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Using heuristic arguments alone, based on the properties of  the wavefunctions, the energy eigenvalues and the 
corresponding eigenfunctions of  the one-dimensional harmonic oscillator are obtained. This approach is 
considerably simpler and is perhaps more intuitive than the traditional methods of  solving a differential 
equation and manipulating operators. 
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INTRODUCTION
As is well-known, in some fortunate cases, the 
foreknowledge of  certain properties of  the states 
of  a quantum system, based on its symmetries, can 
faci l i tate f inding the eigenvalues and 
eigenfunctions of  the system for such states. This 
fact is demonstrated in this note by applying the 
node theorem and the MacDonald-Hylleraas-
Undheim theorem to quantize the one-
dimensional free harmonic oscillator, described 
by the Hamiltonian 

                                                                   (1)

where  lives in a Hilbert space  of  real 
functions, with inner product defined for any pair 
of  vectors  and   in  by 

                                                                  

The symmetry argument presented here is much 
easier than the traditional methods of  solving the 
one-dimensional harmonic oscillator problem, 
discussed in every book on quantum mechanics, 
namely the direct solution of  the time-
independent Schrödinger equation and the 
operator method.

The node theorem for one-dimensional 
Hamiltonians states that the ground state of  a 
system has no nodes (zeros between the 
boundaries) while the  excited state has exactly  
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nodes. (Moriconi, M., 2007). This theorem is a 
direct consequence of  the fact that the one 
dimensional Schrödinger equation is an example 
of  a Sturm-Liouville equation ( Geza, 1992; and 
the references therein).

The MacDonald-Hylleraas-Undheim theorem 
(Hylleraas et al.,1930; Naoum. C. Bacalis, 2013) 
(henceforth MHU theorem), first proved by 
Hylleraas and Undheim (Hylleraas et al.,1930 )  
and later by MacDonald (MacDonald,1933), 

states that:  If  the roots  of  a secular equation are 
ordered such that                                    ,
then each such root is an upper bound to the 

corresponding exact eigenvalue, , that is . 

MATRIX REPRESENTATION of 
Properties of the eigenfunctions of 

 Let ,  be the yet to be determined 
eigenfunctions of  , with corresponding 
eigenvalues . The following observations 
were made:  

The functions , are required to 

vanish at the boundaries, that is,  
 for  

Since the potential  is an even 

function of  , the wave functions , 
 are eigenstates of  the parity 

operator so that each  is either an even 
function of   or an odd function of  . 
Since the potential  
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approaches infinity as  approaches 
infinity, the eigenvalues of   form a 
discrete unbounded sequence [1], the 

states ,  are non-
degenerate, and, using the node theorem 

(  has  nodes,  has  node,  has  
nodes and so on) we can arrange the 
corresponding energy eigenvalues as 

  where   is the ground 
state energy,  the first excited state 
energy and so on. 

If  we build a finite  matrix  

in an  dimensional subspace of   and 

obtain the eigenvalues  of  the 

secular equation , arranged such 

that , then according to the 

MHU theorem, we have , , 

, , . 
 

Choice of basis functions
Consider the following complete set of  functions

                                                                    (2) 
vectors of  , where  is the Hermite 
polynomial of  degree  in the variable  and 

                                                                    (3)

Using the orthogonality property of  the Hermite 
polynomials with respect to the exponential 

weight function, it is noted that the  given in 

(2) are an orthonormal set in , so that  

for ,  for  any . It should be 
emphasized that here no assumptions are made on 

 other than that it is a positive constant.

Obviously, the orthonormal functions  given in 

(2) vanish at  and have definite parity for 

each  since Hermite polynomials satisfy 

. Furthermore since  is a 
polynomial of  degree  in  with  distinct roots in 

, each  has  nodes and is therefore 

suitable to represent the  excited state. Thus, the 

functions , in addition to being suitable 
choice as basis functions for giving a matrix 
representation for the Hamiltonian , are 
t h em se l ve s  p o t en t i a l  c a n d i d a t e s  f o r  
eigenfunctions of  .
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We shall require the following recurrence relations 
for the Hermite polynomials: 
                                                                    (4)

and

                                                                    (5)

Matrix elements of 
Writing                                  with

we have 

                                                                    (6)

and

                                                                    (7)

Writing (2) as

and using (5), it is easy to establish that 

                                                                    (8)

From the definition (2) of   and the recurrence 
relation (4) we have 

                                                                    (9)

Using (9) in (8) we get 

                                                                    (10)

Using (10) in (6) ,  together with the 

orthonormalization condition  we 
finally have 

                                                                    (11)
we se that

                                                                    (12)
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 Using (9) in (7) we obtain 

                                                                   (13)

so that

                                                                   (14)

Finally, from (11) and (13) we obtain the matrix 
representation of  the one dimensional harmonic 
oscillator Hamiltonian  as 

                                                                   (15)

DIAGONALIZATION of 
With the matrix elements given in (15), the 
problem of  quantization of  the one dimensional 
harmonic oscillator reduces to that of  building 
finite matrices and finding the eigenvalues and 
eigenvectors of  the matrices. Using this approach, 
convergence and accuracy of  the results generally 
depend on making a judicious choice of  the 

parameter .
 
To this end, the variation principle is usually 

employed to make an optimum choice of  . In 
this present study, it turns out that, in fact, there is 

a choice of   for which the  matrix is exactly 
diagonal.

We see from the matrix elements of   in (15) that 
if  

                                                                  (16)

then the Hamiltonian matrix  becomes diagonal. 

Thus from (16) the value of   for  to be diagonal 
is fixed at 

                                                                   (17)

 and the eigenvalues of   are then given by 

                                                                   (18)
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Since 
the prescription of  the MacDonald-Hylleraas-
Undheim theorem in the last paragraph of  section 

1 gives , , , ,  that is 

                                                                    (19)

 Now substituting  into (2), we have the 
corresponding energy eigenfunctions to be given 
by 

                                                                    (20)

CONCLUSION
Although the MacDonald-Hylleraas-Undheim 
theorem and the node theorem always work for 
one dimensional problems, it is not always that 
one gets lucky and is able to make a choice of  a 
wavefunction parameter for which the 
Hamiltonian matrix is diagonal. Consider the one 
dimensional pure quartic oscillator, described by 
the Hamiltonian 

Using the same  given in (2) as basis 
functions, the matrix elements of   are 

While the eigenvalues and eigenvectors of  the 
finite dimension  matrix can be calculated for 

any value of  , it is obvious that no choice of   
that is independent of  the indices  and  can bring 
the  matrix to a diagonal form, so that only 
approximate eigenvalues and eigenvectors can be 
obtained with the accuracy depending on the 

choice of  . 
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