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This study investigated the effects of  magnetic field, thermal radiation and viscous dissipation on transient 
magneto hydrodynamic (MHD) flow of  non-Newtonian incompressible fluid obeying Eyring-Powell model in a 
porous medium. The governing equations were formulated and transformed into non-dimensional equations. 
Numerical solution to the transformed governing nonlinear partial differential equations was obtained using the 
implicit finite difference scheme of  Crank-Nicolson type. The finite difference equations form Thomas 
algorithm tri-diagonal matrix system of  equations which was solved using the MATLAB. The results showed 
that a rise in Non-Newtonian parameter F, thermal Grashof  number Gr, modified Grashof  number Gm and 
dissipation function Ec, caused velocity to increase whereas velocity decreased with increase in Non-Newtonian 
parameter A, magnetic field parameter M, radiation parameter R, Schmidt number Sc, Prandtl Number Pr and 

chemical reaction parameter, g. Temperature increased with increase in dissipation function Ec, while it 
decreased as Prandtl number, magnetic field parameter and Radiation number increased. Increase in Schmidt 
number and chemical reaction result to a decrease in concentration.
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INTRODUCTION
Fluid can be regarded as a material in nature that 
deforms continually under applied shear stress. 
The most important property of  fluid that 
characterizes the flow resistance of  simple fluids 
is its viscosity. It is the ratio of  shear stress to the 
shear strain. Shear stress is known to be a measure 
of  the force of  friction from a fluid acting on a 
body in the path of  that fluid while shear strain 
measures the changes in angle with respect to two 
specific directions. The viscous behaviour of  
fluids depends on the relationship between shear 
stress and rate of  deformation. Some fluids 
exhibit linear relationship between shear stress 
and rate of  deformation while some are non-
linear in nature. Those that exhibit linear 
relationship are referred to as Newtonian fluid 
(water, air and benzene).

Another very important type of  fluid which is 
different from Newtonian fluid is the one that 
does not exhibit linear relationship between shear 
stress and the rate of  deformation. Such fluids are 
referred to as Non-Newtonian fluids (inks, glues, 
polymer solutions, gel, and coal-water). A good 
description of  this fluid is given by Bird et al. 

(1960). Non-Newtonian fluids are of  great 
importance in manufacturing and chemical 
industries due to their numerous applications in 
drilling for petroleum, extrusion of  polymer, 
molding of  metal substances and blasting of  
glasses. In the area of  modeling flow of  fluids in 
porous medium, heat transfer analysis has always 
been of  interest. As a result of  this, control 
measure is very important for rate of  heat transfer 
in manufacturing industries for quality control and 
reduction of  thermal radiation and its emissions 
to the body (Adesanya and Gbadeyan, 2011). The 
viscous behaviour (non-linear) of  non-
Newtonian fluids can be analyzed using several 
models. The models are power law model, Eyring-
Powell model, Eyring-Prandtl model, Cross 
model, Yasuda model and Bingham (Darji and 
Timol, 2013).

 Literature on non-Newtonian fluids are rare 
because of  the complexity of  these models. The 
few that are available use Power-law model 
because the rheological features of  Power-law can 
only be captured by a single constitutive 
relationship between shear stress and rate of  
deformation (shear strain). An advantage of  
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Eyring-Powell model over Power-law model is 
that it correctly reduces to Newtonian behaviour 
for low and high shear rate. The Eyring-Powell 
model, according to Mansutti et al. (1993); 
Manisha and Timol, (2009) can be defined as:

(1)

where    is the shear stress    is the velocity 

gradient,  m is the coefficient of  dynamic viscosity,  

a c characterize the Eyring-Powell fluid model.

