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ABSTRACT

The application of one-dimensional (1-D) backstripping analysis was used to determine subsidence patterns in
three offshore wells (Ayetoro — 1, Baba — 1 and Epiya — 1) located in the Nigeria sector of Benin (Dahomey)
Basin. Biostratigraphic data obtained in the three wells indicated that the oldest sediment penetrated vatied from
Cenomanian to Campanian in age while the youngest sediments are Eocene to Neogene in age. Results of
subsidence analysis of the Cretaceous to Tertiary sediments revealed four main phases of subsidence, these are
(i) Early late Cretaceous phase characterised by accelerated tectonic subsidence and gradual uplift patterns; (ii)
Late Cretaceous phase characterised by relatively high uniform rates of subsidence and minor uplift; (iif)
Paleogene to Neogene phase was characterised by variable rates of tectonic subsidence and uplift; and  (iv)
Quaternary phase began with accelerated tectonic subsidence and followed by reduced rates of tectonic
subsidence. The results obtained showed that quantitative analysis of tectonic subsidence is feasible in the area

of study area.
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INTRODUCTION

Vertical movements in sedimentary basins during
their development in geological time are being
constrained by their tectonic subsidence and
uplift histories. The techniques of geohistory
analysis and backstripping by Van Hinte (1978)
and Sclater and Christie (1980) respectively, have
proved to be powerful tools in quantifying
patterns of tectonic subsidence and uplift.
Geohistory analysis has been used to study the
vertical response of sedimentary basins to
tectonics both in extensional (Sclater and Christie,
1980) and compressional (Coudert ez al., 1995)
tectonic settings. The applications of
backstripping technique in passive margin settings
have been remarkably successful, especially, in the
response of sedimentary basins to the effect of
subsidence and uplift.

The application of the backstripping technique to
the Nigeria sector of Benin (Dahomey) Basin was
performed by Onuoha and Ofuegbu (1987) to
infer the Cretaceous — Tertiary subsidence and
burial histories. However, the study was
constrained by limited number of well (Afowo—1)
located in the shallow offshore area. Recently,
new quantitative and qualitative insights have been
gained through the application of geohistory and

backstripping techniques both on regional and
local scale. Such insights include; anomalous
subsidence (Ceramicola ez al, 2005), tectonic
control on the architecture of sedimentary facies
(Carminati ¢ al., 2007) and reconstruction of
synsedimentary fault activity (Wagreich and
Schmid, 2002).

This paper employed the methods that have been
previously used for the recovery of tectonic
component of subsidence from fully lithified and
siliciclastic sedimentary successions made up of
different lithologies. It presents an attempt to
quantitatively derive the tectonic subsidence and
uplift history in offshore section of Benin Basin
where data are available on exploratory wells.
The tectonic subsidence and uplift analyses
carried out on the three wells cover the entire
depositional history of the sediments, which span
through Cenomanian and Pleistocene. The three
wells were drilled to the top of basement rocks as
observed from the ditch cuttings descriptions, but
the oldest sediment encountered was
Cenomanian.

Geological Setting and Stratigraphy

The Benin (Dahomey) Basin forms one of a
series of West African Atlantic Margin basins that
were initiated during the period of rifting in the



456

late Jurassic to early Cretaceous. (Omatsola and
Adegoke, 1981; Weber and Daukorou, 1975;
Whiteman, 1982). The basin stretches along the
coast of Nigeria, Benin Republic, Togo and
Ghana in the margin of the Gulf of Guinea (Fig,
1). Itis separated from Niger Delta in the Eastern
section by Benin Hinge Line and Okitipupa Ridge
and marks the continental extension of the chain
fracture zone (Wilson and Williams; 1979; Coker
and Ejedawe, 1987, Onuoha, 1999). Itis bounded
on the west by Ghana Ridge, and has been
interpreted as the Romanche fracture zone
(Whiteman, 1982; Burke e7 a/., 2003). The basin fill
covers a broad arc—shaped profile, attaining about
13 km maximum width in the onshore at the basin
axis along Nigerian and Republic of Benin
boundary. This narrows westwards and eastwards
to about 5 km (Coker and Ejedawe, 1987; Coker,
2002).

Detailed geology, evolution, stratigraphy and
hydrocarbon occurrence of the basin have been
described by Jones and Hockey (1964), Reyment
(1965), Adegoke (1969), Omatsola and Adegoke
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(1981), Coker and Ejedawe (1987), Billman (1992)
and Hack ez a/. (2000). Most of these authors have
recognized two structural elements, which
comprise the Benin basin proper and the
Okitipupa structure. Coker and Ejedawe (1987)
identified three structural domains; namely, the
onshore (Bodashe, Ileppa — Ojo), the Okitipupa
structure (Union — Gbekebo) and offshore. They
emphasized that these three structural domains
have gone through three main stages of basin
evolution. These stages are initial graben (pre-
drift) phase, prolonged transitional stage and
open marine (drift) phase.

Early study on the basin stratigraphy by Jones and
Hockey (1964) recognized both Cretaceous and
Tertiary sediments (Fig. 2). Other subsequent
workers recognized three chronostratigraphic
units: (i) pre-lower Cretaceous folded sequence,
(ii) Cretaceous sequence and (i) Tertiary
sequence (Omatsola and Adegoke, 1981; Billman,
1992) (Fig. 2). The Cretaceous stratigraphy as
compiled from outcrop and borehole records
consists Abeokuta Group sub-divided into three
informal formational units namely Ise, Afowo
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Fig. 1. Regional map of four countries showing the location of the Benin (Dahomey) Basin in the
Gulf of Guinea (modified from Brownfield and Chapentier, 2000).
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Fig. 2. Stratigraphy of the Nigerian sector of the Benin (Dahomey) Basin.

