A REVIEW OF THE TAXONOMY OF AFRICAN SAPINDACEAE BASED ON QUANTITATIVE AND QUALITATIVE CHARACTERS

*Adeyemi, T.O., Ogundipe, O.T. and Olowokudejo, J.D.

Department of Botany, University of Lagos, Akoka, Lagos, Nigeria. e-mail addresses: topssy4u@yahoo.co.uk, toyin60@yahoo.com, deledejo2005@yahoo.co.uk *Corresponding author: topssy4u@yahoo.co.uk, +2348029180930 (Received: April, 2013; Accepted: June, 2013)

ABSTRACT

This study was conducted using qualitative and quantitative morphology to characterise and group different representative species of the family Sapindaceae in Africa. The morphological characters used included leaf, stem and fruit. Essentially, the similarities among various taxa in the family were estimated. A total of 28 genera and 106 species were assessed. Members possess compound leaves (paripinnate, imparipinnate or trifoliolate); flowers are in clusters, fruits occur as berry, drupe or capsule and contain seed with white or orange aril. UPGMA dendograms were generated showing relationships amongst taxa studied. The dendograms consists of a single cluster from 0 57 % similarity coefficients suggesting a single line decent of the members of the family. At 65 % two clusters were observed with *Majidea fosterii* being separated from the cluster. Also, at 67 % similarity coefficient, two clusters were discerned separating the climbing forms from the shrubby forms. *Paullinia pinnata* was separated from the other climbing forms at 67 % while *Allophylus* species were separated into two clusters at 91 % similarity coefficient. The dendograms revealed that the family can be separated into eleven (11) clusters based on qualitative morphological data. A key to the identification of genera is presented in this work.

Key words: Clusters, Dendogram, Identification, UPGMA, Sapindaceae.

INTRODUCTION

The forests in Africa are rich in living organisms and the plant community is particularly rich in great woody trees, lianes, vines, arborescent and herbaceous epiphytes and other plant forms. Sapindaceae Juss. is a family of flowering plants comprising about 1900 species which are predominantly of pan-tropical distribution (Buerki et al., 2009). Members of the family grow in the under storey of forests either as shrubs and trees. They contain milky sap and many contain mildly toxic saponins with soap-like qualities in the leaves and/or the seeds, or roots. Usually they have compound spirally alternate leaves which are sometimes (in Acer, Aesculus, and a few other genera) opposite (Buerki et al., 2009). They are most often pinnately compound, sometimes bipinnate or palmately compound, or just palmate (Acer, Aesculus); with a petiole lacking stipules, but having a swollen base (Singh, 2004).

According to Buerki *et al.* (2009), "the circumscription of the family as well as the relationships among subfamilial entities have been widely challenged since the very first worldwide treatment of Sapindaceae *sensu stricto* (*s.s.*)

(including subfamilies Sapindoideae and Dodonaeoideae) proposed by Radlkofer (1890; 1933)". Several methods have been adopted to solve this problem but with only a little success. Within Sapindaceae s.s., higher taxonomic entities were originally defined by Radlkofer (1933) based on the leaf type, cotyledon shape, fruit morphology, number and type of ovules per locule as well as presence or absence of an arillode. However, this was revised by Müller and Leenhouts (1976) mainly on the basis of macromorphological and palynological characters. Though, a number of investigations have been carried out on the characterization of the family Sapindaceae, little work has been recorded on the African species. Consequently, this project aims at carrying out morphological characterization on members of the family Sapindaceae in Africa with emphasis on the collection, identification and preservation of voucher specimen in secure repositories as well as classification of taxa with a view to showing the relationships among the plant species.

MATERIALS AND METHODS

The grouping used in this study is based on

morphological (vegetative and reproductive), characteristics of the plants collected, which were as far as possible obtained from herbaria and field studies (Table 1).

Source of Plant Materials

Herbarium, dried and fresh samples were used for the study. Plant materials were collected from fields, botanical gardens, forest reserves and this was complemented with herbarium samples.

