CHARACTERIZATIONS IN STUDYING THE EFFECT OF ACID REAGENT ON THE REARRANGEMENT REACTION OF CAMPHOROXIME PRODUCING DIFFERENT RATIOS OF THE α:β-CAMPHOLENE NITRILES

D.O. MORONKOLA1*, O.O. AIYELAAGBE2, J.K. ADESANWO1 and O. EKUNDAYO2

1. Department of Chemical Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.
2. Department of Chemistry, University of Ibadan, Ibadan, Nigeria.

(Received: September, 2006; Accepted: November, 2007)

Abstract
There are two major steps in the synthesis of pleasant fragrant α- and β- campholene nitriles from camphor. The first is the reaction of hydroxyamine with camphor to give the camphoroxime, which rearranges in the presence of acid during the second step to give either α- or β- or both αβ- campholene nitriles. The nature of the acid determines the type of isomer(s) formed and the amount of each isomer in the product. This paper reports the rearrangement products of camphoroxime using H3, PCl5, HNO3 and CH3COOH acids, which are rarely used in literature. Also, H2SO4, HNO3, H3PO4, PCl3, and H2PO4 were found to give very high yields (79% and above) of the fragrant campholene nitriles, while organic acid catalysis gave campholene nitriles in very low yields (<5%).

1. Introduction
Campholene nitriles (C10H15N) are monoterpenes that have high economic importance as aroma and cosmetic enhancing fragrant chemical compounds. They have found very wide applications in aroma and perfumery industries. Campholene nitriles are also referred to as campholenonitriles, and they exist in α- and β-isomeric forms. The α-isomer is 2, 2, 3-trimethyl-3-cyclopentene-1-acetonitrile, while the β-isomer is 2, 3, 3-trimethyl-1-cyclopentene-1-acetonitrile.

Campholene nitriles are stable in applications as well as safe on skin and environment (Brunke, 1993). Their odours range from fresh resinous to woody sandalwood (Brunke and Klein, 1982). Campholene nitriles and their derivatives are referred to with a variety of trade names like cantryl in Dragoco, sandalwood, samsara, baedanoil brahmanol, sandalore, sandriano and polysantol. Natural occurrence of compounds having structures similar to campholenes are reported as components of essential oils like juniperberry, J. communis (Thomas, 1972), physiologically and pharmacologically active compounds (Nomura et al., 1996; Prisino et al., 1980; Soloduchen and Zabba, 1979).

The high demand and economic importance of aroma compounds like campholene nitriles which are obtained in very low yields from natural sources, necessitates its synthesis, for better yields, at lower cost and cheaper rate (Bauchbauer et al., 1983; Tynan, 1983; Moronkola et al., 2004; Gream et al., 2006). Meyer (1883) and Leuckart (1887) starting from camphor first attempted the synthesis of campholene nitrile (Pawelski, 1903), while Tiemann (1896) was the first to elucidate and assign the structure. Campholene nitriles are now synthesized by a number of ways; some of the routes are illustrated below:

1. Epoxidation of α-pinene, which is catalytically, converted to campholene aldehyde and on treatment with aqueous NaOH through its hydracismum salt form mainly the α-campholene nitrile (Smith and Walker, 1962).

2. Photolytic reaction of camphoroxime gave α-campholene nitrile as one of the five compounds formed. α-Campholene nitrile is the second fraction in the chromatographic separation. The other four compounds formed were camphor, iso-α-campholenonitrile, α-campholenonitrile and unreacted oxime (Sato and Obase, 1967; Winters et al., 1971).

+ corresponding author (email: funkemoronkola@yahoo.com)
3. Pyrolytic reaction of camphoroxime gave α-campholene nitrile and two other products, camphor and α-campholenonitrile. (Sato and Obase, 1967).

4. Thermolysis of camphor-nitrilim in high yields (38%), along with the α- (20%) and β- (14%) campholene nitriles (Winters et al., 1971; Buchi and Wuest, 1979).

5. Acid-catalyzed rearrangement of camphoroxime (formed from oximation of camphor), in a form of Beckmann fission to form mixtures of α- and β-campholenonitriles in different ratios, depending on the nature of acidic reagent (Nazir et al., 1965).