(Omatsola and Adegoke, 1981). Ise Formation
unconformably overlies the basement complex
and comprises coarse conglomeratic sediments.
Afowo Formation is composed of transitional to
marine sands and sandstone with variable but
thick interbedded shales and siltstone. Araromi is
the uppermost formation and is made up of shales
and siltstone with interbeds of limestone and
sands (Fig. 2). The Tertiary sediments consist of
Ewekoro, Akinbo, Oshosun, Ilaro and Benin
(Coastal Plain Sands) Formations (Fig. 2). The
Ewekoro Formation is made up of fossiliferous
well-bedded limestone while Akinbo and
Oshosun Formations are made up of flaggy grey
and black shales. Glauconitic rock bands and
phosphatic beds define the boundary between
Ewekoro and Akinbo Formations. Ilaro and Benin
Formations are predominantly coarse sandy
estuarine, deltaic and continental beds.

The stratigraphy of the Cretaceous and Tertiary
Formations in the Nigerian sector of the basin is
controversial. This is due primarily to different

stratigraphic names that have been proposed for
the same Formation in different localities in the
basin (Billman, 1992, Coker, 2002). This situation
can be partly blamed on the lack of good
borehole coverage and adequate outcrops for
detailed stratigraphic studies.

METHODS

The procedure used to calculate the tectonic
subsidence in the Nigeria part of Benin Basin
located in the Gulf of Guinea which corresponds
to a miogeoclinal sedimentation was a
modification of backstripping method of
Steckler and Watts (1978), Sclater and Christie
(1980) and Bond and Kominz (1984). The
procedure involved the following stages: (i)
successive restoration of stratigraphic sections to
their initial thicknesses and bulk densities; (if)
decompaction of stratigraphic sections; and (iii)
tectonic subsidence calculation. In the present
study, the backstripping technique was applied to
three wells located in the offshore section of
Benin (Dahomey) Basin (Fig. 3).
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Fig. 3. Geological map of southwestern Nigeria showing the location of three wells in the offshore

part used for the backstripping analysis.

The procedure began with restoring the lowest
unitin a stratigraphic section to its initial thickness
and bulk density, and placing its top at a depth
below sea level corresponding to the average water
depth in which the unit was deposited. This was
followed by removing the isostatic subsidence of
the basement caused by the weight of the
sediment in the unit. The depth to the surface on
which the unit was deposited was recalculated with
only the weight of the water as the basement
loading factor. This procedure was repeated for all
the sedimentary units in the section placing each

successively younger unit on top of the previous
unit. The variation in paleowater depth and
relative sea level changes was included in these
calculations.

The backstripping equation was derived by
considering a case shown in Figure 4 of two
columns of the crust and upper mantle that
before and after backstripping are in isostatic
equilibrium. If the pressure at the base of the two
columns is balanced the equation below will hold:

p,gW,+p,gS*+pg=p,gtp +xp,g-—1
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where W, S*, , v, are the water depth, de-
compacted sediment thickness and tectonic
subsidence of the i stratigraphic layer,
respectively, while g is the average gravity and T,
p,.p, and p,are the mean crustal thickness, crustal
density, water density and de-compacted sediment
density, respectively. Crustal density and mean
crustal thickness are assumed to be constant
during the unloading process.

The equation below can also be used to explain
Figure 4.
X=W,+8*+ T(y,+A,+T)

Where A  is the change in relative seal level.
Y1: Wr{i + S*/ (pm pﬂ) /

(pm pn')}_ A sli pr// ( pm p:z’) 3
Equation (3) is the backstripping equation, which

allow v, to be determined directly from observed
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stratigraphic data.
The following terms are defined from the
equation

W, = water depth

S*{(p, p.,)/ P, p,) }= sedimentloading
Ai{p,/ (p, p,) = secalevelloading

For accurate application of the equation it
is necessary to determine: (i) the thickness and (ii)
density of the sediments in the past before the
effect of diagenetic (post-depositional)
processes. This is because the observed present
thickness of the stratigraphic layer has been
affected by post-depositional processes. Since
backstripping attempts to correct the
stratigraphic record for the effects of loading in
the past, it is not sufficient to use the sediment
thickness and density of a stratigraphic unit as
measured today. The process used to determine
the unlithified stratigraphic thickness and density
is called de-compaction.

Loaded

Unloaded

Reference surface

(present day sea-level)

X

_ Depth of
compesation

Fig. 4. Two columns of the crust and upper mantle before and after backstripping are in
isostatic equilibrium (from Scalter and Christie, 1980).
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De-compaction was considered as a mechanical,
non-reversible process, where there was no
alteration of the grains due to diagenesis. In that
case we shall consider a cylinder of sediment and
water schematically illustrated in Figure 5. The
porosity of the sediment @ is given by the ratio of
the volume of water, V, to the total volume V..
Assuming the cylinder is of uniform cross
sectional area, @ canbe expressed as

®=h,/h 4
where h, and h, are the heights of the water
column and the total height of the column
respectively. If h_is the height of the sediment
grains then

h,=h +h, 5
Therefore h,=h, (1- D) 6

hw

h:

hg

Fig. 5. Vertical cylinder showing height of water and
sediment grains(http://atlas.geo.cornel.edu).

