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Abstract

Recently Gupta ef al. (1998) introduced the exponentiated exponential distribution as a generalization of the
standard exponential distribution. In this paper, we introduce a three-parameter generalized Pareto distribution,
the exponentiated generalized Pareto distribution (EGP). We present a comprehensive treatment of tie
mathematical properties of this new distribution.
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1. Introduction
Gupta et al. (1998) introduced the exponentiated exponential (EE) distribution as a generalization of the
standard exponential distribution. The EE distribution is given by

F(x)=[1-exp(-Ax)]* (1.1)

for x>0,A4>0 and o > 0, which is simply the a~th power of the cdf of the standard exponential distribution.
The mathematical properties of this EE distribution have been studied in detail by Gupta and Kundu (2001)
and Nadarajah and Kotz (2003). We introduce, in this paper, a three-parameter generalized Pareto distribution
in the same way (1.1) generalizes the standard exponetial distribution, and study its properties. We know that
the cdf of the generalized Pareto distribution is given by

F(x)=1—[1—£xjk;k¢0
(0

X
=1—exp("-o—t];k=0 (1.2)

for 0<x<o,for k<0 and 0<x< % for k>0. The parameters of the distribution are g, the scale

parameter, and & the shape parameter.

Moments of the distribution are readily obtained by noting that

E[l—ﬁxjr By 1+rk>0
o 1+ 7k’ i)

The r-th moment of X exists if k> — % and thus all moments exist for ) < y < 2 . The mean and variance
k

of X are
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a 2 (1.2

“: ,G =
ok 1+ k)* (1 + 2k)

(1.4)

respectively.

2. The Exponentiated Generalized Pareto (EGP) Distribution
In this section we define the new EGP distribution by

T il
F(x)=[lﬁ(l—gx)*} for >0, k%0

N8
:I:I—exp(—*iﬂ s B8>0, k=0 @1

o

We refer to the distribution (2.1) as the exponentiated generalized Pareto (EGP) distribution. The correspondin g
pdfis given by

p-1 :

I®) = E 1—(1 —EJ‘ (I—ﬁxjI )

o a

Do -2 )] oof-2)
=1 l—exp - exXpli=—s =0 (2.2)
a a o

The generalized Pareto is a special case of (2.2) for p=1
Using the series representation (Nadarajah and Kotz (2003)),

o T j
1+2)= 3 iiil)ee (2.3)
i=0I'(a—-j+1);!
(2.2) can be expressed in the mixture form
PR S R
@& s NP =N i
TR+ = (1)) -G+D%
s (P T VRGN i

o =0 jIT(B~- )

The exponentiated generalized Pareto distribution has an attractive physical interpretation. Suppose that the
lifetimes of n components in a series are independently and identically distributed according to (2.2), then the
lifetime of the system is also EGP. An additional motivation comes from many applications of the generalized
Pareto distribution in modelling the extremes and in quality control, Gumbel (1958). Adeyemi (2002) and
Adeyemi and Ojo (2003) also discussed recurrence relations for moments of order statistics and applied the
properties of order statistics from the generalized Pareto distribution to least squares estimation of location-
scale parameters and presented examples in both singly and doubly censored lifetime data.
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3. The Moments
If X has the pdf (2.2) then the r-th moment can be written as

o

BEX D= ?x"f(x)dx
0

On setting y:l-ﬁ X we have
1 ol B
sewrp " (1= )" dy =BB(rk +1,) G.1)

where B(. .) is the complete beta function.
The moments can be obtained recursively from the recurrence formula

r ? J :
5 (}.][— ]iJ W =BB(rk +1,B);k#0 (3.2a)
J=0\_J o
: B-1(B-1Y) (=1)/
i’ =fal > (B _ J =), -I'(r+1);k=0 (3.2b)
NGRS AU

From the relation (3.2), we obtain the first four moments, respectively, as follows

n=""[1- BB +1.9)] (.3a)

p? = [1-pB@k +1.p)] (3.43)

w’ = [1-pBGK+1,p)] G.58)

p' = [41-BBGk +1.p)] .60
and

-all o

a0 2
e 2
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B-1(B—1) (-1)/
ot
H o BJEO{ ; J(j+1)5 (3.6b)

The coefficients of skewness and kurtosis can be calculated using [(3.3) - (3.6)] for all

B>0,0<k <— , 0L > O for instance

(3.7)

5 [gf [1-BBGk +1,8)]
") n-pB@k+ 1,B)]?

and
_ k[1-BB(4k +1,8)]
o[l - BB(2k +1,B)]?

(3.8)
The moments generating function can be obtained as

k
)P—a—ﬁﬂ
(0

e it ey
} (l—gx)" dx (3.9)

S -—-.:=-—|;2
= —

MX(I)—S

BI t - B-1 ol
=a_£ey(1—yk) vk dy (3.10)

having changed variable. Though (3.10) is not in closed form, however, the moments can be obtained by
fixing £k and 2

4. The Shape
The first derivative of /nf{x) for the EGP distribution is given by

TR —{Hl—&ﬂﬂa—m
dn f(x) o
s

1 I
ofl - (1~ £ x)* (1 - £ x)k
and

£

dlnf(x)z(ﬁ—l)e —

a(l-e _ﬁ)

(4.1b)
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Standard calculations based on this derivative show that f{x) exhibits a single mode at x=x, with f{0)=0=f

dln f(x)
dx
possible values of x, for some selected values [3, aand k.

(%) where x is the solution of = (). Refer to the Appendix for illustrations of some of the

5. The Hazard Rate Function

The hazard rate function defined by A(x)= FE\; is an important quantity characterizing life phenomena

where F(x)=Pr{X>x}. For the EGP distribution, /(x) takes the form

1 T
] = (k) 1P (e Ky
h(x):B[ (=] ( aB) B

1
o-a 1—(1—§x)k (5.1a)

(—“) o8 (
h(x)zﬁ[l— a P2, A (5.1b)
ol

The first derivative of In h(x) with respect to x is

ﬂl_r;?lz(l_g)ﬁ[gk“ o* +[2B JQ]+Q(B )k:&O (5.:2a)

&
where Q:(I-if_) k (5.2a) can be solved for fixed B, o and k. Elementai ; calculations show that h(x) is
o

multimodal for example when 8=1=k=c, h(x) exhibits two modes at 0 and 1. Possible shapes of h(x), for
some selected values of B, a and k, can be obtained using (5.2).

Also

dInh(x) (B—z)e(_d) A l‘k =0
dx = (_l) o A (52b)
ol-e %)

1
Equation (5.2b) is easily solved to give x=-o In [ﬁ}

6. Estimation of Parameters
Estimation of the three parameters are considered by the method of Maximum Likelihood. The loglikelihood

for a random sample x , x,, ..., x_ from (2.2) is



132 Adeyemi and Adebanji: Generalized Pareto distribution

il
lnL(a,B,k)znlnB—n]noc+n([3—1)21r1[1—(1—!£x1-)"]+n(#—l)Zln(l—Ex,-J
o o

(6.1)

The first order derivative of (6.1) with respect to each of the parameters give

o . I (6.2)
z 0L22[1—(1—§x,.)k] orT (=)

B
oL _ nB-1zx(-£x)F"  md-nzx, ,

dlnL T

6?3 :g+n21n[1—(1—-3x,-)k] (6.3)

)yl | L ng -y
1-3(1-=x,)* G
oo g el c
e ! ax) ayX(l-£x,
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The mode of the exponentiated generalized Pareto distribution for some selected

values of k, a and p.
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