001-0.1) Assumed
δ3 0.015/day (0.001-0.1) [4]
f 0.5 (0-1) [6]
q 0.5 (0-1) estimated from [6]
ηs 0.5/day (0-1) [4]
ρs 0.3/day (0-1) Inferred from [25]

Table 2: Values of the parameters of model (2.1) from literature.

Parameter A B C
βc 0.8474 0.8222 0.8348
cm 0.1343 0.0543 0.0943
α1 0.0075 0.0087 0.0081
α2 0.0708 0.0658 0.0683
α3 0.0997 0.0220 0.0609
α4 0.0773 0.0773 0.0773
Rc 2.3261 2.5815 2.4538

Table 3: Estimated parameters fitted using two different data sets.
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The parameters in model (2.1) were estimated through fitting, employing the daily cumulative
number of reported cases and the number of active cases, as detailed in Table 3. The fitting process
involved model (2.1), and the resulting values of βc, cm, α1, α2, α3, α4, and the reproduction
number Rc are reported.

Table 3 presents the estimated parameter values obtained when fitting the model with data for
the daily cumulative number of reported cases (column A) and data for the daily number of active
cases (column B). Column C provides the average of the values in columns A and B.

For clarity, the notations used are as follows:
A : Cumulative Number of Reported Cases.
B : Number of Active Cases.
C : Average of A and B.

5 Simulations

5.1 Uncertainty and sensitivity analysis
Model (2.1) has twenty-four (24) parameters, and it is anticipated that uncertainties may arise

from the estimation of these parameter values. In light of this, a comprehensive uncertainty and
sensitivity analysis will be conducted on model (2.1) to gauge the impact of variations in each
parameter, employing the Latin Hypercube Sampling technique (LHS). To quantify the influence
of parameter variations on associated numerical simulations, a global sensitivity analysis will be
performed using the Partial Rank Correlation Coefficients (PRCC) technique. The uncertainty
and sensitivity analyses will be conducted based on the parameter values provided in Tables 2 and
3. Table 4 presents the outcomes of this analysis, using the associated reproduction number (Rc),
cumulative number of reported cases, and the number of active cases as response functions. Notably,
the top PRCC-ranked parameters in model (2.1) include the relative infectiousness of asymptomatic
individuals (ηs), the efficacy of face masks (ϵm), the relative infectiousness of sensitized individuals
(ρs), compliance with the use of face masks (cm), effective contact rate (βc), and the fraction of
unsensitized exposed individuals who become symptomatic (f).

At this point, it is crucial to emphasize that the results presented above underscore the pivotal
role of sensitization in the dynamics of model (2.1), with the relative infectiousness of sensitized
individuals emerging as a primary driver of the model’s dynamics. Additionally, while the rel-
ative susceptibility of sensitized individuals may not be significant when considering the overall
reproduction number (Rc), it becomes noteworthy when the cumulative number of reported cases
and active cases are employed as response functions. This underscores the potential of sensitiza-
tion programs in effectively mitigating the spread of the infection in the population. In essence, a
high-impact sensitization program has the potential to substantially reduce the susceptibility and
infectiousness of sensitized individuals, thereby alleviating the burden of the disease in the popu-
lation. Moreover, the analysis reveals that the parameter governing the relative infectiousness of
sensitized individuals holds greater significance than the parameter associated with their relative
susceptibility. Furthermore, insights from Table 4 highlight that sensitizing susceptible individuals
exerts a more pronounced impact on the dynamics of model (2.1) than sensitizing any other group.
As a result, it is recommended that sensitization efforts be primarily directed towards suscepti-
ble individuals, optimizing the effectiveness of interventions aimed at controlling the spread of the
disease.

5.2 Numerical simulations
The population-level impact of sensitizing the public on the burden of the pandemic is numer-

ically assessed using the parameter values tabulated in Tables 2 and 3. This evaluation involves
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Table 4: PRCC values for the parameters of the model (2.1) using Rc, cumulative number of
reported cases and number of active cases as response functions.

