
IfeJournalof Sciencevol. 10, no. 1 (2008) 199

THEORY OF COMPUTATION,AUTOMATAAND LANGUAGES*

R.O. AKINYEDE+ and 0. FAJUYIGBE
Department of Computer Science, Federal University ofTechnology, Akure, Nigeria

(Recieved: August 2007; Accepted: February 2008)

Abstract
Automata theory is the study of abstract machines and problems they could solve. History bad it that A. Turing
studied an abstract machine that possessed the capabilities of computers even before the advent of the first
computer machine in 1930s. In 1940s, another machine known as finite automata, which would model human
brain function, was proposed. In the same manner, in late 1950s other areas such as formal grammars, which have
closed relationships to abstract automata, were studied. This research work critically studied the theory of
computation, automata and languages. It also looked at problems that could be solved by computer and those
that could in principle be solved.

Key words: Automata theory, detenninistic and non-deterministic automata, pushdown automata, turing machine.

1. Background

According to Song (1998), automata are abstract
(mathematical) machines that can read information
from input and write information to output. Its finite
state control unit controls this input/output process,
Figure 1.
Automata theory, which is a mathematical discipline,
is concerned with invention and study of
mathematically abstract and idealized machines called
automata. The theory proposes that human physical
functions and behavior can be simulated by a
mechanical or computer-controlled device. However,
history ·had it that A. Turing studied an abstract
machine that possessed the capabilities of computers
even before the advent of the first computer machine
in 1930s. In 1940s, another machine known as finite
automata, which would model human brain function,
was proposed. In the same manner, in late 1950s
other areas such as formal grammars, which have
closed relationships to abstract automata, were
studied (Hopcroft eta/., 2001)
According to (Encarta, 2006), applications of
automata theory have included imitating human
comprehension and reasoning skills using computer
programs, duplicating the function of muscles and
tendons by hydraulic systems or electric motors, and
reproducing sensory organs by electronic sensors
such as smoke detectors. It also reported that
the concept of automata, or manlike machines, has
historically been associated with any self-operating
machine, such as watches or clockwork songbirds
driven by tiny springs and gears. But in the late 20th
century, the science of robotics (the development of
computer-contro lled devices that move and

manipulate objects) has replaced automata as it
relates to replicating motion based on human anatomy.
Modern theories of automata currently focus on
reproducing human thought patterns and problem
solving abilities using artificial intelligence and other
advanced computer-science techniques. Automata
helps in the computation of partial functions from p•
to R • for some alphabets P and R. Automata usually
get inputs on a linear tape. In this paper, areas of
fonnal grammars, which have closed relationships
to abstract automata, were studied. The research
critically studied the theory of computation, automata
and languages. It also looked at the problems that
could be solved by computer and those that could in
principle be solved.

2. Deterministic Finite Automata (DFA)
Deterministic Finite Automaton (DFA), also known
as Finite automaton, is a computing device that
accepts regular languages and do not allow two-way
operation of the tape head. The automaton, which is
a deterministic state device equipped with a read head
attached to a single input tape, operates by reading
symbol, transfer to new instruction and advance the
tape head one square to the right. This computing
device reads its input tape and processes it. At times
the input can be rejected depending upon the
instructions being executed. Finite automaton can be
represented in two ways, namely:- a transition table
and transition diagram ·
(a). A Transition Table

+ corresponding author(email: femi_akinyede@yahoo.com)
*Presented in part at the First Faculty of Science Conference, Obafemi Awolowo University, Ile-Ife, July 3-5,
?M7 '

200 of automata and

I: A General Automaton

State 0 1 Accept?

