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This paper proposes an iterative technique to realistically adjust for the incidence of  measurement errors in 
multilevel models using a 2-level   model framework. The technique yields the expected measurement error 
adjustment   benefits but shows that such benefits do not necessarily accrue when all perceived error-prone 
predictor variables in a model are simultaneously adjusted for errors.

Keywords: Multilevel Model, Measurement Errors, Coefficient of  Variation, Predictor Variable, Model 
Deviance.

ABSTRACT

605

INTRODUCTION
In many of  the variables used in the physical, 
biological, social and medical science, 
measurement errors are found. These errors, 
which could be problematic in statistical inference, 
are essentially random or systematic. In fixed 
effects models such as linear and generalized linear 
models, there is a wealth of  literature (e.g. 
Joreskog, 1970; Degracie and Fuller, 1972; Plewis, 
1985; Fuller, 1987; Carroll et al, 1995; Skrondal and 
Rabe-Hesketh, 2004 and Fuller, 2006) elaborating 
the consequences of  measurement errors on 
model adequacy especially in situations where 
such errors are apparent and non-ignorable.  
Some of  the adverse consequences of  not 
adjusting for the incidence of  measurement errors 
include asymptotic bias of  the error-prone 
predictor variable coefficient estimate, reduced 
predictive power, increased model deviance and 
reduced coefficient estimate standard error. The 
efficacy of  mixed effects models such as multilevel 
(hierarchical) linear models is also adversely 
affected by a failure to properly account for 
measurement errors in their formulation and/or 
estimation. However, as pointed out by Goldstein 
et al. (2008), the behaviour of  biases associated 
with measurement error in covariates or the 
response for multilevel  linear models is, up to 
date, not well known and can be complex. 

At the crux of  measurement error adjustment 
approaches in the affected models, is the need to 
properly estimate the measurement error 
variances and reliabilities of  the error-prone 

techniques for estimating measurement variances 
are, in general, deficient. There is inability  to 
sufficiently  justify  independence of  
measurement errors and the so called 
unidimensionality assumption as required in 
educational  mental testing ; accuracy and 
consistency of  the estimates of  the  measurement 
error variance could not be guaranteed (Ecob and 
Goldstein, 1983). The method of  instrumental 
variables strongly recommended for certain 
situations as in mental testing (see Ecob and 
Goldstein, 1983) requires, however, that several 
different  instrumental variables be considered  
for comparison. There is  also the difficulty of  
establishing that measurement errors are 
independent of  instrumental variables (sargan, 
1958). 
In many applied or theoretical considerations, 
measurement error variance and the reliability of  
the associated error-prone variable is assumed 
known rather than estimated (Goldstein et al., 
2008). The measurements errors associated with 
explanatory variables that cannot be observed 
directly are often ignored or the analyses are 
carried out using assumptions that may not always 
be realistic (Aitkin and Longford, 1986; 
Goldstein, 1987). This paper proposes the 
bootstrapping approach to realistically estimate 
measurement error variance of  perceived error-
prone predictors with random coefficients and 
shows how these estimates( rather than assumed 
values) can be validly used to adjust for the 
incidence of  measurement errors in multilevel 
models and hence improve overall  model 



606

METHODOLOGY
Data Structure in the Study
The  study  utilized a 2-level data structure in 
which post primary school students constituted 
level 1 units while the schools constituted level 2 
units. Average scores for selected subjects in 
Junior Secondary School 1 (JSS1), Junior 
Secondary School Certificate Examination 
(JSSCE) as well as Senior Secondary School 
Certificate Examination (SSCE) or West African 
School Certificate Examination (WASCE) for 
each student in a sample “statistical cohort” of  
students in any school were captured   between 

2002 and 2008. In the original collection (called 
Data 1), there were 1,111 level 1 units and 50 level 
2 units. Using simulation, more  data were 
generated to obtain two other scenarios: the one 
retaining same number of  level 2 units but having 
2,222 level 1 units ( Data 2) while the other had 
110 level 2 units and 4022 level 1 units (Data 3).        

Description of  Variables
Table 1  below summarizes  a description of  the  
variables used in the study.

Table 1: Variables  used in the Study

Variable name Description  

Yij 
 Science, Technology and Mathematics ( STM)  score per 

student in all classes; a level 1 response variable  

X1ij  STM score per student in JSS1 subjects; a level 1 predictor 

variable  

X2ij  STM score per student in JSSCE subjects; a level 1 predictor 

variable  

X3j  Final School STM score; a level 2 predictor variable  

Xnj    The  school system; it is a categorical level 2 predictor 
variable ( where n = 4, 5 or 6 )  with the  systems 
categorized into   “Boardsytem”  ; X4j  ,  “ Daysystem”  ; X5j     
or  “Bothsystem” ; X6j .  
  

cons  Constant  used for dummy variables and usually carries a value of  
one ; it is a level 1  predictor .  