Parameter Rc Cumulative No. of reported cases No. of active cases
ηs 0.7214 0.6376 0.6394
ϵm -0.7029 -0.6473 -0.6396
ρs 0.6598 0.6887 0.6905
cm -0.6523 -0.6406 -0.6348
βc 0.6261 0.5979 0.6026
f 0.4994 0.5205 0.5125
ϵs 0.0342 0.5013 0.4881
q 0.1043 0.39457 0.4209
γ1 0.0964 0.1174 0.1154
γ2 −0.0316 −0.0299 0.0359
ϕa1 −0.2287 −0.0934 -0.0892
ϕa2 −0.0848 −0.0228 -0.0985
ϕs1 −0.2666 −0.1825 -0.2036
ϕs2 −0.1998 −0.1916 -0.1921
ϕh −0.0029 0.0447 -0.1015
δ1 −0.0374 −0.0434 -0.0393
δ2 −0.0159 0.0095 -0.0013
δ3 0.0084 0.0270 -0.0045
σ1 −0.0231 0.0446 0.0459
σ2 −0.0314 0.0862 0.0057
α1 −0.0576 −0.3068 -0.3630
α2 −0.0795 −0.1065 -0.0279
α3 −0.0267 −0.0528 -0.0497
α4 −0.0551 −0.0899 -0.0325
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varying the values of face mask compliance (cm), the relative susceptibility of sensitized individuals
(ϵs), and the relative infectiousness of sensitized individuals (ρs). A contour plot of the control
reproduction number (Rc) of the model, as a function of face mask efficacy (ϵm) and compliance to
face mask use (cm), is depicted in Figure ??. If the modification parameters for the reduced suscep-
tibility of sensitized susceptibles (ϵs) and for the infectiousness of sensitized infectious individuals
(ρs) are both set to 0.9, then a face mask efficacy of over 85% and a usage of over 90% will be
needed to control the disease (Figure ??). If the effectiveness of the sensitization program is high
(ϵs = 0.1 and ρs = 0.1), then a face mask efficacy and usage of about 70% and 75%, respectively,
will be needed for effective disease control of the pandemic in Rivers State, Nigeria, considering the
parameter values in Tables 2 and 3 (Figure ??).

Figure ?? illustrates the cumulative number of reported cases (??) and daily active cases (??)
when all parameters of the model (2.1) are at baseline values. We observe that 8,183 cases will be
reported, with a peak occurring after 140 days if all measures remain at baseline. Assessing the
impact of targeted sensitization, Figure ?? demonstrates that focusing the sensitization program
on susceptible and exposed individuals will be more beneficial in the fight against the spread of
the infection in the population, while the least beneficial approach is targeting susceptible and
asymptomatic individuals. This result aligns with the sensitivity analysis in Table 4. Figures ??
are utilized to evaluate the impact of combining face mask use with sensitization that encourages
the practice of other preventive measures.

The combined implementation of both measures shows promising potential for effective disease
control and/or elimination in Rivers State, Nigeria, resulting in approximately a 98% decrease in
the cumulative number of reported cases. Moreover, when sensitized symptomatic individuals are
50% less likely to transmit the disease, and sensitized susceptible are also 50% less likely to get
infected without face mask use, a 68% reduction in the cumulative number of reported cases is
achieved. However, in scenarios where only 50% of the population complies with face mask use
in public places and the sensitized symptomatic individuals are 100% as likely to transmit the
disease, and sensitized susceptible are also 100% as likely to get infected (indicating an ineffective
sensitization program), an 18% reduction in the burden of the infection is observed. Thus, it is
essential to note that Figure ?? may suggest that the strategy of sensitization, which encourages
the practice of other preventive measures, holds better prospects for disease control than relying
solely on face mask use. These results are solely based on the parameter estimates derived from
the NCDC data used for model fitting.

We also evaluated the impact of increasing the sensitization rates α1, α2, α3, and α4. Figure
?? illustrates that doubling the sensitization rates leads to a remarkable 99% reduction in the
cumulative number of reported cases, with all other parameters kept at baseline. This suggests that
sensitization programs that encourage the practice of preventive measures, such as hand-washing,
home quarantine, social distancing, cautious behavior, environmental cleaning and disinfection, and
government-imposed isolation of infected individuals, have a significant impact on the dynamics of
the model (2.1) and, consequently, on the control of COVID-19 in the population under study.
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6 Discussion and Conclusions
This study aims to evaluate the influence of sensitization on the dynamics of COVID-19 in Rivers

State, Nigeria. We formulated a mathematical model and calibrated it using published data on the
transmission dynamics of COVID-19 specific to Rivers State. Our findings offer insights into the
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potential outcomes of the pandemic, with a particular focus on the impact of public sensitization
efforts.