~qo 'In ql No

q, Qo q2 Yes

Q) l1:- q, Yes

Table I: Transition Table

n_l

2: Transition

1

3: Transition for DFA all with a 01

Inputs

States
0 I

-tqo qo ql

ql Qo ql

Table 2: Transition table for the OF A of 3

Akinyede and Faj uyigbe: Theory of computation, automata and languages 201
A transition table is the table that shows the path as machine. Illustrating the Figure 4, if the inputs to this
the automaton transits from state to state, initially machine begin with the string 01, the movement will
from the start to the accepting state. be from C!o to q1 to q

2
• However, if symbol 0 is inputted,

In the example given in Table 1, the machine will it will either move back to q
1
or to ~- Finally, it will

stay on instruction one until it reads a one and it goes move to the state, which will eventually take it into a
on like that until it gets to instruction 3. final state if possible (i.e. q

1
or qJ From the above,

(b). A Transition Diagram or State Graph we can definite NFAformally in the following way:-
Transition diagram or state graph is another method Definition: A nondeterministic finite automaton is the
to describe finite automata. The states of the finite quintuple
automaton appear as vertices of the graph while the A= (Q, I., a, q

0
, F) where Q, I, and Fare as before

transitions from state to state under inputs are the but:
graph edges. The flow diagram shows the different Q

0
is a set starting states, and

finite states, the start state, which usually preceded a (q, a) ~ ?S for each q E ? Q and a E? L..
by arrow, and the accepting state, which usually From the above definition, we have that the NFA,
indicated by double circle. Once again, the number instead of having a starting state and a transition
inside each circle is a name for the state it represents. function; we have a starting state set and a set of
Here is an example in Figure 2. transition states. Meanwhile, the only difference

3. Formal Description of Automata
There are some concepts that are important to
building automata theory and they are as follows:
i Symbol: is the input (datum) that is being read
into the machine.
ii Word: is the finite string formed by the
combination of a number symbols.
iii. Language: is the finite word formed by the
combination of number alphabets.
iv. Alphabet: is a finite set of symbols.

between the DFA and the NFA is in the type of a.
For example, a is a function that takes a state and
input symbol as arguments in the NF A, but return a
set of zero, one or more states while the DFA will
take the a state and input symbol as arguments return
only one state.
Example 2: Consider the Figure 5, where the NFA
will accept all the strings of O's and 1 's that end in
01.
The above NFA can be specified as follows:

M = ({qo,qJ,q2}, {O,l},a,qo, {q2})

Finite automaton can further be described as a tuple
M = (Q, L., a, C!o· F) where: &. States
Q is a finite set (of states)

Inputs
0 1

L. is a finite set of input symbols
a next state or transition function,
that is a : Q X L --? Q
C!o E Q is the start state, that is, the state in which
the automaton is when no input has been processed.
F ~ Q is the set of states of Q.
(the accepting or final states).
Following the above definition, we can further define
the entire machine by presenting a state graph. In
the above example, we have M = ({ q

1
, q

2
, q

3
}, {0, 1},

a, qJ' { qJ), where the transition function a, is defmed
explicitly by a state graph.
For example, consider the transition diagram of the
DFA as shown in Figure 3 below, draw the transition
table.
In figure, we have that the start state is marked q

0
and the accepting state is marked q

1
• The transition

table is given in Table 2.

4. Non-Deterministic Finite Automaton (NFA)

As the name implies, it is state where the next state
is not completely determined by the current state.
This is contrary to the deterministic finite automaton,
where every step taken has been exactly determined
by the state of the machine and the symbol read.
Figure 4, below provides the state graph of such a

®'L, {qo ql} {qo}
Finally, non-deterministic tlnite automaton is allows
us to define very simple machines, which perform
certain operations.
For a given NFA G, there is a DFA G 1 which accepts
the same language that the NFA accepts.

5. Regular Language and Regular Expression
(a). Regular Language
Song, (1998) defined regular language in the following
ways:

1. <;> is a regular language

11. { } is a regular language

iii { x} is a regular language if x e

iv. L
1

u L
2
is a regular language if L

1
and L

2
are

regular languages.
v. L 1L2 is a regular language ifL

1
and L

2
_are

regular languages.
vi. L • is a regular language if L is a regular
language.

Example 3: Let = {a, b}. Then the following
regular expressions represent the indicated sets of
strings.
1. a: represents the set {a},

202 Akinyede and Fajuyigbe: Theory of computation, automata and languages
a•: represents the set {a}·,= {A., a, aa, aaa, Equality of regular expressions: The regular

expression (p + q)" = (p·q·y which represents the
11.