Numerous practical applications and studies have 
brought about considerable interest in studying 
the flow of  Non-Newtonian fluids. Islam et al. 
(2009), Patel and Timol (2009), Patel and Timol 
(2011) and Hayat et al. (2012) used Eyring-Powell 
model to analyze viscous behavior of  non-
Newtonian fluids. Eldabe et al. (2003) investigated 
the non-Newtonian fluid flow under the effect of  
couple stresses between two parallel plates using 
Eyring-Powell model. The authors found out that 
increase in the degree of  Taylor polynomial 
increases the maximum absolute error. Numerical 
study of  viscous dissipation effect on free 
convection heat and mass transfer of  magneto 
hydrodynamic (MHD) non-Newtonian fluid flow 
through a porous medium was carried out by 
Nabil et al. (2012). The numerical results indicated 
that as the non-Newtonian and magnetic 
parameters increase, the value of  the velocity 
decreases. The authors conclusion met the logic 
of  the magnetic field exerting a retarding force on 
the free convection flow with effect of  thermal 
radiation being considered on the free convection 
heat and mass transfer of  magneto hydrodynamic 
(MHD) non-Newtonian fluid. Malik et al. (2013) 
obtained boundary layer flow of  an Eyring-Powell 
model fluid due to a stretching cylinder with a 
variable viscosity. Their analytical solution was 
obtained using homotopic analysis and the result 
showed that thermal boundary layer decreases 
with increased Prandtl and Reynold numbers. The 
effect of  viscous dissipation and thermal 
radiation on fluid behavior was not studied. 
Radiation effects on boundary layer flow of  an 
Eyring-Powell fluid over an exponentially 
shrinking sheet was investigated by Asmat et al. 
(2014). Using homotopy analysis, it was observed 
that velocity increases with an increase in mass 
suction and the thermal boundary layer thickness 
decreases due to increase in Prandtl number and 

thermal radiation. However, magnetic field effect 
and viscous dissipation were not considered. 
Tasawar et al. (2014) investigated the radiation 
effects on the flow of  Powell-Eyring fluid past an 
unsteady inclined stretching sheet with non-
uniform heat source/sink. The study addressed 
the radiation effects and established that velocity 
increased with increase in radiation while the 
temperature decreased. The effect of  viscous 
dissipation was however neglected. Darji and 
Timol (2013) investigated group theoretical 
similarity analysis for natural convection boundary 
layer flow of  a class of  non-Newtonian fluids. It 
was observed in their work that the velocity in 
Williamson model was higher than that of  
Prandt l -Eyr ing  mode l .  The  Adomian  
decomposition approach to visco-elastic fluid 
flow with slip through a planer channel was 
studied by Adesanya and Gbadeyan (2011). The 
combined effect of  Navier slip and magnetic field 
was investigated on the radiative heat transfer of  a 
steady flow of  a conducting, viscous, non-
Newtonian and incompressible fluid through a 
channel filled with saturated porous medium. It 
was observed that the effect of  porosity parameter 
was to reduce the velocity whereas increasing the 
Grashof  number increased the velocity of  the 
fluid. Adesanya and Gbadeyan (2011), Gbadeyan 
and Dada (2013) investigated the influence of  
radiation and heat transfer on an unsteady MHD 
Non-Newtonian fluid flow with slip in a porous 
medium in which the effect of  magnetic field and 
thermal radiation was considered. However, the 
effect of  viscous dissipation and the presence of  
chemical reaction was not considered. In previous 
studies and researches, the combined effects of  
magnetic field, viscous dissipation and thermal 
radiation were neglected, while heat and mass 
transfer with effect of  viscous dissipation in non-
Newtonian flow of  Eyring-Powell fluids is 
comparatively less well-known. 

Consequently, this study therefore investigated the 
combined effects of  magnetic field, thermal 
radiation and viscous dissipation on the transient 
magneto hydrodynamic flow of  non-Newtonian 
incompressible fluid obeying Eyring-Powell 
model. The governing equations were formulated 
and transformed to non-dimensional equations. 
Numerical solution to the transformed governing 
nonlinear partial differential equations was 
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obtained using the implicit finite difference 
scheme of  Crank-Nicolson type. The finite 
difference equations form Thomas algorithm tri-
diagonal matrix system of  equations, which was 
solved using MATLAB. The physical parameters 
arising from the flow were studied on velocity, 
temperature and concentration profiles. 
Variations of  these parameters that affect the flow 
were also studied on the skin friction, Nusselt and 
Sherwood numbers.

FORMULATION OF THE PROBLEM
Transient free convection incompressible 
electrically conducting non-Newtonian Eyring-
Powell fluid between two vertical parallel plates in 
a saturated porous medium situated at distance h 
apart was considered. The x* - axis was taken 
along the plate while the y* - axis was taken 
normal to it in the fluid. Along y* - axis in the fluid 
flow, a magnetic field of  uniform strength was 
applied. The medium was porous and 
homogeneous chemical reaction of  the first order 
was assumed to be present. Both wall 

* * temperatures T  and T were high enough to o w

induce thermal radiation. Taking into account the 
Boussineq approximations, the governing 
equations were formulated as follows.