If we assume that during de-compaction (and
compaction) h, is constant and so as h, changes so
will ®@. Consider the i" stratigraphic unit at some
depth in a well which due to compaction has a
thickness S; and porosity @,. The height of the
grains is given by the equation
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h,= S (1-D,) 7

The height of the grains for the de-compacted
unitis also h and so is given by

h, = 8% (1- @*) 8
where $* and ®* are the thickness and porosity
of the de-compacted layer respectively (Fig; 6).

If we assume that the equivalent height of the
grains is the same before and after compaction
then we obtain the following by equating the two
equations above:

5% =5, (1-B) / (1-0%) 9
This equation shows that the thickness of the de-
compacted layer depends on the present day (i.e.
compacted thickness) thickness and porosity, and
the porosity when the unit was near the surface at
the time of formation. Porosity values were
estimated by “sliding” a unit up an approximate
porosity versus depth curve of Bond and Kominz
(1984) (Fig. 7). Present day thicknesses were
determined from well logs.

The backstripping technique involves the
unloading of a de-compacted sedimentary layer
and so requires its thickness as well as an estimate
of its density. This is most easily obtained by
considering the volume and mass of the de-
compacted layer. Therefore the following
equations hold:

V.=V +V, 10
M,= M, +M, 11
where t, wand gare the total, water and grain mass
respectively, while V and M are for volume and
mass. Solving for M in equation (11) , it then
follows that:

PV =P VTPV, 12
where p, and p, are the average density and grain
density of de-compacted layer, respectively.
Substituting for V, from equation (12) and
dividing by V we get
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Porosity

Deptn

Fig. 6. Schematic diagram showing the thickness
and porosity of a sedimentary layer at the surface
and atdepth (http://atlas.geo.cornel.edu).

Pi= P, P* + o, (1- D) 13
Equation 13 allows the density of decompacted
layer to be calculated.

In the calculations carried out the following

constants were used; density of mantle (p,) =
3300 kgm”, density of sediment (p,) = 2720 kgm”,
and density of water (p,) = 1000 kgm”.

The procedure described above is only applicable
in the backstripping of a single (i") sediment layer.
In practice, backstripping affects more than one
layer. To backstrip multiple layers restoration must
be carried out for all the stratigraphic units in a
sequence for each geologic time. That is, de-
compacting the younger units and compacting the
older ones (Fig. 8). The total thickness, S*, is easily
obtained by summing all the individual
thicknesses. In the case of the density, the mass of
the total thickness must sum the masses of all the
individual stratigraphic units within it and so we
have that

p.5* =2 { o p, @% +p, (1-¥) } Sy =14
i=1
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Fig.7. Summary of porosity vs depth curves for
different lithologies from Bond and Kominz
(1984).

where n is the total number of stratigraphic units

in the sequence ata particular time.

Therefore

pszz ({ P. ®*i+ Pei (1_q)*i)} S*i)/s* """ 15
i=l1

Finally, the total tectonic subsidence or uplift, v,

can then be obtained by substitution in the

backstripping equation.

V=W §*(p, p)/ (P, P.)}-
Asl p,,, (pm pu') ———————— 16

where the first term in the equation is the water
depth, the second a sediment loading term, and
the third a sea-level loading term.

Water depth was determined from
paleobathymetry data obtained from
biostratigraphic information while relative sea
level was determined from the sea level curve of
Haq ez al., (1988). After all the parameters have
been determined, they were input into Microsoft
Excel package for computation.
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Fig. 8.Schematic diagram illustrating how multiple sediment layers can be backstripped
(http://atlas.geo.cornel.edu).

RESULTS AND DISCUSSION

The thickness of the stratigraphic intervals,
paleobathymetry and values obtained for the
subsidence rates in the three wells are presented in
Tables 1, 2 and 3. An attempt is made here to
discuss some aspects of the evolution of the
Benin Basin based on the data obtained from
OML 97 for Upper Cretaceous and Tertiary times
using the interplay of changing subsidence and
sedimentation rates. The subsidence history of
sedimentary basins is controlled by four main
factors. These are: (a) changes in crustal thickness
as a result of extension or shortening; (b)
deposition or erosion, which results in loading or
unloading of the crust; (c) changes in
accommodation space and water loads as a result
of local or global rise and fall in sea-level; and (d)
density changes of the crust caused by thermal
effects or some other processes such as magmatic
underplating (Kusznir ez al., 1995;
Watcharanantakul and Morley, 2000). From the
subsidence analysis carried out on the three
offshore wells, the following phases of tectonic
subsidence may be identified in the tectonic and
total subsidence history of the study area as shown

in Figures 9,10and 11.

(a) Early late Cretaceous phase characterised
by accelerated tectonic subsidence and
gradual uplift patterns.

(b) Late Cretaceous phase characterised by
relatively high uniform rates of
subsidence and minor uplift.

(c) Paleogene to Neogene phase
characterised by variable rates of tectonic
subsidence and uplift.

(d)  Quaternary phase starting with
accelerated tectonic subsidence and
followed by reduced rates of tectonic
subsidence.

Three main episodes can be recognized in Epiya —
1, which penetrated Cenomanian to Santonian
sediments. The first phase strictly occurred
during Cenomanian and was characterised by
period of subsidence followed by another period
of zero vertical motion. This subsidence was
approximately 81 m/Ma and was fully
overbalanced by shallow marine to shelf
sediments deposition of approximately 127
m/Ma. The next period
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Fig. 9. Subsidence and uplift patterns in Epiya — 1 well.
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Fig. 11. Subsidence patterns in Ayetoro — 1 well. Periods of unconformity and uplift are shown in
the model.

approximately 97 m/Ma. The Coniacian through
Santonian were periods characterised by uplift at
slow rate of 31 m/Ma. This was balanced by very
slow rate of sedimentation at a rate that averaged
13 m/Ma for these geological ages. This slow rate
of wuplift combined with slow rate of
sedimentation was probably responsible for the
Santonian regression experienced in this part of
the basin.