This method is the most preferred, most likely because of the ease of accessibility and cheap precursor of camphor. Action of acidic reagents such as H_2SO_4, (Pirisino and Sparatore, 1968; Conley and Glish, 1971), SOCl_2 (Pawlenski, 1993), HI (Pirisino and Sparatore, 1968; Koizl and Pekh, 1982) and P_2O_5 (Nazir et al., 1965), have been investigated in the conversion of camphoroxime to campholenonitriles. α-Campholene nitrile is the main product in the conversion of camphoroxime when P_2O_5 and concentrated H_2SO_4 were the acidic catalysts (Nazir et al., 1967; Pirisino and Sparatore, 1968; Brieskorn and Hamner, 1976). As the H_2SO_4 become more dilute, β-campholenonitrile was also formed in appreciable amount (Pirisino and Sparatore, 1968).

Concentrated HCl catalyzed rearrangement of camphoroxime to yield mainly β-campholenonitrile (Nazir et al., 1965). Dehydration occurred as side reaction in the rearrangement of camphoroxime to nitriles with strong acids like H_2SO_4 and P-toluene sulphonyl chloride (Nazir et al., 1965; Pirisino and Sparatore, 1968). The rearrangement reaction in the second step mimics to some extent Beckmann's (Nazir et al., 1965 & 1967; Conley and Glish, 1971) in the involvement of change of the actual carbon-skeleton of camphoroxime compared to the structure of the final campholenonitrile formed. Beckmann rearrangement is characterized by stereochemical interchange of the group anti- to the OH on C=N i.e. it is a stereochemical intramolecular exchange of the anti-group in the rearrangement reaction.

In the synthesis of campholenonitriles, studies using organic acids like CH_3COOH and inorganic acids like HI, PCl_3 and HNO_3 in the rearrangement reactions of camphoroxime are rare in literature. This paper reports the use of modern spectroscopic data to characterize and quantify products of the synthesis of α- and β-campholenonitriles from rearrangement of camphoroxime.

2. Materials and Methods

General experimental procedure.
Melting point was determined on Gallenkamp melting point apparatus. Refractive indices were taken on Hilger and Watts Refractometer. IR spectra were recorded on ATI Mattson Genesis series FTIR TM in CCl_4, which was corrected for, and a Bruker IFS 25 FTIR instrument, run neat on NaCl cells.
UV spectra were taken on a UV-160A, UV-visible recording Shidmadzu spectrophotometer (stabilizer-volt Ace Type IB, solvent was hexane) and Hewlett Packard 8452 a single beam spectrophotometer. Quartz cells of 1 cm cell path were used and solvents were absolute ethanol and hexane.

^1H NMR spectra were recorded at 200 MHz on Varian XL 200 and 300 MHz on Bruker AC-300 NMR spectrometers. ^13C NMR spectra were recorded on AC-300 spectrometer. Proton-carbon-fluorine-phosphorus (HFIP) probe was used and NMR was conducted at room temperature. All NMR spectra were recorded in CDCl_3, and chemical shifts were reported in ppm downfield of TMS as internal standard. The residual solvent signals at 7.24 ppm and 77.0 ppm for CDCl_3, were also used as internal reference standards. The NMR absorptions were quoted in δ units.

Low-resolution electron ionization mass spectra (LRIEIMS) were acquired at 70 eV using VG Trio 1 quadrupole mass spectrometer equipped with a direct inlet probe. High-resolution electron ionization mass spectra (HRIEIMS) were produced using VG ZAB-HF double focusing mass spectrometer.

Syntheses and purifications were monitored with thin layer chromatography (TLC). Chromatograms were on pre-coated TLC aluminium plates of silica gel and prepared TLC plates of 15 cm by 10 cm. The TLC plates were prepared by spreading aqueous slurry of Merck Silica gel G on glass plates. The plates were activated at 110 °C for 1 hr. Spotted plates were developed in different solvent systems such as hexane / ethylchloroform / trichloromethane / benzene / methanol. Positions of each component in the compound mixtures were visualized by exposure to iodine vapour in iodine tank for 5 to 10 minutes. Reference compounds were supplied by flavour division of Haarmann and Reimer in Holzminden, Germany. Products of the synthesis were purified and isolated by vacuum liquid chromatography. TLC grade silica gel (60 mesh) and sintered glass filter funnel of porosity 3 with ground glass joints were used in the VLC adapting the method of Coil and Bowden, 1986.
Synthesis of camphoroxime:

30 g (0.58 mol) of hydroxylamine hydrochloride [NHOH·HCl], 40 ml of pyridine and 400 ml (95%) ethanol were added to 40 g (0.26 mol) camphor and refluxed for 2 hrs with anti-bumping granules. Excess alcohol was distilled off under reduced pressure. Content was placed in an ice bath and 100 ml distilled water was added while stirring until white precipitate of camphoroxime was formed. It was filtered under suction and recrystallized in distilled ethanol (160 ml). The pure solution was left for 48 hrs, after which needle-like pure oxime crystallized out. Crystals were filtered by suction and dried in a desiccator in 90% (wt) yield. M.pt 116-117°C (Lit. M.pt is 115-119°C).

