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ABSTRACT: Epigenetic inactivation of genes that are crucial for the control of normal 
cell growth is a hallmark of cancer cells. Epigenetic modifications of the DNA do not alter 
the nucleotide sequence instead they involve the regulation of gene transcription and DNA 
methylation. Hypermethylation or histone deacetylation, which is within the promoter of a 
tumor suppressor gene, leads to the silencing as well as a deletion or a mutation of that 
gene. Cancer cells often show aberrant methylation and the frequency of aberrations 
increases is seen with the progression of disease. Hypermethylation events can occur early 
in tumorogenesis, involving the disruption of pathways that may predispose cells to 
malignant transformation. Epigenetic modification such as DNA methylation can be 
exploited for clinical purposes in cancer patients, first using hypermethylation as a 
molecular biomarker of cancer cells and second, epigenetic changes which are potentially 
reversible. 
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INTRODUCTIONᴪ 
 
Epigenetics refers to mitotically and/or meiotically 
heritable variations in gene expression that are not 
caused by changes in DNA sequence. Epigenetic 
mechanisms regulate all biological processes from 
conception to death, including genome 
reprogramming during early embryogenesis and 
gametogenesis, cell differentiation and 
maintenance of a committed lineage. Key 
epigenetic players are DNA methylation and 
histone post-translational modifications, which 
interplay with each other, with regulatory proteins 
and with non-coding RNAs, to remodel chromatin 
into domains such as euchromatin, constitutive or 
facultative heterochromatin and to achieve nuclear 
compartmentalization1. Epigenetics is one of the 
key areas of future research that can elucidate how 
genomes work. It combines genetics and the 
environment to address complex biological systems 
such as the plasticity of our genome. While all 
nucleated human cells carry the same genome, they 
express different genes at different times. Much of 
this is governed by epigenetic changes resulting in 
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differential methylation of our 
genome/epigenomes2,3. Epigenetic mechanisms 
such as DNA methylation and modifications to 
histone proteins regulate high-order DNA structure 
and gene expression. Aberrant epigenetic 
mechanisms are involved in the development of 
many diseases, including cancer4,5. 
 
DNA METHYLATION 
 
Epigenetic modifications of the DNA do not alter 
the sequence code instead they involve the 
regulation of gene transcription, DNA methylation6. 
In mammals, the major target for DNA methylation 
is a cytosine located next to a guanine (5'-CpG-3') 
found in CpG islands7. Methylation patterns are 
transmitted to the next generations during cell 
division. During embryonic development, currently 
undefined regulatory mechanisms allow rapid 
demethylation in very early stages followed by re-
establishment of methylation patterns after 
implantation8. DNA methyltransferases (DNMTs) 
transfer the methyl group that is provided by S-
adenosylmethionine to the 5'-carbon of a cytosine, 
there are only four types of DNMTs known of 
which three active DNA methyltransferases have 
been identified in mammals. They are named 
DNMT1, DNMT3A and DNMT3B. Fourth enzyme 
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previously known as DNMT2 is not a DNA 
methyltransferase. However, DNMT3L is a protein 
that is closely related to DNMT3A and DNMT3B 
structurally and is critical for DNA methylation, 
but appears to be inactive. 
The DNA methylation in the promoter regions of 
genes is correlated with gene silencing; however, 
methylation may, in some cases have a 
geneactivating effect10,11,. Twomain underlying 

mechanisms have been identified. First, binding of 
transcription factors or enhancer-blocking elements 
may be inhibited by DNA methylation and thus 
exert its effect on the transcription of downstream 
genes in the case of transcription factors12,13. 
Second and probably more common mechanism 
involves proteins that detect methylated DNA 
through methyl CpG-binding domains (MBDs)14-17. 
(Figure 1) 

 

 