The initial and boundary conditions are given as

           ,             ,                ,                 ,

                              ,               ,               at

            ,               ,                 at

where m* is the velocity of  the fluid in the x-

direction, t* is the time, r is the density of  the 
fluid, g is the acceleration due to gravity, 
T* is the fluid temperature, C* is the fluid 

concentration, P is the fluid pressure, 

b is the coefficient of  thermal expansion, K is the  

thermal conductivity,      and    are the 
temperature and concentration of  the fluid at
       ,     and     are the temperature and 
concentration of  the fluid at              D is the mass 

diffusivity q is the radiative heat flux, s is the r  

electrical conductivity, u is the kinematic viscosity,  
B  is the magnetic field, h is the distance between 0 

two plates, K is the rate of  chemical reaction and C  

T is the Eyring-Powell non-Newtonian fluid xy 

stress tensor.

According to Manisha and Timol (2009), Malik et 
al. (2013) and Asmat et al. (2014), the Eyring-
Powell model is defined as follows

(6)

where t is the shear stress,    is the velocity xy 

gradient,  m is the coefficient of  dynamic viscosity, 

a and c characterizes the Eyring-Powell fluid 
model.

Taking the first and second order approximation 
of  the hyperbolic sine function gives

                                                                     (7)

Hence the stress tensor for Eyring-Powell model 
becomes

         (8)
In the optically thin limit case, Cogley et al. (1968) 
showed that  

         (9)

Where kl  is the absorption coefficient and ew b

the plank function, L=

Combining (8) and (9), the momentum and energy 
equations can be defined as follows:
         

g                                                                   (10)

is l 

 = + g
   

(2)                                              
           

(3)

           

 

(4)

                   

(5)
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                                                            (11)

Defining these non-dimensional quantities

                                                                   (12)

                                                                   (13)
                                                               
                                                                   (14)

where 
are the non-Newtonian parameters, the pressure 
gradient G is constant, u is the dimensionless 
velocity, t is the dimensionless time, T is the 
dimensionless temperature function, C is the 
dimensionless concentration function, R is the 
thermal radiation heat transfer parameter, Pr is 
the Prandtl number signifying the relative 
importance of  heat conduction and viscosity of  
the fluid, Sc is the Schimdt number showing the 
ratio of  momentum diffusivity and mass 
diffusivity,  is the chemical reaction parameter, Da 
is the Darcy number showing the permeability of  
the porous medium, Re is the Reynold number, 
Gr is the thermal Grashof  number giving the 
relative importance of  buoyancy forces to viscous 
forces and Gm is the species Grashof  number, M 
is the Magnetic field parameter, Ec is the Eckert 
number characterising the effect of  dissipation.

 With the corresponding dimensionless boundary 
conditions

         (15)

where            is the slip at the lower wall. For this 
type of  flow, skin friction coefficient, local 
Nusselt and Sherwood numbers are of  great 
importance. The dimensionless skin friction, 
Nusselt and Sherwood numbers are given as 
follows:

        (16)

                                                                    (17)

                                                                    (18)

SOLUTION TO THE PROBLEM
 The set of  nonlinear partial differential equations 
(12), (13) and (14) were solved by employing 
Crank Nicolson finite difference scheme. The 
equations are written in their discretized form as 
follows:
            
             =

         (19)

                                                                     (20)

         (21)

Let                                   , equation (18) becomes

           =

                                                                     (22)

With the following boundary conditions

Equations (20), (21) and (22) were multiplied by 

Dt for simplicity. The equations were now 
arranged such that momentum, energy and 
species equations at the present time step (k+1) 
were on the left while those of  previous time step 
(k) were on the right hand side. Applying the 
equations to all nodes, a system with tri-diagonal 
matrix system of  equations was obtained which 
can now be written as follows:
                                    

= F2

= F3

= F4
Where
A2=E1, B2=1+2E1-E2+E3, C2=E1, A3=E6, 
B3=1+2E6+E7, C3=E6, A4=E9, 

,     ,  , ,      

 

, , at    
, , at  
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B4=1+2E9+E10, C4=E9, F2=E1        + [1-
2E1+E2-E3]     +E1
                                                                 