Rearrangement of camphoroxime to α- and β-campholene nitriles:

Camphoroxime was added to each of the acidic reagents H₂SO₄, H₃PO₄, HNO₃, SOCl₂, and Cl₂CHCOOH in a ratio of 1:2 of oxime:acid. The oxime and each acid were refluxed for 60 mins. Reaction mixture was added to ice and 150 ml distilled water. Oil product was extracted with diethyl ether (100 ml) three times. Extract was neutralized with saturated NaHCO₃ and was washed with distilled water. The ether was dried on anhydrous Na₂SO₄. The solvent was distilled off under vacuum leaving the campholene nitrile.

Pure campholene nitriles were eluted with 90% hexane in chloroform by vacuum liquid chromatography on TLC grade silica gel (60 mesh) using the sintered glass of porosity 3 (Cell and Bowden, 1986). Different yields of campholene nitriles were obtained from each acid.

3. Results and Discussion

α- and β-campholene nitriles were synthesized from camphoroxime (M.pt = 116-117°C), which was obtained from camphor in 90.2% yield by modified methods of Nazir et al., 1965; Conley and Ghosh, 1971, and Briesborn and Henmer, 1976. Synthesis of camphoroxime involved an initial nucleophilic addition of the nitrogen on the hydroxylamine to the carbon of the carbonyl on camphor, followed by the elimination of water to yield the camphoroxime. Structure of the camphoroxime synthesized was confirmed by spectroscopy (IR, H-NMR, 13C-NMR, and MS) (see Fig. 1 & Table 1).

The IR spectrum agreed with that in the literature (Nazir et al., 1965; Sato and Obase, 1967). H-NMR of the three methylene (3·-CH₂) groups on C-3, 5, 6 appear as doublets and multiplets between δ 2.0-1.18 because of geminal and vicinal couplings between the protons. H-NMR spectrum of prepared oxime agreed with its structure. 13C NMR spectrum indicated the occurrence of ten carbon atoms, which agrees with structure of camphoroxime. DEPT-NMR showed the three methyl C-8, 9, 10 pointing up in the high field region of the spectrum. Likewise it showed the three methylene C-3, 5, 6 pointing down between δ 33-27, and methane C-4 absorbed at δ 43.61. However the quaternary C-1, 2, 7 were not visible in the DEPT-NMR since only carbon atoms carrying hydrogen (CH₂, CH₃, and CH) are observed in DEPT spectrum. HREIMS of oxime indicated mass of 167.1282, which is close to that calculated for C₁₀H₁₄NO (167.1310), and gave a double bond equivalence (DBE) of 3.0 accounted for by the two rings and one carbon-nitrogen double bond (C=N). Loss of C=NOH from oxime give the base peak at m/z 124.0644 on the HREIMS. The mass spectrum is consistent with the structure of camphoroxime. The camphoroxime was subsequently used in the syntheses of campholene nitriles CN₁-CN₅.

Table 1: Spectra data of synthesized camphoroxime

<table>
<thead>
<tr>
<th>Technique</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR (cm⁻¹)</td>
<td>3360 (OH), 2925, 2926, 1643, 1375 (CH₂ & CH₃), 1641 & 1691 (C=N)</td>
</tr>
<tr>
<td>1H-NMR (δ ppm)</td>
<td>0.73, 0.85 & 0.94 (3CH₂), 2.0 (CH₃), 1.85, 1.75, 1.63, 1.39 & 1.18 (2CH₃), 2.5 (CH₂, dt), 9.5 (OH, bs)</td>
</tr>
<tr>
<td>13C and DEPT-NMR (δ ppm)</td>
<td>169.4 (C=NOH), 10.99, 18.43 & 19.34 (3CH₂), 27.2, 32.5 & 32.9 (3CH₂), 43.61 (CH), 51.66 & 48.14 (2C₆)</td>
</tr>
<tr>
<td>MS: HREIMS & LREIMS (m/z)</td>
<td>167.1282(100%) [M⁺], 124.0646(85%) [M-2(CH₃)-H]⁺, 134(64%) [M-CH₃-H₂O]⁺, 93(59%), 108(53%), 110(49%), 150(30%) [M-OH]⁺, 152(30%) [M-CH₃]⁺, 136(15%) [M-NOH]⁺, 122(10%) [M-3CH₃]⁺</td>
</tr>
</tbody>
</table>
The camphoroxime prepared were acid-catalyzed to campheolene nitriles using seven different acids. The yields are presented in Table 2.

