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DATA-DRIVEN SELF-OPTIMIZING CONTROL: CONSTRAINED OPTIMIZATION 
PROBLEM
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Self-optimizing control (SOC) is a technique used in selecting controlled variables (CVs) for a process plant 
control structure with a view to operating the plant optimally in the presence of  uncertainties and disturbances. 
Existing SOC approaches are either local which result to large losses or too cumbersome to be applicable to real 
systems. In this work, a novel method of  CV selection based on data was developed. In the method, a 
compressed reduced gradient of  a constrained optimization problem was proposed to be estimated using finite 
difference scheme. The CV function was then used to approximate the necessary condition of  optimality (NCO) 
using data only in a single regression step. The new approach was applied to a simplified case study and its 
performance was compared to an existing SOC methodology. An excellent goodness of  fit was obtained during 

2the regression with a R -value of  1.0 associated with one of  the designed CVs. The formulated CVs were found 
to be very robust with performance similar to that of  NCO approximation method. A zero loss was incurred 
with one of  the CVs.

Keywords: compressed reduced gradient, constrained problems, controlled variable, data-driven, necessary 
condition of  optimality, self-optimizing control.

yi4cao2@gmail.com

ABSTRACT

273

INTRODUCTION
One of  the most important stages in any control 
structural design is the selection of  controlled 
variables (CVs) and manipulated variables (MVs) 
and establishment of  linkage between the two.  
This activity has a great effect on the overall safety 
and economy of  any plant operation (Umar et al., 
2012). A CV which is sometimes called a process 
variable is the quantity which is to be controlled. A 
MV on the other hand is a quantity which can be 
adjusted directly to influence the output in a 
favourable way. This is also called a control 
variable or control input (Janert, 2013).

A method of  CV selection called self-optimizing 
control (SOC) that places an emphasis on the 
optimal operation of  plant was first proposed by 
Skogestad (2000). Self-optimizing control is when we can 
achieve an acceptable loss with constant setpoint values for 
the controlled variables (without the need to reoptimize when 
disturbances occur) (Skogestad, 2000). The main idea 
of  SOC is to select CVs which when controlled in 
the presence of  uncertainties and disturbances 

can keep the operation of  the process at optimal 
or near-optimal level. That is to say, the process 
becomes 'self-optimizing' with the control of  the 
selected CVs at constant setpoints (Umar et al., 
2012).

Various researchers have shown interest in the 
development of  SOC methodologies which led to 
its improvement over the years. These methods 
can be broadly classified into two; local and global 
methods which are applicable to either static or 
dynamic processes. The local methods depend 
heavily on linearizing a non-linear model around a 
nominal operating point and quadratic 
approximation of  the loss function, and hence 
only a local solution is obtainable (Umar et al., 
2012). A method based on minimum singular 
value (MSV) rule was one of  the pioneer local 
SOC approaches (Skogestad and Postlethwaite, 
1996; Halvorsen et al., 2003). The method works 
by selecting the CV that maximizes the MSV of  a 
scale gain matrix (Halvorsen, et al., 2003; Umar et 
al., 2012). But according to Hori and Skogestad 
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(2008), the method can lead to wrong 
identification of  CVs. As such, Halvorsen et al. 
(2003) developed 'exact local method' to 

overcome the shortcoming of  MSV rule which is 
based on the assumption that the setpoint around 
which linearization is done to obtain the 
approximate model is optimal. In the approach, 
obtained loss expressions were used to screen CVs 
(Umar et al., 2012). Other local methods include 
null space method (Alstad and Skogestad, 2007), 
and branch and bound methods (Kariwala and 
Cao, 2010, 2009; Cao and Kariwala, 2008). 

Ye et al.(2013a) have defined two expressions for 
loss in objective function that are used as criteria 
for CV selection. These are worst case and average 
losses for uniformly distributed disturbance given 
as follows 

           (1)

           (2)

where          and     are the maximum singular 
value and Frobenius norm of  a matrix, 
respectively. The matrix M was defined as

           (3)

where                  ,            
and the Hessian matrices are given as (Ye et al., 
2013a)

           (4)

Equation (1) and Equation (2) are used to select 
the right CV candidate as a subset of  
measurements (Umar et al., 2012). The CV 
selection procedure involves minimizing the loss 
expressions with respect to H  (Ye et al., 2013a).