Figure 1: Epigenomics in tagging gene/diseases17 

 
EPIGENOMICS AND CANCER 
 
Studies by the Human Epigenome Project (HEP) 
studies now highlight the importance and 
complexity of cytosine DNA methylation in tissue-
specific regulation of gene expression18. The cancer 

gene functions can be classified into six essential 
alterations in cell physiology, including self-
sufficiency in growth signals, insensitivity to 
growth inhibitory signals, evasion of apoptosis, 
limitless replicative potential, sustained 
angiogenesis, and tissue invasion and metastasis19. 
In human cancer, the DNA methylation aberrations 
observed can be considered as falling into one of 
two categories: transcriptional silencing of tumor 
suppressor genes by CpG island promoter 
hypermethylation and a massive global genomic 
hypomethylation. Global DNA hypomethylation 
has been reported in almost every human 
malignancy20. This hypomethylation can be 
confirmed by HPLC by measurement of 5’-methyl 

cytosine level.the level was found to be decreased 
when as compared to normal tissue controls21 
Hypomethylation of the tumor genome could be 
verified by assays determining demethylation in 
specific sequences. Interestingly, the majority of 
hypomethylation events occur in repetitive 
elements localized in satellite sequences or 
centromeric regions22. While hypomethylation of 
repetitive elements is a common finding in human 
malignancies, gene-associated CpG islands are the 
targets of hypermethylation. Hypermethylation was 
initially discovered as a novel mechanism of tumor 
suppressor gene silencing in numerous genes that 
had been identified as targets for genetic 
alterations. Large-scale methylation studies on 
cancer genes became possible with the introduction 
of sodium bisulfite treatment of genomic DNA that 
results in a conversion of unmethylated cytosines to 

uracils but leaves methylcytosines 
unaltered/unmodified. 3. 
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Several tumor suppressor genes have been 
identified today, solely based on silencing by 
promoter methylation. Ras associated domain 
family1, isoform1 (RASSF1A) was identified on 
chromosome 3p21.3, a region commonly deleted in 
lung cancer. No mutations have been found in 
RASSF1A; however, promoter methylation is 
associated with gene silencing in multiple human 
cancers, including lung24. Similarly, Suppressor of 
Cytokine Signalling1 (SOCS1) was found to be 
methylated in a Restricted Land Mark Genomic 
Scanning (RLGS) scan of hepatocellular 
carcinomas and is silenced by methylation. SOCS1 
silencing results in constitutive activation of the 
JAK/STAT pathway and subsequent activation of 
target genes25. In another related tumor suppressor 
gene runt related transcription factors (RUNX3) 
expression is lost in more than 40% of gastric 
cancers. Recently, it was sobserved that loss of 
RUNX3 expression is due to loss of heterozygosity 
of LOH and promoter hypermethylation rather than 
mutations in the gene26. Epigenetic modifications 
are reversible, while genetic alterations 

areirreversible, this feature makes epigenetic 
modifications a perfect target for therapeutic 
interventions in cancer patients27. Epigenetic 
inactivation of genes that are crucial for the control 
of normal cell growth is a hallmark of cancer cells. 
These epigenetic mechanisms include crosstalk 
between DNA methylation, histone modification 
and other components of chromatin higher-order 
structure, and lead to the regulation of gene 
transcription. ?of genes epigenetically inactivated 
can result in the suppression of tumour growth or 
sensitization to other anticancer therapies. Small 
molecules that reverse epigenetic inactivation are 
now undergoing clinical trials in cancer patients. 
This, together with epigenomic analysis of 
chromatin alterations such as DNA methylation and 
histone acetylation, opens up the potential both to 
define epigenetic patterns of gene inactivation in 
tumours and to use drugs that target epigenetic 
silencing.. Cancer stem cells (CSCs) are thought to 
sustain cancer progression, metastasis and 
recurrence after therapy. There is in vitro and in 
vivo evidence supporting the idea that CSCs are 
highly chemoresistant. Epigenetic gene regulation 
is crucial for both stem cell biology and 
chemoresistance. CSC epigenomic profiling helps 
to dissect specific chemoresistance pathways, and 
have a significant clinical impact for patient 
stratification and rational design of therapeutic 
regimens29. The epigenome is little unusual 
since/for the fact that many changes may appear to 
be tissueor disease specific and perhaps less diverse 
and chaotic than those seen in cancer development. 
These epigenetic profiles, perhaps accessible 
through free DNA in body fluids, could be used as 
tools for diagnostics or as biomarkers once they 
have been mapped and catalogued.. An altered 

