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ABSTRACT

The theory of one-dimensional integrated autoregressive bilinear time series models which are capable of achieving

stationarity for all nonlinear series are proposed in this paper. These models are denoted by BL (p, d, 0, r, 1). The

sufficient conditions for stationarity of this bilinear time seties models are derived. The conditions for the invertibility

of the model are also included. The parameters of the proposed models are estimated using proposed algorithm

and robust nonlinear least squares method and statistical properties of the derived estimates are investigated. The

bilinear models are fitted to Wolfer sunspot numbers and stationarity conditions are satisfied.
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INTRODUCTION

Building probability models for time series
data is an important activity that enables a
statistician to understand the undetlying random
mechanisms generating the series. Better still, it
provides invaluable assistance in forecasting the
future. Linear time series, such as the
autoregressive (AR) models, have been widely
and successfully used in many fields. This is
mainly because these models can be easily
analyzed and provide fairly good approximations
of the underlying random mechanisms of

numerous real-life time series.

Nevertheless, in some situations ‘linear time
series models may be insufficient in explaining the
underlying random mechanisms. This is, for
instance, the case with sunspot data and the
Canadian lynx data set. Linear time series models
cannot adequately describe them, and the test
proposed by Subba Rao and Gabr (1980) does
confirm that linear Gaussian models fail to
describe the above series. Thus a natural
alternative that suggests itself is nonlinear models.
Undoubtedly, the nonlinear time series models are

more complex than linear ones for several reasons.

These are difficult parameter estimation of these
models; intricate studying of statistical properties
of most nonlinear models and sampling
distribution of the estimates; and lastly, difficult
evaluation of optimal forecasts for several steps
in the future from these models. Yet despite these
problems it seems reasonable to expect that in
many situations nonlinear time series model
should work better than a linear time series one.

Special nonlinear models considered by
Granger and Andersen (1978) and Subba Rao
(1981) are known as bilinear (BL) time series
models. Providing a good fit, this class of time
series has been found useful in many areas of
biological sciences, ecology and engineeting (e.g,,
Bruni et al. 1974). Thus many researchers have
studied various bilinear models (e.g,, Pham and
Tran 1981, Gabr and Subba Rao 1981, Rao et al.
1983, Liu 1992, Cathy 1997, Gonclaves et al.
2000, Shangodoyin and Ojo 2003, Wang and Wei
2004, Boonchai and Eivind 2005, Bibi 2006,
Doukhan et al. 2006, Drost et al. 2007, Usoro
and Omekara 2008). This wide use and usefulness
notwithstanding, the above models could not

achieve stationarity for all nonlinear series. As a
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result we proposed bilinear models that could achieve stationarity for all non linear seties.

PROPOSED ONE-DIMENTIONAL INTEGRATED AUTOREGRESSIVE BILINEAR

TIME SERIES MODELS
The models majorly considered by the above authors have its specification as BL (p, 0, £; 1) and can

D r
be defined as follows: *: +z¢jxl—j =¢ +[Z ﬂllxl—rJel—l and these models could not achieve
J=1 A\ J=1

stationarity for all nonlinear series. Therefore the model proposed that could achieve stationarity for
all nonlinear series which is an important improvement over other bilinear time seties models is
called one-dimensional integrated autoregressive bilinear (BL) time series models and this is defined
as follows:

W(B)Xr = ¢(B)VXm + (iblet—k Jel—l + = ’ (1)

denoted as BL (p, d, 0, 1, 1) whete ¢(B)=1 - B—-p,B....... -¢,B°
In the model, y(B)X, = H(B)V? is called the geﬁera]ized autoregressive operatot; it is 2 non stationary

operator; p is the order of the autoregressive component; d is the degree of consecutive differencing
required to achieve stationarity and b’s are the component of nonlinear term Also ¢ are independently

and identically distributed as N(0, o> ). We assume that the models are invertible and have a realization

(X,,X,,..,X,) on the time seties {X,} (Ojo (2009)).