The observed variables X , X  and X   are 1ij 2ij 3j 

centred around  appropriate means

The 2-level Model
 In terms of  the true unobservable forms of  the 
variables described in Table 1 above, the 2-level 
model to be examined takes the form 

with

and
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It is assumed that 

cov(                           ,     ) 
cov(   ,     ) = 0,
E(    ) = E(    ) = 0          (2.2)

The parameters to be estimated are b , b , b , b , b , b , 0

b , b , (the fixed parameters ) and W  and7 8 u

( the random parameters).  It is intended to examine 

the effect of  adjusting for the incidence of  

measurement errors perceived to be inherent in X  1ij 

and X on the parameter estimates and reliability 2ij   

of  the response variable Y ( where  the ij  

measurement error variance of  Y  is assumed). ij 

Estimated measurement error variance values and 

hence reliabilities for  X  and X are,  however,  1ij 2ij    

considered  in the  analysis alongside scenarios 
where  measurement error variance values for X  1ij 

and X were also assumed.2ij    

The measurement error models of   the predictor 
variables and response variable subject to error 
are: 
X =  x  + m ,1ij  1ij 1ij 

X =  x  + m ,2ij 2ij 2ij

Y   =  y  + q .         (2.3)ij ij ij

We assume that the errors  m are distributed with 1ij 

zero mean and constant variance and that they are 
not correlated either with one another  across 
pupils or  with the true values x .  We make similar 1ij

assumptions about the errors m  and q . Now, 2ij ij  

where as the adjustment for incidence of  errors in 
Y   were based on an assumed variance,  var(q),   ij

 =0,

1 2 3 4 5

and hence  reliability of   Y  ,  the cases of   X  and  ij 1ij 

X  employed  variances of  m  and m   that were 2ij 1 2

estimated using  an iterative technique elucidated 
in section 2.4. 

T he I te ra t ive  Measur ement  Er r or  
Adjustment Technique
 The technique entails the following steps:
(I) From each group (or subgroup) of  the 

multilevel model obtain an estimate of  the 

explanatory variable mean, , based on sample j

sizes of  at least 30 in each group. 
(ii) Average these ’s (using arithmetic mean) j  

across the entire groups to obtain a value, say .

(iii) Estimate the measurement error (ME) variance, 
2σ , as   the mean of  the squares of  deviations hm

.
of   ’s   from j   

2(iv) Estimate σ  as in the first paradigm approach and hX 

hence estimate R  accordingly.h 
2 2

(v) Use the values  σ   and  σ   to adjust for hm hX 

measurement error in the  variable (s) of  interest  
and hence re-estimate  the k-level model  
accordingly via  Gibbs sampling in MCMC.

(vi) Check for possible attenuation and/or 
inconsistency of  the estimated multilevel 
parameters. 

(vii)If  there is attenuation (reduced or no increase   in 

predictive power of  corresponding predictor) 

and/or inconsistency of  the estimated multilevel 

parameters  then  repeat  steps (i) to   (vi) ,  

possibly increasing re-sampling   size per cluster 

and/or  increasing number of  samples. 

ANALYSIS AND DISCUSSION
The iterative technique (2.4) was employed and 
measurement error variances and reliabilities of  
the variables X   and X  estimates were obtained. 1ij 2ij

Table 2 reflects these estimates.  
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The measurement error variance estimates of   X  1ij

and X   using data 3 were 0.64 and 0.82, 2ij

respectively are an indication of   highly error-
prone values that were generated in the simulation 
of  more level 2 units (and hence more level 1 
units). These estimates differ remarkably from 
what obtained in data 1 and 2 scenarios. The study 
shall adopt the average of  the estimates in data 1 
and 2 (i.e  0.26 and 0.46)  to examine measurement 
error adjustment effects for the model using the 

three data sets and then also examine the 
measurement error adjustment effect for the 
model using data 3 and considering the 
measurement error variances estimated only from  
the data 3 scenario.

The Tables 3-6 that now follow summarize  some 
of  the results associated with using M.E  
variances obtainable via the iterative technique 
described in 2.4.