In global methods, gradient functions were 
proposed to be used as the CVs directly in order to 
obtain a global optimal operation (Cao, 2005, 
2003). The main challenge to this approach is the 
difficulty in obtaining the analytical expressions of  
most processes; and when such exist, it may be 
nonlinear in state and unknown disturbances. In a 

related work by Cao (2004), chain rule 
differentiation was proposed to explicitly express 
the gradient as a function of  system's Jacobian.
Other methods were also developed for CV 
selection which approximate necessary condition 
of  optimality (NCO) to achieve near optimal 
operation globally (Ye et al., 2013a, 2012). 
However, global optimal operation was achievable 
with these methods, system model is still 
necessary for NCO evaluation, which is a short 
coming to systems with unknown or complicated 
model.

The above local and global methods were 
developed for steady state continuous operations. 
Approaches for dynamic problems were also 
developed (Dahl-Olsen et al., 2008; Dahl-Olsen 
and Skogestad, 2009; Hu et al., 2012; Ye et al., 
2013b). In the work of  Ye et al. (2013b), the 
technique for NCO approximation (formulated 
for continuous processes) was extended to 
approximating invariants. Again, the method may 
not be applicable to complex processes or those 
with unknown models. In this work, a method that 
works solemnly based on either operational or 
simulated data is proposed for constrained 
optimization problems to approximate the NCO 
and hence, model equations are not required. This 
is applied to a simplified problem so that readers 
may find the concept easier in understanding.

METHODOLOGY
Most processes are constrained in one way or the 
other (Walter, 2014). However, the methodology 
presented in the first part of  this work does not 
consider constraints directly but are satisfied 
during data collection. This might be time 
consuming for large scale problems. In the present 
work, the method is extended to solve constrained 
optimization problems where the constraint 
equations are considered explicitly in the 
formulation. For this method, the NCO does not 
need to be determined analytically but evaluated 
using simulated or operational data through finite 
difference scheme. 

Algorithm Development
The optimization problem can be written as

          (5)
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For this type of  problem, the NCO was split into 
two parts by Ye et al. (2013a) which are, the active 
constraint,    (constraint with strict equality) and 
reduced gradients     .  These are respectively 
given as

           (6)

and

           (7)

The reduced gradient has    components which 
can be compressed to              dimensions using 
singular value decomposition. This was obtained 
by Ye et al. (2013a) as

           (8)

where       is the compressed reduced gradient, 
and V  are               right singular vectors. 2

We proposed in this work to approximate the 
compressed reduced gradient given in Equation 
(8) using finite difference scheme. The regression 
CV function is therefore given by 

           (9)

In which case q is to be determined through 
regression. The following steps are followed to 
carry out the optimization process:

1. A set of  data is collected by sampling the 

whole space of  manipulated variables and 

disturbance.

2. At each reference point,     gradients of  the 

objective function against   manipulated 

variables       and               Jacobian matrix of

    constraints against     manipulated 

variables,      are calculated

3. Singular value decomposition approach is 

used to calculate                   at each reference 

point.
Regression is used to fit                controlled 

variables to approximate the                       for all 
reference points by minimizing the value of  
squared 2-norm of  the residual as given

         (10)

Where q represents the right-hand side of  
Equation (9).

Illustrations
The toy example (Umar et al., 2012) is modified 
here to include an equality constraint and two 
manipulated variables. The objective function is 
(Grema, 2014)

         (11)
The constraint is given as 

         (12)
It was assumed that there are four available 
measurements

         (13)

The disturbance d varies in the range [-0.25, 0.25] 
while u  in the range [-1, 1] and  u in [-2, 2] range. 1 2  

In order to ascertain the robustness of  the 
proposed method, a comparison will be made to 
NCO approximation techniques reported by Ye et 
al. (2013a). To use NCO method, the analytical 
equation of  the compressed reduced gradient 
given in Equation (8) is employed. 