The Vector Form of BL (p, 4, 0, 1, 1)
It is convenient to study the properties of a process when the model is in the state space form

because of the Markovian nature of the model (Akaike (1974)).

Let
-y, =Y, =Y ... Vped-1 Yp+a
1 0 0 ... 0 0
Y =
F=lo 1 0 0 0
0 0 0 ... 1 0
b” b21 bSl brl
B, =0 0 O 0 =1
rxr 0 0 0 0

and vectors g: = (1,0,0,.....,0) andlet l/x\; 7= (X X e X, I—p+d)’ (Here T stands for the transpose

of a matrix) t = .....-1, 0, 1,..... With this notation, we can write the model (1) in the vector form as:
X, =¥X,, +BX, e, +Ce, ' (2)
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STATIONARITY AND CONVERGENCE
OF BL (p, d, 0,1, 1)

In this section, we give a sufficient
condition for the existencé of strictly stationary
process and convergence conforming to the
bilinear model (1). This we do through the
following theorem.

Theorem 1

Let {e,,t eZ } be a sequence of ii.d. random
variables defined on a probability space (Q, F, P)
such that Ee = 0and Ee! =0? <. Let C be

any column vector with components ¢, ¢,, ..., &

yand B be two matrices of order pX p such
thatp(‘]’ QY+ 2B ®B)= A<l. Tl;e seties of
random vectors ’ : '

Z ﬁ(‘l’ +Be,_ ; ke,_,

r2l J=l
converges absolutely almost surely as well as in
the mean for every fixed 7 in Z. Further, if

X, =Ce, +Z,f=1,(‘1’ +Be_ Xe.,, ez,

r2l

_then fot every £ in Z, {X, teZ}is a strictly

stationary process conforming to the bilinear
model

Conversely, if is a strictly stationary process
satisfying

for every ¢ in Z for some sequence {¢, € Z} of
ii.d. random variables with Ee, =0 and
Ee,2 =0? <o and some matrices ¥, B, C of
pxp, px1

p(‘I’®‘I’+02B®B)=ﬂ <1, then for every ¢in
Z.

orders FXF, with

Proof of theorem 1 is given in Appendix A.

INVERTIBILITY CONDITION OF BL(p,
d,0,11)

For a time series model to be useful for
forecasting purposes, it is necessary that it should
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be invertible. The invertibility of linear time seties
models has been discussed by Box and Jenkins
(1970). Granger and Andersen (1978c) have
provided another definition of invertibility which
can be applied to both linear and nonlinear time

seties models. Their definition is as follows:
Let be a discrete parameter time series satisfying
the model .

X{ =f{Xl—jse,_J,j='1,2,...,P}+ e, (4)

where the {e,} are independent random variables.
The random’ variables {e,} are not observable.
Let {é,} be an “estimate” of {e,}, and let the

initial values of {é,} be set equal to zero. The

model (4) is said to be invertible if

lim E {e, -é, }2 —0 when the model and the

{—=®

parameters are known completely. The above
definition holds for the bilinear models under
study. Using this definition, we obtain a sufficient
condition for the invertibility of the VBL(p, d, 0,
t, 1) model.

Consider the VBL(p) model given by (2) and let

X = H'X. Let {6,} be an estimate of {e,}
satisfying the difference equation
X,=H"WX, ,+H"BX,_é, +H'Cé,
HTC{: = _HTBXt-lft-l

)
©)
where £y =e, —¢&,. Assuming the process X, to

be ergodic
4

et }<[er), ®
where ¢, = {HTBX, }/ H"C . Taking limits on
both sides of (7)

. . 4

lim £{¢7 }< lim[E{ 7.
The right-hand term of the inequality tends to
zero as t—w0 if E {C 3} <1 which implies that
H'BE{X X"}B"H <(H'C)? (8)