... }
iii. b: represents the -set {b},
iv. ab: represents the set {a }{b} = { ab},

v. a u b: represents the set {a} {b}= {a, b},

VI. ab ·:represents the set { ab} • = { , ab, abab,
ababab, ... }

vii. a • u (ab) •: represents the set:

{a} { ab r= { ' a, aa, aaa, ab, abab,
ababab, ... }
viii. a· b: represents the set {a}· {b}= {b, ab, aab,
aaab, ... }
(b). Regular Expression
Regular expressions are another algebraic notation
that describes exactly the same language as finite
automata. Regular expressions are used to represent
regular languages and their operations accurately.
Their operators involve the following: union (+),
concatenation (dot) and closure (star).
They are the set of regular expressions over an
alphabet L, and defined by Song, (1998) as follows:

1. ¢ is a regular expression

11.

iii.

(empty string) is a regular expression

xis a regular language ifx e :L

iv. r
1

u r
2

is a regular expression if r
1
and r

2
are

regular expressions.
v. r

1
r

2
is a regular expression if r

1
and r

2
are 8

regular expressions.
vi. r• is a regular expression if r is a regular
expression.

Example 4: Prove that if A • is a regular

· language, then the language

Prefix (A) = { ro e •1 x = roy for some x e A and

y :L •} is also regular.

Solution: Let M = (Q, , , ~· F) be a deterministic
automaton which recognizes A. We construct the

automaton M 1 = (Q, L , o, q0, F ') where F' c Q
contains afl the states ofM that lie on a path between
the start state and some accepting state. Let's prove

that L(M') =Prefix (A).l!ldeed, if e L(M1
) , then

reading w brings M' to some state q 1• But, by
construction, there is a path from q1 to some accepting
state of M .
Suppose that the labels on this path construct the

word x. Then ro x e A and thus ro e Prefix (A).

Conversely, if ro e Prefix (A), then there exist x

·, 3 x e A. But then, reading w brings M to

some state q, starting a:t q and reading x leads to
some accepting sta te. But then q must be an

accepting state of M 1
, and so ro e L(M1

) .

language of all strings over the alphabet {a, b} are
said to be equal if and only if they correspond to the
same language.

6. Pushdown Automata
A pushdown automaton is a (possibly

. nondetemJ.inistic) finite automaton with a special sort
of auxiliary tape called a pushdown store (Ratson et -
a!., 2000). It makes use of a stack containing data; it
is last in first out (LIFO), see Figure 6. The
pushdown automata differ from norinal finite state
machines in these two ways, firstly, the top of the
stack can be used to decide the transition to take and
secondly, the stack can be manipulated as part of the
transition. Pushdown automata recognizes a string x
by the device as it gets into one, of its ,final states.
Given an input signal p, current state, and stack
symbol, the automaton can follow transition to another
state and optionally manipulate push or pop stack,
but if a finite automaton is equipped with two stacks
instead of just one, a more powerful device with
Turing power is obtained. Pushdown automata can
further be defined in the following ways:-

M = (Q, , ¢, , s, , F) where:

Q is a finite set (of states)
L is a finite set of input symbols

¢ is a finite set of the stack alphabet

is a finite transition relation.

(Q X (:L U { }) X) p (Q X

s is an element of Q the start state.

is the initial stack symbol

"')

F is subset of states of Q. (The accepting or final
states).

An element (p; a; M; q; a) of is called an
instruction or transition of M. Finally, both stacks
together can act as a working tape~ and the machine
can move both ways on that tape shifting the contents
of one stack to the other by popping and pushing.