At the expiration of the uplift during late
Santonian another period of subsidence started in
Campanian, which marked the onset of
sedimentation in the location of Baba — 1 and
Ayetoro — 1 wells. This period of subsidence was
investigated in three wells - Baba — 1, Ayetoro — 1
and Epiya — 1. The subsidence probably took
place ata very slow rate not higher than 10m/M in
Baba — 1, and Ayetoro — 1 wells. Sedimentation
rate during this period was equally slow; it varied
from 14 m/Ma to 23 m/Ma as indicated in the
wells.

As evidenced in the wells, the Maastrichtian age

experienced an unsteady tectonic event
characterised by different periods of subsidence
and uplift observed in the three wells. The
tectonic evolution of the basin as documented in
Baba — 1 and Epiya— 1 involved subsidence at the
rate of 141.1 m/Ma to 26.9 m/Ma. As shown in
Epiya — 1, this slow subsidence rate began in the
Campanian and terminated before the end of
Maastrichtian. Subsequently a period of no
vertical motion took place for about 1.2 Ma and
this terminated at the end of Maastrichtian.
Analysis performed on Ayetoro — 1 showed that
there were two periods of tectonic uplift (57.6
m/Ma and 28.8 m/Ma) and two periods of
subsidence (208.6 m/Ma and 143.9 m/Ma). This
inconsistent tectonic events was fully balanced by
moderate sedimentation rates of 80 m/Ma, 78
m/Maand 52 m/Ma as documented in Epiya—1,
Ayetoro — 1 and Baba — 1, respectively. This
complex pattern of motions, especially the
periods of wuplift and moderate rate of
sedimentation were probably responsible for the
shallowing of the sediments and erosion that took
place in upper Maastrichtian.
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The Paleocene age also represents another period
of wvariable tectonic movements. Information
obtained from Ayetoto — 1 and Baba — 1 shows
that uplift conditions started at the beginning of
Early Paleocene at a rate higher in Baba — 1 (57.7
m/Ma) and slower in Ayetoro — 1 (21.6 m/Ma).
Subsequently, it was accompanied by subsidence
which initially was slower in Baba—1 (48.1 m/Ma)
and suddenly increased to 351 m/Ma for a short
period of 1.04 Ma. The Upper Paleocene age in
the location of Baba — 1 was characterised by
alternating two periods of uplift and subsidence.
The firstand second periods of uplift occurat77.8
m/Ma and 188.9 m/Ma, respectively while the
first and second subsidence took place at high rate
of 305 m/Ma and 283.3 m/Ma, respectively. As
shown in Ayetoro — 1, Upper Paleocene tectonic
activities equally began with a period of uplift
(21.6 m/Ma) accompanied by moderate
subsidence (74.1 m/Ma), which extended to and
terminated in the Eocene. Tectonic activities as
documented in Epiya — 1 during the Paleocene
differ slightly from those documented in the other
two wells, which consists of two periods of
continuous differing subsidence rates and one
period of uplift. In addition, these events could
not be differentiated from those of Early and
Lower Paleocene owing to poor resolution of
data. The Paleocene period began with a slow rate
of subsidence (49.5 m/Ma) and suddenly
increased to 740.1 m/Ma. A similar scenario was
observed in Baba — 1 as explained above. After the
cessation of the subsidence, there was another
period characterised by high rate of uplift (309.8
m/Ma). This uplift terminated the Paleocene
tectonic events as recorded in Epiya — 1.
Sedimentation rate was high in Epiya — 1 (108
m/Ma) and diminished from the Eatly Paleocene
(Baba — 1, 57 m/Ma; Ayetoro -1. 31 m/Ma) to
Late Paleocene (Baba—1.32 m/Ma; Ayetoro -1. 11
m/Ma) in the other two wells. This rate of
sedimentation probably could not keep pace with
the high rate of subsidence leading to deepening
trend of facies. However, the relatively high rate
of uplift recorded in the Late Paleocene was
probably caused subsequent erosion that
prevented the preservation of FEocene and
Oligocene sediments.

Eocene and Oligocene tectonic events were not
documented in Baba — 1 and Ayetoro — 1, because
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of poor to non-preservation of these sediments
in these two wells. Eocene sediments were pootly
preserved in Ayetoro — 1 with uncompacted
sediment thickness totalling 132.6 m and there
was no documentation of such sediments in Baba
— 1. However, these sediments were preserved in
Epiya — 1, which enabled the determination of
tectonic events during these geological ages.

The Eocene to Oligocene tectonic evolution was
characterised by three main episodes; two are
restricted to the Eocene while the last episode
began in Late Eocene and lasted till the end of
Oligocene. The first phase exhibited moderate
subsidence at the rate of 24.7 m/Ma. This phase
was followed by period of decreased subsidence
with a rate (9.1 m/Ma) that was less than half of
the first phase. The following phase, which
extended to the Oligocene experienced relatively
rapid subsidence and attained a rate of 41.3
m/Ma. Sediment input was very low during
Eocene to Oligocene as documented in Epiya— 1.
There was sharp decrease in the rate of
sedimentation from 108 m/Ma in Paleocene to
10m/Ma in Eocene, which gradually increased to
25 m/Ma during Oligocene. The Eocene to
Oligocene subsidence was fully compensated for
by the deposition of marine mid shelf sediments,
with progressive upward shallowing. This caused
periodic fluvio-marine conditions in the later part
of the sedimentation. Low sedimentation rates
and upward shallowing of the sediments could
have been caused by the previous high rate of
uplift recorded in ILate Paleocene. Available
evidence from seismic showed that erosion has
affected some parts of the area, especially the
locations of Baba — 1 and Ayetoro — 1, during the
Eocene and Oligocene. This erosion did not
affect the location of Epiya — 1. This suggests
significant difference in the rate of uplift in the
area.