The condition (8) is a sufficient condition for the
invertibility of the VBL (p, d, 0, r, 1) model.
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Algorithm for fitting One-dimensional
integrated autoregressive bilinear time series
models

We will fit full autoregressive models with
difference operator of various orders and choose
that model for which the Akaike Information
(AIC) is minimum. Let the order of this full linear
autoregressive model with difference operato.r be
ptd and let the model be

X, =y X e v W 0 Xy te

Now, let the mean sum of squates of the residuals
be 62" and its AIC be equal to AIC(1). The

estimation of the full autoregtressive models with
difference operator can be done by the least
squares method. Having - fitted the full
autoregressive with difference operator and with
the minimum AIC (1), we can now fit the best
subset autoregressive model with ‘difference
operator by considering the 2*-1subsets.

X, =y Xttty X

Using the estimation method described in the
following subsection, we fit models of various
ordets and choose the model for which AIC is
minimum. Let the minimum AIC be AIC (3), AIC
(3) d” AIC (2). This is the fitted one-dimensional
integrated autoregressive bilinear models.

Estimation of parameters of BL (p, d,0, r, 1)

The joint density function of (e,,,€,,,,,->€,) >
where 7 = max(r, 1), is given by
Ze ) )

(2”0_2)(n—m+l)/2
Since the Jacobian of the transformation from
(eﬂl > ell’+1 2" e ) to (Xlﬂ > m+1%"°°> Xﬂ) is uIlitY’
the likelihood function of (X X,) is

the same as the joint density function of

(e s€pmepseees
function is equivalent to minimizing the function,
which is as follows:

em

m?> m+) LAt 4

e, ) . Thus maximizing the likelihood
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The subsets can be fitted using the approach
of Hagan and Oyetunji (1980).The model for
which AIC is minimum among the fitted subset
models is chosen. This is the best subset
autoregressive model with difference operator. Let
the best subset autoregressive model with
difference operator be

k
Xl = ZW»:, +Xm—m, -d + €
i=1

where m,,m,,.....,m,, are subsets of the integers

(1, 2, ..., ptd). Let the mean sum of squares of
the residuals be and the AIC value be AIC (2),
AIC(2) d” AIC(1). The estimation of the subsets
autoregressive model with difference operator is
done using the least squares method. Having fitted
the subset autoregressive model, we now define
the bilinear model as follows.

n
QG)=2ef (10)
=m
with  respect to  the  parameter
G =),V 5,05 Biy5eens B,y) . For convenience,
we shall write G, =y,,G, =y,,.......Gy =B,

where R = p +d+r,. Then the partial derivatives
of J(G) are given by

dG) ¢

4G, —21_th S (=128 (11)
d2Q(G)_ 2 Ee de, de, Y d?e, )
dGdG,  ~a'dG, dG, " (o dGdG,

where the partial detivatives of e_satisfy the

:{1, ifi=0
=\x,ifi =1,

recursive equations
de s de,_
WA
dy, ‘3 dy,

2,...,p
(12)
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dze
+ ZW (t) X €m W (t) — o — ()
(,é=1,2,... rym, =1) (13) (i—1,2, D k=12, m= 1) (15)
w, (t) “l
dx// d ; dt//, y/ dy/ d0 LT 16)
G7= 1, 2,..,pD (14) R
d’e : d’e,_ . de
LYW () —L-+ X, — =X = > =
2B, 5. ; (@) Boas, Y, -k dB“ k £ =12,.r5mm =1) a7
W. ()= i B.X. . by the above iterative equations usually converge.
j § - . e
J=1 _ For starting the iteration, we need to have good
We assume that ¢ = 0 (¢ = 1,2 ..., m-1) and Sets of initial values of the parameters. This can
! ‘ " be obtained as follows:
de d’e -  ensi
(- 1 (t Riz=12 Suppose we wish to fit one-dimensional
dgG, dG dG /= 7 > bilineat model BL ® 4, 0, 1, 1). We choose the
., m-1) coefficients of the integrated autoregressive

from these assumptions and equation (13) it
follows that the second order detivatives with

respectto ¥, ((= 1,2,...,p)is zero. For a given

set of values {.y/,. }, and {B.} one can evaluate
the first and second order derivatives using the
recursive equations (12), (13) and (17).