pattern of epigenetic modifications is central to 
many common human diseases, including cancer. 
Extensive studies have explored the mosaic 
patterns of DNA methylation and histone 
modification in cancer cells on a gene-by-gene 
basis.30,31. Epigenetic silencing in cancer cells is 
mediated by at least two distinct histone 
modifications. Polycomb-based histone H3lysine27 
trimethylation (H3K27triM) and H3K9 
dimethylation.suggests mechanism of tumor-
suppressor gene silencing in cancer is potentially 
independent of promoter DNA methylation32,33. 
 
RECENT ADVANCEMENT AND FUTURE 
IMPLICATIONS 
 
The discovery of 5methylcytosine, so called 5th 
base modification has immensely increased the 
filed of epigenomics /genetics34,35. Prior to the 
advent of the new sequencing technologies, the 
potential for epigenomics in medicine was already 
widely recognized36,37. Its role in cancer 
development, aging, gene regulation, 
embryogenesis and the modulation of genetic 
factors has been well described36,38. The most 
immediate impact of the new sequencing 
technologies has been on so-called ‘ChIP-seq’ 
experiments, where the locations of histone 
proteins can be mapped to the genome identifying 
epigenetic control of chromatin structure and gene 
expression39. These proteins leave a footprint on 
the DNA that protects it from shearing during 
sample preparation. This is  a simpler experiment 
using the same genomic fragmentation and 
sequence remapping techniques used for mutation 
detection in sequencing experiments40. The 
significance of the identified regions can then be 
determined. This technique replaces an array-based 
method, ChIP on ChIP, and is generally considered 
hypothesis-free, more sensitive, and thus superior. 
Detecting the modification of cytosine, and its 
location on DNA from a given sample can 
currently be performed using any sequencing 
technique based on  bi-sulfite treatment of DNA. 
Earlier embodiments required pulling down a 
subset of the genome to be analyzed using an 
antibody precipitation method known as 
‘methylated DNA immunoprecipitation’ (MeDIP), 
often followed by an array based analysis41. Many 
other methylation site subsetting techniques have 
been described. Bi-sulfite treatment leaves 5-
methylcytosine intact, but modifies cytosine 
(denoted as C) to a uracil analogue. During 
sequencing, by tghe use of technologies based on 
complementary synthesis or probe ligation, this is 
recognized as the base thymine (denoted T). A 
minor complication which might occur is 
remapping the resulting sequences to the genome in 
order to locate the site of the modifications. The 
other is the amount of DNA required for bi-sulfite 



Kumar et al / Cancer epigenomics 

54 
Copyrighted © by Dr. Arun Kumar Agnihotri. All right reserved 

 

treatment, and any biases or artefacts this treatment 
may introduce36,42. Nonetheless, genome-wide 
surveys of methylation have recently been 
performed using such techniques on second-
generation sequencers. Stem cell chromatin control 
of gene expression, including relationships between 
histone modifications and DNA methylation, hold a 
key to understanding the origins of cancer 
epigenetic changes30,42. DNA methylation can be 
exploited for clinical purposes in cancer patients as 
a molecular biomarker of cancer cells. Since the 
presence of CpG island hypermethylation of the 
tumor suppressor genes described is specific to 
transformed cells. Example: Presence of 
hypermethylation of the glutathione S-transferase 
P1 (GSTP1) gene in prostate cancer43. 
Hypermethylation could also be used as tool for 
detecting cancer cells in multiple biological fluids 
or even for monitoring hypermethylated promoter 
loci in serum DNA from cancer patients44. Second, 
unlike genetic changes in cancer, epigenetic 
changes are potentially reversible. For years, in 
cultured cancer cell lines, we have been able to 
express genes that had been silenced by 
methylation by using DNA demethylating agents 
such as 5-aza-2-deoxycytidine, 5-azacitidine or 
zebularine45,46. These two factors makes 
epigenomics a potential area for cancer research, 
diagnosis and treatment. 
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