Data Variable        Variance M.E Variance Reliability 

1 X1ij         0.74 0.26 0.74 

 

2 

 

X2ij  

X1ij  

X2ij  

        0.53 

         0.67  

          0.48    

 0.47 

 0.25 

0.46  

0.53 

0.73  

0.51   

Table  3 : Estimated  coefficient estimates for X   and  X ,  coefficients of   variation   as well as 1ij 2ij  

model deviances and residual variances  based  on data 1 under varying M.E   adjustments. 

Parameters 

Estimated
 Estimates Prior to 

M.E  Adjustments
 Error Adjusted 

estimates with M.E 

variance of  
 
X1

 
= 0.26 

and that of
  

X2

 
= 0.46

 

Error Adjusted 

estimates with 

M.E variance of  

X1

 
= 0.26 

 

Error Adjusted 

estimates with M.E 

variance of  
 

X2 

 
= 0.46

β1 0.877(0.062)
 

0.311(0.075)
 

0.761(0.026)
 

0.855 (0.074)
 

β2 0.352(0.016) 0.827(0.053) 0.366 (0.018)  0.874 (0.040)  

Coefficient 

of  variation 

(CV) for  β1  

0.071 0.24 0.034  0.087  

Coefficient 

of  variation 

(CV)  for   β2  

0.045 0.064 0.049  0.046  

Model 
Deviance

 

803
 

-3597
 

-3687
 

-4238
 

Residual 
variance

0.101
 

0.003
 

0.003
 

0.002
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Parameters 

Estimated
 Estimates Prior to 

M.E  Adjustments
 Error Adjusted 

estimates with M.E 

variance of  X1

 
= 

0.26 and that of  X2

 

= 0.46
 

Error Adjusted 

estimates with M.E 

variance of  X1

 
= 0.26 

 

Error Adjusted 

estimates with M.E 

variance of  X2 

 
= 0.46

β1 0.819(0.066) 0.198(0.023) 0.706(0.044)  0.740(0.102)  

β2 0.348(0.018) 0.807(0.051) 0.359(0.014)  0.816(0.034)  

Coefficient of  

variation (CV) 

for  β1  

0.081 0.116 0.062  0.139  

Coefficient of  

variation (CV)  

for   β2  

0.052 0.063 0.039  0.042  

Model
 Deviance

 

1187
 

-9272
 

-6824
 

-8852
 

Residual 
variance

0.086
 

0.001
 

0.003 
 

0.001
 

Table  5 : Estimated  coefficient estimates for X   and  X ,  coefficients of   variation as well as 1ij 2ij  

model deviances and residual variances  based  on data  3 under varying  M.E adjustments. 

Parameters 

Estimated
 Estimates Prior to 

M.E  Adjustments
 Error Adjusted 

estimates with M.E 

variance of  X1

 
= 0.26 

and that of  X2
 
= 0.46

 

Error Adjusted 

estimates with 

M.E variance of  

X1
 

= 0.26 
 

Error Adjusted 

estimates with 

M.E
 

variance of  

X2 
 

= 0.46
 

β1 0.982(0.022) 0.426(0.021)  0.836(0.022)  0.916(0.022)  

β2 0.339 (0.011) 0.681(0.014)  0.369(0.011)  0.818(0.020)  
Coefficient of  

variation (CV) for  

β1 

0.022 0.049 0.026  0.024  

Coefficient of  

variation (CV)  for   

β2 

0.032 0.021 0.030  0.024  

Model Deviance
 

3366
 

-17659 
 

-14799
 

-16022
 Residual variance 0.113 0.001 0.002 0.001
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9
In Tables 3 – 5, it is discernable from the 
coefficient estimates of   X  and  X   that,  1 2

adjusting for incidence of  M.E's  in both variables 
as they occur in the model does not, in general,  
necessarily yield coefficient estimates that are less 
biased than what obtains when adjustment for 
M.E's is made for only one of  the variables. 
Indeed, adjusting for incidence of  M.E's in both 
variables seems to either over estimate or 
underestimates the coefficients. For instance, the 
estimates of  β reduce  by an average of   66% 1  

while the coefficient of  variation increases by (an 
incredible) average of  135%  in a situation where 
adjustments are made for incidence of  M.E's in 
both X and X  . On the other hand, we find the 1  2

estimates  of  β  reducing, on average,  by 14%  1 

and the coefficients of  variation reducing, on 
average, by  30% if  only X  is adjusted for 1

incidence of  M.E's.  In a similar vein, the estimates 
of  β  increasing, on average by 123%  with  the 2

coefficients of  variation increasing by  10% for a 
situation where  both variables ( X  and X  ) were 1 2

adjusted for M.E's and these estimates increased, 
on average by 6%  but the coefficients of  variation 
reduced by 22% in the case where only  X  was 1

adjusted for incidence of  M.E's. 