Let :

do(G)

’ dGR

do(G) do(G)

V(G)= ,
©) dG, ° dG,

and let H(G) =[d*Q(G)/dG,dG,] be a matrix
of second partial derivatives. Expanding (G),
near G = ( in a Taylor series, we obtain
V()¢ =0=V(G)+HG)G-G)
Rewriting this equation and following Krzanowski
(1998), we have G -G = —H'I(G)K(G),
thereby obtaining an iterative equation given by
G —g® _g! (G(k))V(G(k)) ,

where G (k) is the set of estimates obtained at
the &b stage of iteration. The estimates obtained

models (IAR) part of. this model equal to the
corresponding best subset IAR model. These
coefficients are used as the initial values for
starting the iteration of iterative equation.

NUMERICAL EXAMPLE: THE WOLFER

SUNSPOT DATA

To present the application of the models
proposed, we use a real time series dataset, the
Wolfer sunspot, available in Box et al. (1994). The
scientists track solar cycles by counting sunspots
— cool planet-sized areas on the Sun where intense
magnetic loops poke through the star’s visible
surface. It was Rudolf Wolf who devised the basic
formula for calculating sunspots in 1848; these
sunspot counts are still continued.

As the Wolfer sunspot data set represent a non-
stationary series, the bilinear models proposed in
this paper may be applied. The Wolfer sunspot
data set is considered in this paper-at three levels,
namely for £ = 50, 150 and 250.
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Fitted Model at t=50
X =0.314548X _ - 0.458429Xt _
e,_,-0.016081X, e _

- 0.302114X. _

2

1 1

_€_, - 0.014003X e - 0.024585X e
Fitted Model at =150
X =0.412820X _, - 0.271125X _, - 0.270908X _

1

e, - 0.006085X,

-17t-1

2

e, - 0.002411X _

27t

Fitted Model at t=250
X, =O.239576X[_ - 0.361665X _

2 3

e, ,-0.014280X e

-5t -6 t-1

— 0.002048X, _

7

— 0.220568X, _
—0.006741X,_,c._, + 0.005995Xt_c

37t -

0.002575X _ e, _,-0.021601X e , + 0.010533X, _

- 0.238746X _
-0365561X _ -0.003211X_e _,-0.0111X e _ -0.007729X_e _

e _,-0.007351X e
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,— 0.386159X
- 0.021399X, e, _

— 0.006533X _
- 0.014003X,

1 1

e1+e
- t

- 0.339150X_, — 0.293320X, _, — 0.002709X
0.009225X e, _, - 0.006196X e _, +

17 t- 4ot — 57t —1

Bet-1 + et

3

- 0.325416X, . - 0.328627X_ — 0.209789X. _
,-0.008414X _e, ,-0.006220X,
1+ et

1

-8 t—

The derived statistics from the above fitted models are given in Tablel.

Table 1. Goodness of Fit of One-Dimensional
Integrated Autoregressive Bilinear Models at # =
50, t= 150 and t=250. All models are Significant
at P<0.001.

Derived Statistics of one-dimensional

1A Bilinear Models

PdOr1 at t=50 t=150 t=250
Residual
Varnance - . 210.5 207.5 242.5
AIC 8.40 8.27 8.52
Schwartz
Criterion 8.52 8.43 8.79
R? 0.58 0.63 0.61

" Adjusted
R? 0.57 0.60 0.56
F(Statistic) 11.97 27.75 54.70

From Table 1, the bilinear models fitted at t =
50, 150 and 250 are significant with probability
level less than 0.001. We could see as well that
when t = 150 the derived statistics gave us the
best estimate.