                                                                    ,

F3 = E6

F4 = E9
And
E1 =                         ,

The computations were carried out by using 
subscripts j and k as the grid points along y and t 
direction. Initial conditions were used to solve for 
the values of  u, T and C at all grid points. The 
values gotten at the previous time (k) level was 
used at time (k + 1) level to calculate the values of  
u, T and C as follows:

Equation (25) on a given j-level at every internal 
nodal point forms a tri-diagonal system of  
equation. Thomas algorithm which was discussed 
in Carnahan et al. (1969) was used to provide 
solution to the problem. With this, the value of  C 
on a given j-level at time (k + 1) level was known at 
every nodal point. Also, the values of  T and C at 
time (k + 1) level were calculated using equation 
(24). The results of  T and C at time (k + 1) level 
were used in equation (23) to calculate u at time (k 
+ 1) level.

Hence, the values of  C, T and u were known at a 
particular j-level. This process was carried out 
several times at various j-level. This way, the values 
of  C, T and u were known at all grid point. The 
following discussion was carried out for different 
values of  the non-Newtonian parameters A and F, 
Prandtl number Pr, thermal Radiation parameter 
R, thermal Grashof  number Gr, species Grashof  
number Gm, permeability parameter Da, Eckert 
number for dissipation function, Schmidt 
number, Magnetic field parameter M and the 
chemical reaction parameter g. Default values for 
the C parameters are given as follows:

                                                                 ,

It should be noted that all graphs correspond to 
these values except stated otherwise on the graph.
  
RESULTS AND DISCUSSION
Figure 1 presents the velocity distribution for 
various values of  non-Newtonian parameter A. It 
was discovered that parameter A causes reduction 
in flow rate of  the non-Newtonian fluid, Hence it 
reduces the velocity distribution. Figure 2 
illustrates the effect of  non-Newtonian parameter 
F on the velocity distribution. On this profile, 
increase in parameter F causes a rise in velocity 
distribution. However, from Figures 1 and 2, it can 
be concluded that the low rate of  flow 
experienced in non-Newtonian fluid is caused by 
parameter A. 
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Figure 3 illustrates the velocity distribution for 
various values of  thermal Grashof  number Gr. 
An increase in Gr causes the velocity distribution 
to increase as this increase boost the buoyancy 
force. Figure 4 shows the influence of  Magnetic 
field M on the velocity distribution. It was 
observed that the presence of  M in an electrically 
conducting fluid give rise to an increase in Lorentz 
force that causes a retardation in the motion of  
fluid. An increase in M therefore reduces the 
velocity distribution. The effects of  species 
Grashof  number Gm is shown in Figure 5. It was 
observed that increase in species Grashof  number 
Gm causes the velocity profile to increase. Figures 
6 and 7 show the effect of  Radiation and Darcy 
number on the velocity profile. Radiation 
parameter reduces the velocity profile and this 
reduction in velocity is accompanied by reduction 
in velocity layers while Darcy number decreases 
the velocity profile, thereby decreasing the 
permeability of  the medium. Figures 8 and 9 show 
the influence of  dissipation parameter (Ec) and 
Schmidt number on the velocity profile. The work 
of  the dissipation function Ec is to accelerate 
energy in the fluid motion thereby increasing the 
buoyancy force which is evident in Figure 8. As Ec 
increases, an increase in the velocity profile was 
observed while Sc reduces the velocity profile.

In Figure 13, decrease in the velocity profile for 
variations of  Prandtl number was observed. The 
influence of  Prandtl number Pr and Radiation 
Parameter R on the temperature profile is shown 
in on Figures 14 and 15 respectively. Increase in 
Prandtl number causes the thermal condition to 
decrease, this decrease was experienced because 
smaller value of  Pr increases the thermal 
conductivity of  the fluid temperature. As R 
increases, significant fall in the temperature 
profile is experienced. This is because, higher 
values of  radiation term corresponds to smaller 
radiation flux and as a result, thermal radiation 
reduces the rate of  energy transport to the fluid. 
Figure 16 shows the effect of  dissipation function 
Ec on the temperature profile. As Ec increases, 

temperature profile decreases.  The effects of  
increasing Schmidt number Sc and  chemical 