Uplift was documented in two wells at the
beginning of Miocene at the rate of 79.2 m/Ma
and 43.6 m/Ma in Epiya — 1 and Ayetoro — 1
respectively. Subsequently, two phases of
subsidence was preserved in Epiya— 1 ata rate of
52 m/Ma and 594.1 m/Ma. This corresponds to
increasing rate of subsidence. A period of uplift
at a rate of 59.4 m/Ma ended the tectonic event
in the area of Epiya — 1 well during Early
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Miocene. In a similar manner, subsidence followed
the initial upliftin the location of Ayetoro—1atan
high rate of 113.3 m/Ma. Contrary to the event
recorded in Epiya — 1 this was followed by slow
rate (35.4 m/Ma) of uplift, while another high rate
of subsidence (141.6 m/Ma) followed this uplift
and terminated the Early Miocene tectonic event
in thelocation of Ayetoro— 1. Theirregular nature
of tectonic event recoded in the previous two
wells during Early Miocene was not present in
Baba — 1. Two episodes were recorded, the first
phase was characterised by very low subsidence
rate (4.2 m/Ma). Subsequently, it was replaced by
an high rate of subsidence (586.5 m/Ma). The
Early Miocene sedimentary succession began to
be deposited in marine outer shelf environment
characterised by fluvio-marine influence similar to
the Oligocene. Sedimentation rates were not
uniform in the three wells, Epiya — 1 was
characterised by high rate (177 m/Ma) compared
with Baba — 1 and Ayetoro — 1 areas that received
35 m/Ma and 36 m/Ma, respectively. This non-
uniformity in the amount of sediment received in
the different locations of the wells was probably
related to different amount of sediments supplied
to these locations. In addition, the increasing and
extremely high subsidence rate (594.1 m/Ma)
experienced in Eipya —1 for long period (5.05 Ma)
may account for the high rate of sediment
deposition when compared with those of the
locations in other two wells.

Subsidence pattern in the Middle Miocene was
almost similar in Epiya — 1 and Baba — 1, when
only one phase of subsidence was recorded. In
Epiya — 1, the subsidence started at a moderate
rate and attained a high rate of 126.1 m/Ma within
aperiod of 4.4 Ma and terminated at the beginning
of Upper Miocene. In Baba — 1, the subsidence
began during Middle Miocene and ran through the
earliest part of Upper Miocene. The rate was low
(31.6 m/Ma) and occurred within a longer period
of 8.5 Ma, when compared with the rate at Epiya —
1. The pattern of subsidence in Ayetoro — 1 is
different from those of Baba — 1 and Epiya — 1.
Three episodes of subsidence and uplift were
documented in the well. The first phase of
subsidence occurred at very high rate of 274.2
m/Ma within a time interval of 1.24 Ma. This was
accompanied by ephemeral uplift that took place
within 0.62 Ma at a rate of 258.1 m/Ma. This
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represents a very high rate of uplift when
compared with the previous ones, but the time
interval was of short duration. Similarly another
period of ephemeral subsidence followed this
uplift at a very high rate of 306.5 m/Ma. The
following uplift was at a rate of 230.2 m/Ma.
Lastly there was another ephemeral subsidence
that has the highest rate (612.9 m/Ma) within the
interval. The Middle Miocene sedimentary
succession was deposited in deep marine
environments ranging from outer neritic to
bathyal environment in all the locations of the
three wells. However, sedimentation rates were
higher in Baba — 1 and Ayetoro — 1 with the two
wells having values of 162 m/Ma and 220 m/Ma,
respectively. Epiya — 1 was characterised by low
rate of 82 m/Ma within an interval of 4.4 Ma.
The increased rate of sedimentation observed in
Baba — 1 and Ayetoro — 1 was probably related to
extremely high rate of subsidence documented
during this period. Although high rate of
subsidence was not recorded in Baba— 1, it will be
recalled that upper Lower Miocene (preceding
Middle Miocene) in Baba — 1 recorded an
unprecedented amount of subsidence rate (586.5
m/Ma). This high rate of subsidence was
interpreted as being responsible for the high rate
of sedimentaccumulation.

Low subsidence rate (12.7 m/Ma) with one phase
characterised Late Miocene in Epiya — 1, whereas
the situation was not the same in Baba — 1 where
two episodes of subsidence were recorded with
the initial one extending from Middle Miocene to
Late Miocene at a low rate of 31.6 m/Ma. This
phase was accompanied by fast subsidence phase
(about 267.9 m/Ma). The accelerated subsidence
phase terminated at the end Late Miocene. In
Ayetoro — 1, the situation is different from the two
described above. The uplift that ended the
tectonic activity during Middle Miocene extended
to the beginning of Late Miocene. It occurred
within a period of 1.25 Ma at a rate of 88 m/Ma.
Subsequently, this uplift was replaced by
moderate subsidence at a rate of 57.1 m/Ma. The
last period that lasted for about 2.5 Ma
experienced no vertical motion; hence uplift or
subsidence was not recorded. The wvariable
pattern of tectonic activities experienced in the
three wells was fully compensated for by
deposition in marine environments possibly
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restricted to outer neritic environment in all the
locations of the wells. Sedimentation rate
decreased in Epiya — 1 from the previous 177
m/Ma to 82 m/Ma, contrary to the case of Baba—
1 that experienced increase in sedimentation rate
from 162 m/Ma to 442 m/Ma. Also sharp
decrease was observed in Ayetoro — 1, where the
rate of sedimentation decreased from 220 m/Ma
to 46 m/Ma. The increased rate of sedimentation
observed in Baba — 1 compared with the other two
wells was interpreted as the high rate of
subsidence documented in the well.