Identification of the Plant Samples

Preliminary identification was achieved with the aid of floras including Hutchinson and Daziel, (1958); Fouilloy and Hallé, (1973), Cheek *et al.*, (2000). Voucher specimens were prepared and sent to the Forestry Herbarium, Ibadan for authentication. Further authentication of samples was carried out at the Royal Botanic Gardens Kew, UK. The voucher specimens were then deposited at the University of Lagos Herbarium for reference purpose.

Morphological Characterization

Both vegetative and reproductive characters of the plants were used in the description of the family (Table 1).

Vegetative Characterization

Qualitative features such as leaf apex, leaf base, leaf shape and surfaces of leaf and stem were visually assessed or sometimes aided by x10 magnifying hand lens. Quantitative characteristics like leaf size, petiole length, leaf blade length, and plant height were determined using thread and meter rule.

Reproductive Characterization

Qualitative characters such as bract colour, bract margin, bract surface, colour of style and seed, seed shape and fruit surface were determined with naked eyes and sometimes aided by x10 magnifying hand lens. Quantitative features such as length of inflorescence and other cells, sizes of fruit and seed were determined with meter rule while inflorescence number per plant was estimated by direct counting.

Data Analysis

Pair-wise distances (similarity) matrices were computed for all the morphological data using sequential, hierarchical and nested (SAHN) clustering option of the NTSYS-pc 2.02j software package (Rohlf, 1993). The program generated dendograms, which grouped the test lines on the basis of Nei genetic distances using Unweighted Pair Group Method with arithmetic Average (UPGMA) cluster analysis (Sneath and Sokal, 1973).

RESULTS

Sample exploration revealed that members of the family can be largely grouped into trees (Aporrhiza, Atalaya, Blighia, Chytranthus, Deinbollia, Dodonaea, Eriocoelum, Ganophyllum, Lecaniodiscus, Lepisanthes, Litchi, Lychnodiscus, Majidea, Melicoccus, Nephelium, Placodiscus, Radlkofera, Sapindus, Schleichera and Zanha), shrubs (Allophylus, Glenniea, Haplocoelum, Harpullia, Laccodiscus and Pancovia) and climbers (Cardiospermum and Paullinia).

Members of the family Sapindaceae have compound leaves, paripinnate or trifoliolate leaves with exception to *Dodonaea* (Plate 1). The leaf surface is papery and glossy as in *Litchi* chinensis, glabrous or pubescent (e.g. *Laccodiscus* ferrugineus and *Allophylus hirtellus*). The margin is serrated in some taxa i.e. *Allophylus* and *Cardiospermum* while in others it is entire. The leaves are arranged in either sub-opposite or alternate form. Petiole is present, usually bulbous and short with tendrils in the climbing forms and sometimes pubescent in some taxa.

Characters	Character States and Code		
	1 Climber 2 Shrub 3 Tree		
	Stem Characters		
Stem girth	Actual mean value for each taxon		
Stem surface	1. Glabrous 2. Pubescent		
	Foliar Characters		
Leaf apex	1. Acuminate 2. Acute		
Leaf arrangement	1. Alternate 2. Sub-opposite		
Leaf base	1. Acute 2. Cuneate		
Leaf blade length	Actual mean value		
Leaf length	Actual mean value		
Leaf margin	1. Entire 2. Dentate 3. Serrate		
Leaf surface	1. Papery/Leathery/Glossy 2. Pubescent		
Leaf type	1. Compound imparipinnate 2. Compound paripinnate 3. Simple		
Leaf venation	1. Pinnate 2. Reticulate		
Leaf width	Actual mean value		
Number of Leaflets	Actual mean value		
Overall leaf shape	1. Elliptic 2. Oblong 3. Obovate		
Petiole length	Actual mean value		
Petiole surface	1. Glabrous 2. Pubescent		
	Inflorescence Characters		
Inflorescence length	Actual mean value		
Inflorescence type	1. Cyme 2. Raceme		
Floral Characters			
Flower colour	1. Pink 2. Pinkish white 3. Creamy white 4. Red 5. Yellow		
Flower Symmetry	1. Actinomorphic 2. Zygomorphic		
Petal colour	1. White 2. Green 3. Yellow		
Number of petals	Actual mean value		
Sepal colour	1. White 2. Green		
Number of sepals	Actual mean value		
	Fruit Characters		
Fruit size	Actual mean value		
Fruit type	1. Berry 2. Capsule 3. Drupe 4. Inflated 5. Dehiscent		
	6. Indehiscent 7. Schizocarp		
Fruit shape	1. Ellipsoidal 2. Ovoid 3. Flat/trilobed 4. Obovoid 5. Cocci		
	6. Subglobose/Subspherical 7. Globose/Spherical		
Fruit wings	1. 2-winged 2. Trigonous (3-winged) 3. No wings		
Fruit colour	1. Red 2. Green 3. Orange		
Number of seeds	Actual mean value		
Seed shape	1. Globose 2. Oval		
Seed size	Actual mean value		