reaction parameter g on concentration profile is 
seen in Figures 17 and 18 respectively. The 
influence of  Schmidt number on concentration is 
similar to that of  Prandtl number on Temperature. 
Increase in Sc causes reduction in concentration 
and its boundary. Increasing the chemical reaction 
causes reduction in the concentration profile. The 
effect of  increasing magnetic field parameter on 
temperature profile is seen on Figure 19. As M 
increases, temperature profile decreases. Figures 
17 and 18 were plotted for the velocity and 
temperature profiles with variation of  time using 
the default values. It was observed that the velocity 
and temperature of  the fluid increases as the time 
increases towards a steady state
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Figure 1: Variations of  Skin Friction, Nusselt and Sherwood Numbers

Fluid 

Parameters

Skin 

Friction(t)

Nusselt 

Number(Nu)

Sherwood 

Number(sh)

A=2.00 -1.6348 -0.0058 -0.0195

A=4.00 -0.5333 -0.0045 -0.0054

A=6.00 -0.2055 -0.0043 -0.0001

F=0.10 -0.4339 -0.0182 -0.0226

F=10.0 -0.4420 -0.2272 -0.2582

F=20.0 -0.4861 -0.2277 -0.2584

Gr=0.90 -0.2939 -0.0182 -0.0226

Gr=20.0 -0.3638 -0.0194 -0.0226

Gr=30.0 -0.4319 -0.0196 -0.0226

Gm=0.10 -0.2101 -0.0182 -0.0293

Gm=15.0 -0.7248 -0.0122 -0.0054

Gm=50.0 -0.7988

 

-0.0089

 

-0.0001

Ec=0.002 -0.5785

 

-0.0201

 

-0.0219

Ec=3.00 -0.6334

 

-0.0597

 

-0.0226

Ec=9.00 -0.7795

 

-0.1523

 

-0.0245

Da=0.007 -0.4274

 

-0.0182

 

-0.0235

Da=5.00 -0.3806

 

-0.0182

 

-0.0226

Da=15.00 -0.0778

 

-0.0182

 

-0.191

R=5.00 -0.3349

 

-0.0049

 

-0.0019

R=7.00 -0.3118

 
-0.0030

 
-0.0019

R=10.00 -0.0413  -0.0001  -0.0019

Sc=0.67 -0.5939

 
-0.0201

 
-0.0226

Sc=5.00 -0.3411

 

-0.0039

 

-0.0227

Sc=10.00 -0.3148

 

-0.0024

 

-0.0002

Pr=0.65 -0.3626

 

-0.0088

 

-0.0057

Pr=7.00 -0.1921

 

-0.0014

 

-0.0036

Pr=15.00 -0.1808 -0.0000 -0.0019

M=2.00

g=5.00

-0.2341 -0.0073 -0.0146

M=4.00 -0.1668 -0.0048 -0.0080

M=6.00 -0.0985 -0.0046 -0.0011

- -0.0122 -0.0054

-0.2329 -0.0027 -0.0003

-0.1 -0.0008 -0.0000g=7.00 455

g=1.00 0.5300

 

CONCLUSION
The study considers the effect of  magnetic field, 
thermal radiation and viscous dissipation on the 
problem of  transient magneto hydrodynamic flow 
of  non-Newtonian fluid in porous medium. The 
non-Newtonian fluid model used for describing 
the non-linear relationship between shear stress 
and rate of  deformation is the Eyring-Powell 
model. The governing equations were formulated 
and transformed into non-dimensional equations. 
Numerical solution to the transformed governing 
nonlinear partial differential equations was 
obtained using the implicit finite difference 
scheme of  Crank-Nicolson type. The finite 
difference equations form Thomas algorithm tri-
diagonal matrix system of  equations which was 
solved with the help of  MATLAB. The results 
showed that a rise in Non-Newtonian parameter 
F, thermal Grashof  number Gr, modified 
Grashof  number Gm and dissipation function Ec 
causes velocity to increase whereas velocity 
decreases with increase in Non-Newtonian 
parameter A, magnetic field parameter M, 
radiation parameter R, Schmidt number Sc, 
Prandtl Number Pr and chemical reaction 

parameter g. The temperature increases with 
increase in dissipation function Ec while it 
decreases as Prandtl number, magnetic field 
parameter and Radiation number increases. 
Increase in Schmidt number and chemical 
reaction results to a decrease in concentration.
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