7. Thring Machines
History had it that a British mathematician, Alan Turing
as a model ofhuman computation, studied an abstract
machine that possessed the capabilities of computers
even before the advent of the first computer machine
in 1930s (Hopcroft et a/., 2001). The machine, which
was named after his inventor, was developed to
eradicate the limitations posed by these three types
of automata (finite, push down, and linear bounded
automata). The machine was made to recognize all
languages generated by phrase structured grammars.
Turing machines can be likened to many present day
computers except that computers have finite memory
~hile Turing machines have infinite memory.

and of automata and

0

0

5: 01

States
0 1

->qo {qo.qd {qo}

ql {ql} {q1}

*q2 {qd {qo}

3: 5

..

Akifny1ede and

• • • • • •

• • • • • •

• • • • • •

••••••

of automata and

Stack
Finite Control

BA
6: Push down automaton

a b a ••••••

! Read-Write Head (can move left or

"'

..

8: A

..

Finite control

7: A Turing Machine

..

• • • •

.. ..

Finite control

"'

Machine

••••••

Tape

n

2

Akinyede and Fajuyigbe: Theory of computation, automata and languages 205
However, a standard Turing machine, like finite
automata, consists of a finite control and a tape; it is
detenninistic, and has no special input and output files.
In .Figure 7, we see that the tape has infinitely left
and right ends. The tape is also divided into squares
and a symbol can be written in them, but unlike finite
automata, its head is a read-write head and it can
move left, right or stay at the same square after a
read or write action. However, when a string is input
on the tape, a Turing machine starts at the initial state
and at any state it reads the. symbol under the head
and then moves the head to Ieft or right. But when it
goes to the halt state, the Turing machine will stop its
operation.
A Turing mach~e can be describe to have a 7 -tuple

M = (Q, :L , r, , q
0

, €, F), where

• Q is a finite set of internal states,

• L is a finite set of symbols and it is the

input alphabet.

•

•
•

•
•
•

r is a finite set of symbols called the tape

alphabet.
~ is the initial state:

is the transition function, which is defined

as f: Q x rk-7 Q x x {R, L, S}k .

€ E is a special symbol called blank .

'lo E Q is the initial state .
F ~ Q is the set of final state .

compiler, must be able to recognize which strings of
symbols in the sources program should be considered
as representations of objects like constants, variables
and reserved words.

10. Decidable and Undecidable Problems
Decision problems are sets of questions whose
answers are either yes or no. They are said to be
decidable there is an algorithm such as Turing that
solves the problem, or otherwise, it is said to be
undecidable (Adleman, 1994). However, in computing,
there are a lot of noncomputable functions, so also,
are many. decision problems that are undecidable.

Example 5: Let us consider a simple decision problem
PsQF (as given by Song, (1998))of determining

whether Pn = 2" - 1, n N is a square-free (an

integer n is square-free) denoted by n E SQF, if it is
not divisible by a perfect square):

p SQF = {(pn, yes): Pn E SQF) u (pn, no): Pn li!O SQF)}
(pn = 2" - 1, n E z t)

Input
Pr = 1
p2 = 3
PJ = 7
p4 = 15 = 3. 5
Ps= 31
p 6 = 63 = 32

. 7
p7 = 127

Output
yes
yes
yes
yes
yes
no
yes

8. Equivalent Model of Computation
i: p

8
= 255=3.5.17 yes

In the above, standard Turing machine was studied,
but some. Turing machine computation may require
more tape than is available in the above one-tape
deterministic. However, it is possible to extend one
tape Turing machine to two or more tapes kilown as
Multitape Turing machine.
The Multi tape Turing machine is defmed by a 7 -tuple

M=(Q,
•
•

•

•
•

•
•
•

, , ~· €, F), where
Q is a finite set of internal states,

I is a finite set of symbols and it is the

inp).lt alphabet.

r is a finite set of symbols called the tape

alphabet.
~ is the initial state.

is the transition function, which is defined

as f: Q x r k-7 Q x x {R , L, S} k .

€ E is a special symbol called blank.

qo E Q is the initial state .
F ~ Q is the set of final state.