Table 1: List of Characters, Character States and Codes used in Numerical Analysis

Adeyemi et. al.: A Review of the Taxonomy of African Sapindaceae

Plate 1: Members of Sapindaceae showing Leaves, Flowers and Fruit

(a) Allophylus africanus showing berry fruit; (b) Allophylus spicatus showing trifoliolate leaves and fruits;
(C) Cardiospermum grandiflorum showing flower; (d) Blighia sapida showing capsule fruit; (e) Glennia africanus showing berry fruits; (f) Laccodiscus ferrugineus showing leaves. Scale bars: 20 mm

(a) Majidea fosterii showing leaves and white flowers; (b) Placodiscus sp showing leaves; (c) Pancovia sp showing paripinnate leaves; (d) Paullinia pinnata showing imparipinnate leaves; (e) Radlkofera calodendron showing paripinnate leaves; (f) Zanha golugensis showing paripinnate leaves and trunk. Scale bars: 20 mm

0.89

0.95

1.00

Dodonoideae

Nephelieae

Flowers are arranged in groups, usually creamy white but sometimes pinkish white as in *Dodonaea*. Inflorescence is usually in form of raceme or cyme. Fruits are green in colour turning orange or red as they become ripe however they are brown in *Dodonaea* species. They occur in form of berry, drupe or capsule (3 or 5-lobed) with black colour seed usually with ovoid or sub-globose shape. (Plate 2)

Pair-wise similarity analysis of the data support most of the taxonomic groups arrived at by various orthodox methods. UPGMA dendogram generated showed relationships amongst taxa assessed (Fig. 1). The dendograms consist of a single cluster from 0 - 57 % similarity coefficient suggesting the monophyletic nature of the family. It also revealed that the family can be separated into eleven (11) groups based on qualitative morphological data.

DISCUSSION AND CONCLUSION

In the recent past, several attempts have been made at describing and conserving members of the family Sapindaceae worldwide. However, factors such as high rate of deforestation and agricultural practices continue to pose threats to the continued survival of constituent species especially in Africa (Adeyemi *et al.*, 2012). Also, a large representative of the family is seen to be under some form of threat in the IUCN R.L. (2008).

In this study, a total of twenty eight genera were encountered and identified as members of Sapindaceae. They were found largely in the lowland forest region with a few taxa located in the highlands and mountains (*Allophylus bullatus* L., *Schleichera trijuga* Willd. and *Sapindus saponaria* L.). All the observations made in this study are consistent with earlier description of the family given by Heywood (1978), Singh (2004) and Acevedo-Rodríguez *et al.* (2011).

The vegetative and reproductive morphology of Sapindaceae shows similarities and differences among the various genera constituting the family.

Pair-wise analysis of qualitative data generated a dendogram. A common feature in the dendogram is the clear separation of the family into two major clusters equivalent to the two subfamilies recognised within the family Sapindaceae i.e. Sapindoideae and Dodonaeoideae. However, within the 1st cluster (representing Sapindoideae) the genera were separated first based on the type of leaves they bear then by the type of fruits produced. Hence Allophylus, Cardiospermum and Paullinia were grouped in the same cluster and separated from all the other genera in the subfamily Sapindoideae due to their imparipinnate leaf type. Furthermore, Allophylus was separated from the other two genera based on its nonclimbing habit at 67 % similarity coefficient. Allophylus species were separated into two clusters at 91 % while Allophylus spicatus, Allophylus hirtellus and Allophylus schweinfurthii were delimited from all the other Allophylus species due to the presence of hairs on their leaves. Paullinia *pinnata* was separated from the other climbing forms at 67 % similarity coefficient.