Tectonic evolution for Pliocene section was well
documented in Baba — 1. The sediments were
classified as Farly and Late Pliocene owing to the
resolution of data in the well. The Lower Pliocene
section in Baba — 1 is typically composed of four
episodes of tectonic activities, and the fifth
episode extended to Late Pliocece. The first phase
is characterised by upward motion (uplift) at a very
high rate of 750 m/Ma. This uplift probably took
place within a short geological period of 0.34 Ma.
This was followed by a period of another
subsidence that occurred at a rate of 173 m/Ma.
Subsequently, there was a short period of basin
quiescence when there was no vertical motion.
This period lasted for 0.35 Ma approximately. An
unprecedented high rate of subsidence
accompanied the period of basin quiescence.
During this period the subsidence rate rose to
1183.6 m/Ma within a short interval of 0.35 Ma.
The fifth episode of subsidence extended to Late
Pliocene and was characterised by slow rate of 75
m/Ma. During the petiod, vertical motion of the
basin in the location of Baba — 1 was not as
significant as that of Farly Pliocene. The
accompanying period of basin subsidence
occurred at a rate of 491 m/Ma within an interval
of 0.22 Ma. There was no vertical motion
recorded in the well in the later part of ILate
Pliocene for another period of 0.66 Ma until the
beginning of Quaternary.

In the location of Epiya — 1, Pliocene local
tectonic event is composed of a period of uplift,
two periods of quiescence and two periods of
subsidence. It started with an uplift at a rate of 129
m/Ma followed by another period of subsidence
ata rate of 102 m/Ma. Each of them lasted for an
estimated period of 0.39 Ma. There was a
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moderately long period of non-vertical motion in
the location of Epiya — 1, which lasted for 1.17
Ma. This was accompanied by high subsidence
rate (688.8 m/Ma), which lasted for a short period
of 0.39 Ma. There was no significant vertical
motion recorded after this last phase of
subsidence. Three episodes of local tectonic
events were recorded in the location of Ayetoro —
1; they include two periods of subsidence
interrupted by a period of uplift. These two
phases of subsidence occurred at a rate of 587.2
m/Maand 221.6 m/Ma, while the uplift occurred
at a rate of 119.1 m/Ma. The last phase of the
subsidence extended to the beginning of
Pleistocene. The Pliocene sedimentary
succession was deposited in shelf marine
environments ranging from inner to middle
neritic. Sedimentation rate was high (Baba—1.187
m/Ma; 193 m/Ma; Ayetoro -1.344 m/Ma; and
Epiya — 1.260 m/Ma) and balanced up with the
high subsidence rate recorded during this period.
This possibly was responsible for the progressive
shallowing of water depth that occurred during
this period.

Data were only available in two wells (Baba — 1
and Ayetoro -1) to document the Quaternary
tectonic events in the area. These events were
characterised by extremely high periods of
subsidence and minor periods of uplift. In
Ayetoro — 1, these events have the following
subsidence rates: 221.6 m/Ma, 1339.3 m/Ma,
1549.1 m/Ma and 156.2 m/Ma. Also recorded
was an episode of non-vertical motion and
another episode of upliftata rate of 357.1 m/Ma.
Five events were recorded in Baba — 1,
characterised by variable subsidence rates and one
episode of uplift. These rates occur in the
following order: 1096 m/Ma, 121.8 m/Ma,
1948.8 m/Ma and 1218 m/Ma. The uplift episode
has a rate of 121.8 m/Ma.  Sedimentary
succession during Quaternary was deposited in
shelf marine environments ranging from inner to
middle neritic, which is similar to previous
environments. Sedimentation rate was extremely
high being the highest recorded in all the wells.
The rates in Baba — 1 and Ayetoro — 1 are 588
m/Ma and 797 m/Ma, respectively.  The
sedimentation rate was balanced with the high
subsidence rate recorded in the Quaternary. This
resulted in progressive shallowing of water depth
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and progradation of facies. Essential trends of
events Epoch by Epoch in the three wells are

Table 4. Relationship between basin tectonics and geological Epoch in Epiya — 1.

presented in Tables 4, 5and 6.