CONCLUSION

This study focused on new bilinear models
that could handle all non-linear series. Bilinear
models at different levels of sample sizes were
considered using the non-linear real seties.

Moteover, estimation of parameters has
witnessed a unique, consistent and convergent
estimator that has prevented the models from
exploding, thereby making stationarity possible.
The introduction of the 4 factor in our new models
has made us to capture trend and seasonality in
the data, which in turn helps arrive at stationarity
easily for any time seties data set.
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APPENDIX

Here we prove Theotem 1 from section 3. For the sake of simplicity, we will break the proof down
into the following steps.

Sep 1: For neatly sure convergence, we show that

ZE[H(‘P +Be,, )Ce,_,.l

r2l

<®© (A1)

for every =1, 2, ....... - This then implies that

> 17 (‘I’ +Be,_;)Ce,_,
r21j=1

is absolutely convergent almost sutely as well as in the mean.
Step 2: Let us establish (A1) for 7 = 1. The general case is clear. First, we note that for evety #in Z, r1
and s = 1, 2, ..., the following inequality holds:

E‘«T +Be,_, )Ce,., )s| <Ky,

where K| is a constant that de]é)ends only on ¥,B,C and &’
Step 3: If 22, then

[}ﬁﬂ(‘l’ +Be,_, ke,_,J

» for some constant K1 > (). Now obsetve that

(H (¥ +Be,_, )ce, J (( T1(¥.+Be,. )J(‘I’ +Be, ,Ce,., )l‘

E < K ArD2

1

r-1

fl(_{—jl(‘l‘ + Bet— - )) ((\I’ + Bet—r )Cet—r )s

p['
<X
s=I

n the above derivation, we have used the fact that J7’—] (¥ +Be,_;)and (¥ +Be,_, )Ce,_, are"
J=l t=j

](E|((‘I’ +Be,_,)Ce,_,),|)

(17(\1' +Be,_; )J
1s

j_

independently distributed.)
By step 2 and the Cauchy-Schwartz inequality,

](El((‘l‘ +Be,_,)Ce,_, ), |)'

f{E (771(\1' +Be,_ ,.)J
§= J=1

is not greater than

2
K E|E [(ﬁ(wme, J)J J
Is

s=l] J=1

1s

1/2

Now, for any s = 1, 2,.....,,
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[(ﬁl(‘l’ +Be,_; )J J = [[Jh_l(‘l‘ +Be,_, )) ® [ﬁl(‘l‘ +Be,_, )JJ
- ls = s 1s:ls

= (ij:(\r +Be,_,)® (¥ +Be,, )J

Isls

Consequently,
r-1 2 r-1 :
E[(H}(‘IHBe,_,)J J = FI(ECE +Be, ) ® (¥ +Be, ),
J= 1s /=

= ((EI(® +Be,)® (¥ +Be,)]) )5
= (E(Y®P+¢,¥YO®B+¢,B®Y+e’BRB)) )4,
=(PQ¥+5’BOB) ™)y,
<k

Hence

E|

(1’1’(!1' +Be,, )Ce,_,J

J=l

< Klpll(r—l)IZ
1 .

for a suitable choice of K.
Step 4: Since A<1, we have

§ E (g(‘l‘ +Be,_, )Ce,., )
for every =1, 2, ....... b

Thus (A1) is established. Therefore p(‘l’ Q¥ +c’B® B): A <1 is a sufficient condition for strictly
stationary of the model 2.3. Hence the proof.

< o0

Remarks on the proof of Theorem 1
For a real valued process conforming to the bilinear model

y(B)X, = ¢(B)V1Xt = b1 X,_1€,_) +e, for every tin Z under the usual assumptions on the ¢;s,2

sufficient condition for its existence is given by ;//2 +b%52 <1,
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