If  only X  is adjusted for incidence of   M.E's, we 2

find that, on average, estimates of  β  decrease by 1  

6%  and coefficients of  variation increase, on 
average, by 34% while estimates of  β  increase by 2

141%  and the coefficients of  variation decrease 
by 14%. In general, however, model deviances 
and residual variances  reduce when adjustments 
are made for errors. The point made here is that, 
in general, adjusting for the incidence of  M.E's 
simultaneously  in all perceived error-prone 
variables in a model will not necessarily yield 
better (less biased) coefficient estimates than  
what obtains when adjustments are made for the 
errors in only one of  the variables. 

Comparing the tabular values in Tables 3-5 with 
those of  Table 6 reveals that employing  the  M.E 
variances obtained  in data 3  via the iterative 
technique in 2.4  (i.e  0.64 for X and 0.82 for  X )1 2   

to adjust for incidence  of   M.E's, does not give  
coefficient estimates that have , on average, less 
coefficient of  variation values than what obtains 
when we employ  the M.E variance values  of  0.26 
for X  and 0.46 for X . This may probably  be 1 2

attributed to weaknesses associated with the 
simulation technique that ultimately generated  
highly error-prone and unrealistic values of   data 
3. It is opined that if  the values in a data set are 
highly error prone and unrealistic, then any M.E 
variance estimates of  variables associated with 
them, using the iterative technique,  will likely  be 

Table  6 : Estimated  coefficient estimates  for  X   and  X ,  coefficients of   variation   as well as 1ij 2ij  

model deviances and residual variances  based  on data  3  under varying M.E  adjustments( with M.E  
variances obtained directly from data 3 via the technique in 2.4 ). 

Parameters 

Estimated
 Estimates Prior 

to M.E  
Adjustments

 
Error Adjusted 

estimates with M.E 

variance of  X1

 
= 

0.64  and that of  

X2
 

= 0.82 
 

Error Adjusted 

estimates with M.E 

variance of  X1

 
= 

0.64  V
 

Error Adjusted 

estimates with M.E 

variance of  X2 

 
= 0.82 

β1 0.982(0.022) 0.427(0.032) 0.899(0.048)  1.011(0.023)  

β2 0.339 (0.011) 0.812(0.014) 0.433(0.015)  0.862(0.027)  

Coefficient of  

variation (CV) 

for  β1  

0.022 0.052 0.053  0.023  

Coefficient of  

variation (CV)  

for   β2  

0.032 0.017 0.034  0.031  

Model 
Deviance

 

3366
 

-17688
 

-11827
 

-16767
 

Residual 
variance

0.113
 

0.001
 

0.004
 

0.001
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suspect. 

CONCLUSION
In fixed effects models such as linear and 
generalized linear models, there are several 
literature that elaborate the consequences of   
measurement errors on model adequacy especially 
in situations where such errors are apparent and 
non-ignorable.  The efficacy of  mixed effects 
models such as multilevel (hierarchical) linear 
models is also adversely affected by a failure to 
properly account for measurement errors in their 
formulation and/or estimation. At the crux of  
measurement error adjustment approaches in the 
affected models is the need to properly estimate 
the measurement error variances and reliabilities 
of  the error-prone variables in the models. In 
general, the behaviour of  biases associated with 
measurement error in covariates or the response 
for mixed effects models (such as multilevel  linear 
models)  could be complex and so attempts are 
currently  being made to proffer ways of  
realistically adjusting for incidence of  
measurement errors in such models. The efficacy 
of  an iterative measurement error adjustment 
technique was examined within the frame work of  
a 2-level model. In the illustrative analysis, two 
explanatory variables perceived error-prone  were  
considered. It was found that (i) coefficient 
estimates generally disattenuated when 
adjustments were made for the incidence of  errors 
in the explanatory variables (ii) adjusting for 
incidence of  measurement errors in both variables 
simultaneously in the model did not necessarily 
yield less biased coefficient estimates (as proxied 
by their coefficients of  variation) than  what 
obtained  when only one variable was adjusted for 
error (iii) adjustments for incidence of  
measurement errors in a situation where data used  
was likely generated via a defective simulation 
approach did not yield less biased coefficient 
estimates than what obtained using more realistic 
data (iv) adjusting for incidence of  measurement 
errors however (as expected)  yielded models with 
reduced deviances and residual variances.
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