Conversion of the camphoroxime to nitriles is an acid catalyzed rearrangement reaction similar to the Beckmann type. The acidic reagents successfully effected the syntheses but in different yields of the campheolene nitriles, which were purified by vacuum liquid chromatography (VLC). Use of the organic acid catalyst ethanoic acid gave very low yield of campheolene nitrile (2.12%), though it is rarely reported in literature. The other six acids produced high yields of the campheolene nitriles (53 to 95.6%, Table 2). TLC analyses show the campheolene nitriles at \(R_f = 0.5 \) (in 1:1 hexane:CHCl₃) and \(R_f = 0.77 \) (in CHCl₃). Synthesized camphoroxime nitriles were characterized by IR, UV, \(^1\)H NMR, \(^13\)C NMR and MS.

Spectral Data of the Campholene Nitriles (CN₁-CN₃)

Synthesized

IR and UV:

The IR results agree with the literature values reported for α- and β-campholene nitriles (Nazir et al., 1965; Sato and Obase, 1967). The absorptions displayed in the UV are as stated in Table 3.

| IR absorption bands(cm⁻¹) & functional group | UV absorption
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2340-2255(m) C=O νester</td>
<td>(\lambda_{max}) (nm) in Hex: 283(1.5), 265(0.5), 240(1.55)</td>
</tr>
<tr>
<td>2800-2950(s) (\delta) C-H aliph</td>
<td></td>
</tr>
<tr>
<td>1600(ν-Ni) C=O νamide</td>
<td>(\lambda_{max}) (nm) in EtOH: 250(2.1), 230(2.8), 220(2.7)</td>
</tr>
<tr>
<td>700-600 C=O ν overtone bands</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Acids used and Yields of Campheolene nitriles synthesized with the RI and TLC (Rf) results.

<table>
<thead>
<tr>
<th>Acid used*</th>
<th>Campheolene nitrile formed</th>
<th>% Yield*</th>
<th>Refractive Index (RI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂SO₄</td>
<td>CN₁</td>
<td>95.57</td>
<td>1.490</td>
</tr>
<tr>
<td>HI</td>
<td>CN₂</td>
<td>84.31</td>
<td>1.565</td>
</tr>
<tr>
<td>PCl₅</td>
<td>CN₃</td>
<td>83.75</td>
<td>1.484</td>
</tr>
<tr>
<td>(\text{H}_3\text{PO}_4)</td>
<td>CN₄</td>
<td>79.66</td>
<td>1.468</td>
</tr>
<tr>
<td>(\text{HNO}_3)</td>
<td>CN₅</td>
<td>92.13</td>
<td>1.491</td>
</tr>
<tr>
<td>SOCl₂</td>
<td>CN₆</td>
<td>83.15</td>
<td>1.554</td>
</tr>
<tr>
<td>CH₂COOH</td>
<td>CN₇</td>
<td>2.12</td>
<td>1.473</td>
</tr>
</tbody>
</table>

*The acid reagent which catalyzed syntheses of campheolene nitriles from camphoroxime in a form of Beckmann rearrangement reaction.

**Percentage yield of campheolene nitriles synthesized after purification by VLC.

Table 3: IR and UV Spectral Data of Synthesized Campheolene Nitriles [CN₁-CN₇]

- The IR results agree with the literature values reported for α- and β-campholene nitriles (Nazir et al., 1965; Sato and Obase, 1967).
- The UV absorptions are shown above.
Fig. 2

Subsequent (HR) spectra of 2b and 2c (rearrangement products).