Age Lithology Ztect LdSub Ztotal Basin Tectonics
Early Pliocene Sandstone 4246 2 4248

Eatrly Pliocene Shale 4183 3 4186 Subsidence
Early Pliocene Sandstone 4175 27 4202 Quiescence
Early Pliocene Shale 4135 68 4203 Quiescence
Early Pliocene Sandstone 3943 3 3945 Subsidence
Early Pliocene Shale 3939 5 3943 Quiescence
Early Pliocene Sandstone 3926 2 3928 Subsidence
Early Pliocene Shale 3923 13 3936 Subsidence
Early Pliocene Sandstone 3888 5 3893 Subsidence
Early Pliocene Shale 3880 70 3950 Uplift
Late Miocene Shale 3785 74 3860 Subsidence
Middle Miocene Shale 3462 62 3524 Subsidence
Middle Miocene Siltstone 3326 4 3330 Subsidence
Middle Miocene Shale 3252 34 3286 Subsidence
Early Miocene Shale 3302 137 3439 Uplift
Eatly Miocene Sandstone 2805 6 2811 Subsidence
Early Miocene Shale 2790 12 2802 Subsidence
Early Miocene Sandstone 2697 24 2721 Subsidence
Eatly Miocene Shale 2711 31 2742 Subsidence
Early Miocene Sandstone 2562 15 2577 Subsidence
Early Miocene Shale 2534 130 2663 Uplift
Oligocene Shale 2227 79 2305 Subsidence
Eocene Shale 2031 11 2042 Subsidence
Focene Sandstone 2002 3 2005 Subsidence
Eocene Shale 1926 27 1953 Subsidence
Focene Sandstone 1927 8 1936 Subsidence
Eocene Siltstone 1757 6 1763 Subsidence
Eocene Shale 1744 9 1753 Subsidence
Paleocene Shale 1885 238 2123 Uplift
Paleocene Siltstone 1261 14 1274 Subsidence
Paleocene Shale 1112 26 1138 Subsidence
Paleocene Siltstone 1020 20 1040 Subsidence
Paleocene Shale 982 13 995 Subsidence
Paleocene Sandstone 950 6 956 Subsidence
Eatly Maastrichtian Shale 983 13 997 Uplift
Early Maastrichtian Siltstone 901 26 927 Subsidence
Eatly Maastrichtian Shale 779 89 869 Subsidence
Early Maastrichtian Sandstone 633 5 637 Subsidence
Campanian Shale 548 61 608 Subsidence
Santonian Shale 584 12 596 Subsidence
Coniacian Shale 687 18 706 Uplift
Turonian Shale 649 51 701 Subsidence
Turonian Siltstone 592 50 642 Subsidence
Cenomanian Shale 425 66 491 Subsidence
Cenomanian Sandstone 38 53 90 Subsidence
Cenomanian Shale 39 74 113 Uplift
Cenomanian Sandstone -121 49 -72 Subsidence
Cenomanian Shale 241 21 -221 Subsidence
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Table 5. Relationship between basin tectonics and geological Epoch in Ayetoro — 1.

Age Lithology Ztectonics LoadSub Ztotal Basin Tectonics
Pleistocene Sandstone 3575.5 11.1 3586.7
Pleistocene Shale 3560.1 16.2 3576.3 Subsidence
Pleistocene Sandstone 3517.9 14.4 35323 Uplift
Pleistocene Shale 3497.8 45.0 3542.8 Subsidence
Pleistocene Sandstone 3380.2 8.6 3388.7 Subsidence
Pleistocene Shale 3368.2 21.8 3390.0 Uplift
Pleistocene Sandstone 3311.3 8.1 3319.4 Subsidence
Pleistocene Shale 3300.1 57.1 3357.2 Quiescence
Pleistocene Siltstone 3150.8 49.6 3200.3 Subsidence
Pleistocene Sandstone 3044.7 24.6 3069.3 Subsidence
Pleistocene Shale 3010.3 55.5 3065.8 Subsidence
Pleistocene Sandstone 2863.0 18.6 2881.5 Subsidence
Pleistocene Siltstone 2834.6 40.1 2874.7 Subsidence
Pleistocene Shale 2746.3 20.4 2766.6 Subsidence
Pleistocene Siltstone 2691.5 19.0 2710.5 Subsidence
Pliocene Siltstone 2548.9 23.2 25721 Subsidence
Pliocene Shale 2497.3 223.3 2720.6 Uplift
Pliocene Shale 2017.7 25.1 2042.8 Subsidence
Upper Miocene Shale 2003.8 42.5 2046.3 Subsidence
Upper Miocene Shale 1896.0 4.2 1900.1 Subsidence
Upper Miocene Shale 1860.5 21.0 1881.5 Subsidence
Upper Miocene Siltstone 1808.2 9.0 1817.1 Uplift
Upper Miocene Siltstone 1839.8 13.4 1853.3 Uplift
Middle Miocene Siltstone 1901.2 55.1 1956.2 Uplift
Middle Miocene Siltstone 1588.0 8.4 1596.4 Subsidence
Middle Miocene Shale 1570.6 63.9 1634.4 Uplift
Middle Miocene Shale 1409.4 26.0 1435.4 Subsidence
Middle Miocene Shale 1545.7 22.0 1567.6 Uplift
Middle Miocene Shale 1292.3 109.6 1401.9 Subsidence
Middle Miocene Shale 1229.3 20.0 1249.4 Quiescence
Lower Miocene Sandstone 1225.9 1.3 1227.1 Subsidence
Lower Miocene Sandstone 1024.4 5.0 1029.4 Subsidence
Lower Miocene Shale 1015.5 58.5 1074.0 Uplift
Lower Miocene Siltstone 884.6 15.8 900.5 Subsidence
Lower Miocene Siltstone 1056.6 8.6 1065.2 Uplift
Eocene Siltstone 1117.4 31.9 1149.3 Uplift
Eocene Sandstone 1061.0 5.7 1066.7 Subsidence
Eocene Sandstone 854.4 10.4 864.8 Subsidence
Upper Paleocene Shale 696.0 33.1 729.1 Subsidence
Upper Paleocene Sandstone 623.5 24.7 648.2 Uplift
Upper Paleocene Siltstone 670.0 29.3 699.3 Subsidence
Lower Paleocene Siltstone 547.7 17.3 565.0 Uplift
Lower Paleocene Siltstone 590.3 4.5 594.7 Subsidence
Lower Paleocene Shale 581.8 79.2 661.0 Uplift
Maastrichian Shale 402.8 37.1 439.9 Subsidence
Maastrichian Shale 403.6 91.5 495.0 Uplift
Maastrichian Sandstone 159.8 30.2 190.0 Subsidence
Maastrichian Sandstone 213.3 17.9 231.3 Uplift
Upper Campanian Sandstone 75.5 104.8 180.3 Subsidence
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Table 6. Relationship between basin tectonics and geological Epoch in Baba — 1.