Furthermore, members of the Sapindaceae bearing paripinnate leaves were delimited using reproductive morphology, especially the fruits, thereby forming two major sub-clusters: one consisting of capsule-bearing genera (including *Aporrhiza, Blighia, Chytranthus, Eriocoelum, Laccodiscus, Lychnodiscus* and *Pancovia*) and the other comprising berry - or drupe-bearing genera (including *Atalaya, Deinbollia, Glenniea, Harpullia, Haplocoelum, Lecaniodiscus, Lepisanthes, Litchi, Melicoccus, Nephelium, Placodiscus, Radlkofera, Sapindus* and *Schleichera*). At 65 % two clusters were discerned with *Majidea fosterii* being separated from the cluster.

In conclusion, this work has been able to give concise information on the macro-morphology of the various life forms represented within the family Sapindaceae in Africa hence it would serve as an essential identification tool for field researchers and a basis for further taxonomic work on African Sapindaceae.

Key to Genera:

A tropical family comprising trees, shrubs or climbers with simp	ble, imparipinnate or paripinnate leaves and
	truits in form of drupe, berry or capsule.
1a. Leaves imparipinnate, simple, biternate or trifoliate	2
2a. Tree or Shrub, tendril absent	
3a. Leaves simple, fruit dehiscent capsule	
3b. Leaves trifoliolate, fruit indehiscent berry	Allophylus
2b. Climbing plant, tendril present	
4a. Woody, leaves imparipinnate, margin dentate	, fruit not inflated Paullinia
4b. Herbaceous, leaves biternate, margin serra	te, fruit inflated <i>Cardiospermum</i>
1b. Leaves paripinnate, leaflets 3 10 pairs	
5a. Fruit dehiscent, ovary 2 or 3 lobed	
6a. Inflorescence cymose, not less than 1	0 cm long 7
7a. Shrub, leaf elliptic 8 - 12 cm long	g Laccodiscus
7b. Small tree, leaf oblong 10 - 25 cm	n long Lychnodiscus
6b. Inflorescence raceme, less than 10 cr	n long 8
8a. Fruit 2-lobed, leaf not more than	15 cm long Aporrhiza
8b. Fruit 3-lobed, leaf up to 30 cm	long
9a. Inflorescence up to 20 cm l	ong, seed without aril Pancovia
9b. Inflorescence less than 20 cm le	ong, seed with orange aril 10
10a. Leaflets 5 pairs, base act	ute Blighia
10b. Leaflets more than 5 p	airs, base cuneate Eriocoelum
5b. Fruit indehiscent, ovary 1 3-lobed	
11a. Tree, seeds without	aril
12a. Petiole less than 5	cm long, ovary 3-lobed13
13a. Leaf apex cusp 7-15	idate, leaflets less than 30 cm long, stamen Chytranthus
13b. Leaf apex acum	inate, leaflets less than 45 cm long, stamen Placodiscus
12b. Petiole up to 10 cm	n long ovary 1-lobed
14a. Fruit berry	x 3 - 8 cm in diam
152	A Leaf venation pinnate petiole pubescent
	I ecaniodiscus
15b Leaf ven	ation reticulate petiole glabrous
16a. Leaf	let less than 12 cm long, blade up to 34 cm
16h Leaflets	s more than 12 cm long blade up to 42 cm
	long Schleichera
14b. Fruit drupe,	up to 10cm in diam
	1/a. Leaflets 3 - 9 pairs, inflorescence
racem	e
18a. J	Leaf shape oblong, leaflets 5 - 9 pairs, seed 1 <i>Deinbollia</i>
181	2. Leaf shape obovate, leaflets 4 pairs, seed
17b I	eaflets 5 pairs inflorescence cyme 19
170.1	19a. Leaf shape oblong, inflorescence 10 -
	25 cm long, seed 1 Zanha
	19b. Leaf shape obovate, inflorescence 8 - 15 cm long, seed 2 <i>Lepisanthes</i>
11b. Shrub or tree, seeds wi	th aril 20
	20a. Shrub, fruit 2-lobed 21
	21a. Leaflets 3 pairs, more than 7
	cm long Glenniea
	21b. Leaflets 10 pairs, less than 7 cm
	long 22