Moronkola et al.: Effect of acid reagent on the rearrangement reaction of camphoroxime
Fig. 4: Mass Spectrum of Campholene nitrile in CN₁

is β-campholene nitrile. The three methylene protons on C-4, 5, 7 resonate as doublets, triplets and multiplets at δ 1.65, 1.81, 1.98, 2.1, 2.72 and 3.04 which were caused by both geminal and vicinal couplings between the protons. Methylene carbons show signals at δ 25.41 (C-4), δ 33.83 (C-5) and δ 40.57 (C-7) on the ¹³C NMR spectrum. The ¹³C NMR decouple signals of methyl, methylene and methine-carbons so that signal appears as a single line. CH₃ is a quartet, CH₂ is a triplet and CH is a doublet. Quaternary carbon atoms C-1, 2, 3, 6 were observed at δ 128.8 (C-1), δ 128.7 (C-2), δ 56.46 (C-3), and δ 189.4 (C-6), which are singlets. The quaternary carbon atoms are not visible in the DEPT spectrum. Absorptions of C-1 and C-2 are close because the two carbon atoms are in the same chemical environment, and the signals were not very intense since the carbon atoms were not bonded directly to any H atom. Hence no coupling which usually contribute to the signals observed in ¹³C NMR of CH₃(q), CH₂(t) and CH(d). Occurrence of little α-isomer is responsible for the strong methine-carbon signal at δ 43.37, which also appeared on the DEPT spectrum.

MS of campholene nitrile:
The mass spectrum of each of CN₁-CN₅ had the molecular ion [M+] at m/z 149, which corresponds to the molecular weight as predicted by Sato and Obase, 1967. Mass spectrum of CN₁ is given in Fig. 4, other important fragments in the spectrum are at m/z 134 [b,p,k: M-CH₃], 150 [M+1]⁺, 125 [M-N]⁺, 109 [M-CH₂CN]⁺ and 93 [M-2CH₂-CN]⁺. The spectra results are the same as those of literature (Brunke, 1993; Brieskorn and Hemmer, 1976; Conley and Ghosh, 1971).

References

camphenecarboxyhydroxy(methylcamphenenyl) and
isobornyl(bornyl) cations. 1. Generation of the
enantiomeric cations by the I1 and E routes of solvolyis. Australian Journal of

Kozlov, N.G., and Pekh, T., 1982. Obtaining
campholenonitrile from camphor oxide by
action of HCl. Zh. Org. Khim., 18, (5), 1118-
1119.

Moronkola, D.O., Aiyelagbe, O.O., and Ekundayo,
O., 2004. Synthesis of eight fragrant
terpenoids (linalool derivatives) via aldol
condensation of citral and eight ketones.
Journal of Essential Oil Bearing Plants, 8 (1),
87-98.

Nazir, M., Naemuddio, Ahmed, I., Bhatti, M.K.,
and Karimullah, 1965. Beckmann rearrangement
ef camphor and fenchone oxide over
phosphorus pentoxide in toluene and
autoxidation of resulting nitriles. Pakistan
Journal of Science and Industrial Research.
10, 13-16.

Nazir M., et al. (1967). Campholenonitrile from
camphor oxide by action of phosphorus
pentoxide. Pakistan Journal of Science and
Industrial Research. 10(1), 13-16.

Studies on the syntheses of physiologically
active substances. XIV. Syntheses and
physiological activity of α- and β-
70, 1265-1271. [CA 127: 35617w(1997)].

2-Cyclopentenyl-3- phenylacrylonitrile and
propionitrile derivatives of pharmaceutical
interest. Studi Sussar Sezz., 55, 293-305.
[CA 92, 94026n (1980)].

Pirisino, G. and Speratore, F., 1968. Reaction of
alkylmagnesium halides with a- and b-
campholenonitriles and amides. Preparation
of - and b- methyl- and a- and b- ethyl
campholenones. Studi Sussar Sezz 46, 545-
564. [CA 72: 79244a (1970)].

Pirisino, G. and Speratore, F., 1972. Action of
alkylmagnesium halides on α- and β-
campholenonitriles and the corresponding
48644e (1972)].

Sato, T., and Obase, H., 1967. Pyrolysis and photolysis
of camphoroxide. Tetrahedron Letts., 17,
1633-1636.

Soloducho, J. and Zabuz, A. 1979. Insect growth
regulators. Part V. The α and β-campholenic
nitrogen derivatives. Pol. J. Chem., 53, 1497-
1510. [CA 92: 58993s (1980)].

Thomas, A.F., 1972. The natural occurrence of the
campholenyl skeleton, another 'non-
isoprenoid' monoterpenes system. Helv.

Tyman, J.H.P., 1983. New developments in the
synthesis of perfumery materials. In: IXth
International Congress of Essential Oils,
Essential oil technical paper, Book 2.
Singapore, 161-169.

Photolysis and pyrolysis of camphor