9. Applications of Finite Automata

In computer science, automata theory is being applied .
in compiler construction. Pattern recognition, which
is being handled by the lexical analyzer within the

p9 = 511 = 7 .73
p

10
=1023=3.11.31

p
11

=2047=23 . 89
P

12
= 4095 = 32

• 5 . 7. 13
p

13
= 8191 = 8191

P14 = 16383 = 3 . 43. 127
p

15
= 32767 =7 .31.151

p16 = 65535 = 3 . 5 . 17 . 257
p 17 = 131071 = 131071
P18 = 262143 = 32 • 7. 19 . 73
p

19
= 524287

p20 = 1048575 = 3. 52
• 11. 31 . 41

yes
yes
yes
no
yes
yes
yes
yes
yes
no
yes
n,o

A solution to a decision problem P is an algorithm
that determines the appropriate answer to every
question Pn E P. It is clear that The Problem P SQF is
decidable.
Nevertheless, many decision problems, for example,
the halting problems(HP) for Turing machines is
undecidable .

11. Success and Limitation of Automata

One of the automata technologies introduced is voice
recognition. Voice recognition gives a computer the
ability to understand spoken instructions. Now it is

206 Akinyede and Fajuyigbe: Theory of computation, automata and languages
possible for computers to understand conversation languages. However, many other branches of science
in the same way that human beings understand and such as physics, biology and mathematics involve
this is possible by means of natural language. unbelievable levels of complexity that can be handled
Expert systems, which partially mimic human by automata theory. Therefore, more research should
specialist reasoning, are computer software programs be encouraged in the area of automata theory, as
that have two components. The components are a this would contribute in no small way to a better
knowledge base and an inference engine. A scientific learning, which can lead to a teclmological
knowledge base provides rules and dat<r while an advancement in Nigeria.
inference engine enables the expert system to form
conclusions. The inference engine searches through
the knowledge base and concludes which possible
options are best solutions to the problems. However,
the success of automata has been limited by
programming techniques. According to Encarta
(2006), it was reported that prior to the 1980s, almost
all programming was done by structures designed
for numerical processes such as calculating the sum
of two numbers. New symbolic processes that use
programming language, such as LISP, PROLOG, and
C++, use symbolic logic, in which symbols represent
the laws of reasoning. Theselanguages and advances
in programming techniques have stimulated new
interest in automata theory. Despite these advances,
progress of automata has been limited by modem
computer technology in term of speed, storage, and
application development of computer technology.

12. Conclusion

This work critically studied the theory ofcomputation,
automata and languages. It also examined the
problems that could be solved by computer and those
that could in principle be solved. Finite state automata
are widely used in modeling of application behavior,
network protocols, and the study of computation and

REFERENCES
Adleman, L. M., 1994. Molecular computation of solutions to

combinatorial problems, Science, 266, II November
1994, pp 1021-1024.

Chomspy, N., 1962. Context free grammar and pushdown
storage. Quarterly Progress Report 65. Regular
language induction with genetic programming
Computation. IEEE Press. Volume 1. Pages 396-400.

Encarta, 2006. Microsoft Corporation. 1993-2005.
Giles, C. L., Miller, C. B., Chen D., Chen, H. H., Sun, G. Z., and

Lee, Y. C. , 1992. Learning and extractingfinite state
automata with second-order recurrent neural

networks. Neural Computation 4, 393-405.

Gold, E. M., 1967. Language identification in the limit, Inform.
Contr. 10, pp. 447-474.

Gruau, F., 1995. Genetic micro programmingofneuralnetworks.
In Pinnear, Pcnneth E. Jr. (ed.).

Hopcroft, J. Ullman, J., 1969. Formal languages and their
relation to automata. Addison-Wessley, Reading,
Mass., 1969.

Hopcroft, J . Ullman, J. 200l.lntroduction. to automata theory,
languages, and computation. Reading, MA: Addison
Wesley, 200 I .

Ratson, A., Reilly, E.D., and Hemmendinger, D. , 2000.
Encyclopedia of computer science. Nature Publishing
Group 2000. 4th edition, 112-772.

Song Y. Y., 1998. An introduction to formal languages and
machine computation. World Scientific Publishing Co.
Pte. Ltd.