22a. Inflorescence 10 cm long, leaflets up to 5 cm long.....Harpullia 22b. Inflorescence 10 - 15 cm long, leaflets less than 3 cm long.....Haplocoelum 23a. Fruit bladder-like, 3-lobed, inflorescence cyme...Majidea 23b. Fruit drupe, 1 2-lobed, inflorescence raceme...... 24 24a. Leaflets 3 - 7 cm wide, seed with white aril...... 25 25a. Fruit 3 - 6 cm long, seed 3.....Litchi 25b. Fruit 5 - 10 cm long, seed 1.....Nephelium 24b. Leaflets 2 - 6 cm wide, seed with orange aril..... 26 26a. Leaflets elliptic, 8 - 12 cm longGanophyllum 26b. Leaflets oblong, 4 - 8 cm long..... 27 27a. Petiole glabrous, seed 1, inflorescence up to 15 cm...Atalaya 27b. Petiole sessile, seed 2, inflorescence less than 10 cm Melicoccus

ACKNOWLEDGMENTS

Special thanks to the Explorer Club, USA for the Expedition grant and the School of Postgraduate Studies University of Lagos, for the Graduate fellowship award.

REFERENCES

- Acevedo-Rodríguez, P., Van Welzen, P.C., Adema, F. and van der Ham, R.W.J.M. 2011.
 Sapindaceae. In: K. Kubitzki (ed.) The Families and Genera of Vascular Plants: Flowering Plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae. Volume X. Springer-Verlag, Berlin, Heidelberg. Pp 357-407
- Adeyemi, T.O., Ogundipe, O.T. and Olowokudejo, J.D. 2012. Species Distribution modelling of Family Sapindaceae in

West Africa. *International Journal of Botany* 8(1): 45-49

- Buerki, S., Forest, F., Acevedo-Rodríguez, P., Callmander, M.W., Nylander, J.A.A., Harrington, M., Sanmartín, I., Küpfer, P., and Alvarez, N. 2009. Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). *Molecular Phylogenetics and Evolution* 51: 238 - 258.
- Capuron, R. 1969. Révision des Sapindacées de Madagascar et des Comores. Mém. *Mus. Natl. Hist. Nat. B Bot.* 19: 1 - 189.
- Cheek, M., Onana, J.M. and Pollard, B.J. 2000. The Plants of mount Oku and the Ijim ridge, Cameroon: A Conservation Checklist. Royal Botanic Gardens, Kew, London. 211pp.

- Fouilloy, R. and Hallé, N. 1973. *Flora of Cameroon: Sapindaceae*. Volume 16. National Museum of Natural History, Paris. 202pp.
- Heywood, V.H. 1978. Flowering Plants of the World. Oxford University Press, London. 335pp.
- Hutchinson, J. and Daziel, J. M. 1958. Flora of West Tropical Africa. Volume 1, Part 2. Crown Agents for Overseas Government and Administrations, Millbank, London. 828pp.
- Müller, J. and Leenhouts, P.W. 1976. A general survey of pollen types in Sapindaceae in relation to taxonomy. In: I.K. Ferguson and J. Müller (eds.) *The Evolutionary Significance of the Exine*. Academic Press, London. pp 407 - 445.

- Radlkofer, L. 1890. Ueber die Gliederung der Familie der Sapindaceen. Sitzungsberichte der Königl. Bayerischen Akademie der Wissenschaften zu München 20: 105 - 379.
- Radlkofer, L. 1933. Sapindaceae. In: A. Engler (ed.) Das Pflanzenreich: Regni Vegetabilis Conspectus (IV) 165 (Heft 98ah). Leipzig, Verlag von Wilhelm, Engelmann. pp 983 - 1002.
- Rohlf, F.J. 1993. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis, Version 2.02j. Applied Biostatistics, New York.
- Singh, G. 2004. *Plant Systematics: An Integrated Approach.* Science Publishers, New Hampshire, Enfield. 561pp.
- Sneath, P.H.A. and Sokal, R.R. 1973. *Numerical Taxonomy*. W.H. Freeman, San Francisco. 573pp.