Analytical Solution
To derive the necessary condition of  optimality 
for this problem analytically, the following steps 
are taken:

· The Jacobian of  the constraint is 

computed.

· Singular value decomposition isused to 

obtain V .2

· The Jacobian of  the objective function 

with respect to control is computed.

· Using Equation (8), the NCO is 
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computed.

Data-Driven SOC Solution
Here, both first- and second-order polynomials 
are used to fit the reduced gradient. For the first-
order polynomial ,  we have,  for four 
measurements

         (14)
and for the second-order

         (15)

After regression was conducted, performances of  
different CVs were evaluated numerically using 
the steady-state loss function defined by Ye et al. 
(2013a) as

         (16)

where the       is the value of  the objective 
function which would be obtained when the 
feedback control law is implemented to maintain 
the CV at zero while            is the actual optimal,  
J. A Monte Carlo simulation was then carried out 
using 1000 randomly generated disturbances that 
vary within its range of  values.

If u , u  and d are divided into N, n and m parts 1 2

respectively, the number of  data points for central 
difference scheme is given by

         (17)

For this illustrative example, central difference 

scheme was employed with N =41, n =41 and m 
=11. Therefore, N  = 16731.p

RESULTS AND DISCUSSIONS
The results for the analytical solution to the 
constrained optimization problem considered are 
given below:
The Jacobian of  the constraint function was 
found to be

         (18)

The value of  V  obtained using singular value 2

decomposition is

         (19)

For the objective function, its Jacobian with 
respect to control is

         (20)

The NCO is therefore found to be

         (21)

Table 1 gives the regression parameters and losses 
for both data-driven SOC and NCO 
approximation. By observing regression 
coefficient values, it is evidenced that the 
measurement y  is not relevant in the CV formulae 1

of  Equations (14) and (15). This is because the 
coefficients of  y or its product with any other 1 

measurement is zero for both data-driven SOC 
and NCO approximation methods. Also, the 
square of y  is not significant for the second-order 3

polynomials.
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2The R -values obtained for first-and second-order 
polynomials are respectively 0.9714 and 1.0000. 
This indicates that no higher polynomial or more 
rigorous model is needed to fit the compressed 
reduced gradient. 

By using a central difference scheme in 
approximating the Jacobians of  the objective and 
constraint functions, the losses associated with 
both approaches are zero for second-order 
polynomial. Losses incurred for the case of  data-
driven SOC when first-order polynomial was used 
as the CV averaged at a value of1.1083 and 
standard deviation of  1.0734. The corresponding 
values for NCO approximation method are 
1.0648 and 1.0383 respectively. This indicates that 
even when we do not have the gradient 
information of  a process, we can use 
measurements alone to optimize it.

CONCLUSIONS AND 
RECOMMENDATIONS
This work presented a novel method for 
controlled variable selection using only data 
without the need for analytical expression of  the 
NCO. The method was developed for constrained 
optimization problems where proposed CV 
expressions were used to approximate 
compressed reduced gradient using measurement. 
The compressed reduced gradient was estimated 
using finite difference scheme.

To illustrate the efficacy of  the method in a 
simplest way possible, the approach was applied to 
a hypothetical case study. This was also compared 
to an existing method which requires the explicit 
expression of  the NCO to be derived. Excellent 
regression performance was obtained owing to 
the finite difference scheme selected (central 
difference) and the numerical experiment 

Table 1: Constrained Data-Driven SOC and NCO Approximation Methods

Data-Driven SOC NCO Approx. 
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-
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-
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Losses
 Minimum

 
1.4490x10-6

 
0

 
5.8247x10-8

 
0

Average
 
1.1083

 
0

 
1.0648

 
0

Maximum
 

4.3743
 
0

 
4.3393

 
0

Std. Dev.  1.0734  0  1.0383  0
 R2  0.9714  1.0000  0.9714  1.0000
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performed. The proposed approach was shown to 
be efficient with performance comparable to 
NCO approximation method.

It is recommended that the method is applied to a 
large scale problem and its efficiency compared. 
Although, the objective used in the illustration is a 
function of  only the manipulated variables and the 
disturbance, the methodology is also applicable 
when the objective is a function of  states, 
provided it (objective) can be computed.
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