Age Lithology Ztect LdSub Ztotal Basin Tectonics
Quaternary Sandstone 4959 30 4989

Quaternary Shale 4987 12 4999 Uplift
Quaternary Sandstone 4818 12 4830 Subsidence
Quaternary Shale 4800 5 4805 Subsidence
Quaternary Sandstone 4784 12 4796 Subsidence
Quaternary Shale 4765 14 4779 Subsidence
Quaternary Sandstone 4726 25 4751 Subsidence
Quaternary Siltstone 4688 16 4703 Subsidence
Quaternary Sandstone 4650 15 4665 Subsidence
Quaternary Shale 4627 83 4711 Uplift
Quaternary Sandstone 4381 24 4405 Subsidence
Quaternary Shale 4342 19 4361 Subsidence
Quaternary Sandstone 4193 11 4204 Subsidence
Upper Pliocene Shale 4175 21 4196 Subsidence
Upper Pliocene Sandstone 4203 3 4207 Uplift
Upper Pliocene Shale 4198 18 4215 Uplift
Upper Pliocene Sandstone 4145 6 4151 Subsidence
Upper Pliocene Shale 4135 42 4178 Uplift
Upper Pliocene Sandstone 4057 6 4063 Subsidence
Upper Pliocene Shale 4047 16 40063 Quiescence
Upper Pliocene Sandstone 3998 23 4022 Uplift
Lower Pliocene Shale 3961 61 4021 Uplift
Lower Pliocene Siltstone 3615 12 3627 Subsidence
Lower Pliocene Shale 3584 52 3636 Uplift
Lower Pliocene Siltstone 3499 6 3505 Subsidence
Lower Pliocene Shale 3684 164 3848 Uplift
Upper Miocene Shale 3219 37 3256 Subsidence
Upper Miocene Sandstone 3107 7 3113 Subsidence
Upper Miocene Shale 2938 93 3031 Subsidence
Middle Miocene Shale 2659 294 2953 Subsidence
Lower Miocene Shale 1603 68 1671 Subsidence
Lower Miocene Siltstone 1603 15 1618 Subsidence
Lower Miocene Shale 1582 23 1605 Subsidence
Upper Paleocene Shale 1362 50 1412 Subsidence
Upper Paleocene Siltstone 1022 7 1030 Subsidence
Upper Paleocene Shale 1171 42 1213 Uplift
Upper Paleocene Siltstone 934 8 941 Subsidence
Upper Paleocene Shale 889 96 984 Uplift
Lower Paleocene Shale 633 26 659 Subsidence
Lower Paleocene Siltstone 568 16 584 Subsidence
Lower Paleocene Shale 535 27 562 Subsidence
Lower Paleocene Siltstone 469 7 476 Subsidence
Lower Paleocene Shale 455 101 556 Uplift
Maastrichtian Siltstone 278 55 333 Subsidence
Maastrichtian Sandstone 132 8 140 Subsidence
Maastrichtian Shale -23 24 1 Subsidence
Maastrichtian Sandstone -10 12 2 Uplift
Upper Campanian Shale -26 63 37 Subsidence
Upper Campanian Sandstone -155 75 -80 Subsidence
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CONCLUSION

A quantitative study of subsidence analysis in the
Nigeria sector of the Benin (Dahomey) Basin has
been presented using three offshore wells. The
subsidence analysis was carried using one-
dimensional backstripping technique. The results
obtained showed that a cogent analysis of tectonic
subsidence is feasible in the study area, even
though the sedimentary successions contain
diverse, fully lithified siliciclastic rocks.
Biostratigraphic data in one of the wells (Epiya—1
) indicated that the oldest sediment penetrated is
Cenomanian, while in Baba — 1 and Ayetoro — 1
the oldest sediments were Campanian in age. The
subsidence patterns indicated that Early late
Cretaceous phase (Cenomanian to Campanian)
was characterised by accelerated tectonic
subsidence and gradual uplift patterns. The Late
Cretaceous phase (Campanian to Maastrichtian)
exhibited relatively high uniform rates of
subsidence and minor uplift. Maastrichtian to
Paleocene subsidence is recorded by all the curves
obtained in the three wells. The most apparent
features, which are practically ubiquitous in all the
curves are the Maastrichtian to Paleocene
subsidence and Eocene uplift. Uplift is
contemporanecous with observed
Eocene/Oligocene unconformity recorded in two
wells (Baba — 1 and Ayetoro — 1), therefore, a
genetic relation probably occurred between the
two phenomena. The Paleogene to Neogene
phases showed variable rates of tectonic
subsidence and uplift while the Quaternary began
with accelerated tectonic subsidence followed by
reduced rates of tectonic subsidence. Some
periods of basin quiescence were observed during
Miocene and Pliocene times. This type of study is
important at this stage of the Benin (Dahomey)
Basin, especially with the discovery of
hydrocarbons in the offshore section and the
linkage of the basin with transform faults.
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