The developed model underwent thorough analysis, revealing that the disease-free equilibrium
of the epidemic model attains local asymptotic stability when the control reproduction number
(Rc) is less than one. Additionally, a numerical analysis was conducted to gauge the effective-
ness of public sensitization regarding transmission pathways, signs and symptoms, and preventive
measures. These measures include regular hand washing, the use of hand sanitizers, wearing face
masks, practicing respiratory etiquette, social distancing, and self-isolation when sick. Given that
an individual’s knowledge about an infectious disease can shape their behavior in ways that prevent
infection, our study specifically assesses the impact of the sensitization program.

The assessment focuses on the reduced likelihood of sensitized susceptible contracting the in-
fection and the diminished potential for sensitized infectious individuals to transmit the disease,
shedding light on the tangible benefits of effective public sensitization.

The uncertainty and sensitivity analysis, utilizing the associated reproduction number (Rc),
the cumulative number of reported cases, and the number of active cases as response functions,
highlights the top Partial Rank Correlation Coefficient (PRCC)-ranked parameters within the model
(2.1). These parameters include the relative infectiousness of asymptomatic individuals (ηs), the
efficacy of face masks (ϵm), the relative infectiousness of sensitized individuals (ρs), compliance
with the use of face masks (cm), the effective contact rate (βc), and the fraction of unsensitized
exposed individuals who become symptomatic (f).

Numerical simulations demonstrate that, under a worst-case scenario characterized by zero
compliance with face mask usage and no behavioral change among the sensitized population, Rivers
State could potentially witness 931,600 cumulative COVID-19 cases. Introducing a 50% compliance
rate to face mask usage without sensitization reduces this figure to 762,600, representing an 18%
reduction. Furthermore, when behavioral changes resulting from sensitization are incorporated,
with parameters ϵs = 0.5 and ρs = 0.5, and in the absence of compliance with face mask usage,
the cumulative cases plummet to 297,200, marking a substantial 68% reduction. These findings
underscore the significance of behavioral change induced by sensitization programs, as knowledge
alone about COVID-19 does not necessarily translate into behavioral modifications conducive to
adherence to recommended preventive measures. It’s noteworthy that, despite extensive efforts to
sensitize the public about COVID-19 in Nigeria, a notable skepticism persists, with many individuals
still questioning the reality of the disease.

The findings of this study carry vital implications for public health policies and ongoing sensiti-
zation efforts. The notable decrease in cumulative cases with heightened sensitization underscores
the importance of targeted awareness campaigns. Authorities in Rivers State and beyond can utilize
these insights to enhance and amplify sensitization strategies. Emphasizing not only the transmis-
sion pathways and symptoms but also fostering behavioral changes is crucial, as evidenced by the
substantial reduction in cases when compliance and sensitization work in unison.

Efforts to counter skepticism and misinformation are crucial. Tailoring messages to address
prevalent misconceptions, such as the belief that COVID-19 is a scam, can significantly enhance the
effectiveness of sensitization programs. Public health interventions should prioritize the promotion
of face mask usage, given its substantial impact on reducing transmission. The study advocates for
a multifaceted approach, combining increased sensitization rates with behavioral changes among
susceptible and infectious individuals. Our results align with findings from [17], which reported
a higher rate of asymptomatic cases (infected individuals showing no symptoms) compared to
symptomatic cases in new incidences. Thus, the continuous need for community sensitization is
evident to maintain adherence to protective behaviors, especially as asymptomatic individuals may
be less vigilant without sufficient awareness.

In summary, the study advocates combining strong awareness efforts with careful following
of preventive measures, especially using face masks, is crucial for effectively controlling diseases.
Policymakers and health agencies can leverage these findings to design targeted, culturally sensitive
interventions, fostering behavioral changes and addressing skepticism. These efforts contribute to
the development of more resilient and responsive public health strategies in Rivers State and similar
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contexts worldwide.
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