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ABSTRACT

In this article we give new integral representations for the ordinary generating functions of §(2n), n€(2n+1)

and {(2n+1) forn €Z' n>1; where €(j) is the Riemann zeta function. We also give closed form expressions

for the generating functions.
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INTRODUCTION
The Riemann zeta function of a positive integer
argument defined by

0 1 N
C(l’l)zz—n, neZ ,n>1, (1.1)

i k
occurs in various areas of statistical physics, for
example in Bose-Einstein systems, black body
radiation and in the Sommerfeld expansion

(Ashcroft and Mermin, 1976; Gross and Witten,
1986; Pathria, 1996), usually in integral form

qORIN

n-1
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(n=1)'e* -1

(1.2)

The Rieman zeta function also appears in the
calculations of Feynman diagrams (Kreimer,
2000) as well as in string theory (Gross and Witten,
1980).

In the study of Bose-Einstein distribution one
often encounters integrals of the form

v -l
! I _1x dx,
F'v) z7e" -1

0<z<ly >0;

g (2)=

z=1v>1, (1.3)

where ['(y) = j:e-fty-' dt

is the Gamma function defined for R(y)>0 and
extended to the rest of the complex plane,
excluding the non-positive integers, by analytic
continuation.

For small values of z, the integral in (1.3) may be
expanded in powers of z to obtain

Thus for v>1, g(z) approaches the Riemann zeta

function, {(v), defined in (1.1).
Planck's law gives the intensity of light emitted by
ablackbodyas

3
I(V,T)ZZhV 1

2 hv/kT 2
ct e —1

(1.4

where & is Planck constant, ¢ is the speed of light,

v is the radiation frequency, k is Boltzmann
constantand 7'is temperature.

The Stefan-Boltzmann law gives the emitted
power per unitarea, B, of ablackbody as

B ZRJOI(V,T)dV;
thatis

B= dav.

2nth .ro v’

2 KT 1

c” e

Substituting y = hv/kT gives

4 3
2nh (kT \ > y
B= — dy.
¢’ (hjjoey—l 4
Thus, using (1.1), the emitted power per unit area

of an emitting body is given by

B=cT"*,

where

- = 2okt
15¢*h°

is the Stefan-Boltzmann constant.
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A Sommerfeld (1929) expansion is an
approximation procedure applicable to certain
integrals which occur in various areas of
condensed matter physics and statistical physics
such as the thermal conduction of electrons. The
integrals represent statistical averages based on
the Fermi-Dirac distribution. Fermi-Dirac
integrals (Morales, 2011, Kim e a/, 2019) are
defined by

F,m)= f &

1+

de,

where = WkT, pis the chemical potential and j is
a positive integetr.

For electrons (j = 1) the Fermi-Dirac integral is
expressed in terms of the Riemann zeta function
by (Morales, 2011)

1-2n (4n -5
+22(1 2778 (2n )m-

J’: é 1/27 d(:

1+e™ 3

Let B; be the Bernoulli numbers defined by the

generating functiqn
z - iB i z <21
N (15)
The first few Bernoulli numbers are
1 1 1

BO = l,Bl Z—E,Bz zg,B3 = 0,B4 = _%’BS =
0,B, = I B, =0

,Dg —E, 7 = U, (16)

For positive even arguments, the numbers {(2n)
are directly related to the Bernoulli numbers, B, :

— (_1\"t! (27[)2”
C@n)=(-1) 22m)!

B,,. (1.7)

No analogous closed evaluation is known for the
Riemann zeta function at odd integer arguments.
Integral representations for the Riemann zeta
function of even and odd integers are

_ (_l)n+122n—3n2n 1
Cen = @ oy W ()

and

C (2n . (_1)n 22n—1n 2n+l1 1

_ ™.
1)= O 1) 0E2n (x)cot( 5 )dx,
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where E(x) are the Euler polynomials defined
through the generating function

__S, E0

e +1 5

Many useful and important properties of the
Riemann zeta function can be accessed through its
generating function.

The generating function, u(a), of the Riemann

zeta function of even integers is well known
(Apostol, 1973; Borwein ez al., 2001):

u(a) = T S 0n 4200 1

2a n=0

No such simple expression is known for the
generating function of the £ function of an odd
integer argument (Cvijovi¢ and Klinowski, 2002;
Sondow and Weisstein, 2002). We remark that the
Riemann zeta function with odd arguments is
especially important in calculating the first few
values of the emptiness-formation probability in
the anti-ferromagnetic XXX spin chain. Boss and
Korepin (2001) obtained the third and fourth,
P(3) and P(4), such probabilities in terms of {(3)
and {(5) and gave an asymptotic of P(n) when n
approaches infinity.

In this article we will derive the generating
function, w (a), of the Riemann zeta function of
odd integer argument multiplied by an integer.
Specifically, we shall show that

»sinh
_ J- sinhax _ x

0 2a e -1
_ I+ *a’cosec’na —2a’y ' (a)

4a’

= i(n +1)¢ 2n+3)a™,

w(a)

where is the trigarnma function defined by

v'(z) = —1nr(z) zm

We will also derive an integral representation for
the Riemann zeta function of an odd integer
argument, namely,

va)=["

»coshax—1 dx

= Zg Qn+a*"".

n=1
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Integral representation of the generating
function of Riemann zeta function of an
even integer argument

Theotrem 1 The function u(a) defined by the integral

»sinhax 1
e’ —1

is a generating function of the Riemann zeta
function of a positive even integer argument.

u(a) = j dx 2.1)

Proof. Since

sinhax e

ax —ax

—e

5

a 2a

we have, after using the Taylor series expansion of
the exponential function,

sinhax _ i x2! Y
a  =en+) (2.2
Thus
»sinhax dx dx
L a e -1 712(2%1)' e —1

7251 "C(2n+2), by.

n=0

72 j (2n+1)'e

n=0

Therefore, u(a) is a generating function of the
Riemann Riemann zeta function of even integers.
Note that the uniform convergence of the series
provides the justification for the interchange of
summation and integration.

Nextwe putu (a)in closed form.

Writing
»sinhax 1 «sinhax e~
u\a dx: dx:
(@)= I e’ —1 -[0 a l1-e”
we have
[ <& g |Sinhax
u(a)—jo (;e j » dx
:Z(jwe s1nhaxdx/aj
PN
e kZ _aZ
Let

_ (_l)k _ o n
fl ==

Note that f{k) has simple poles at k = *a. The
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above sum is evaluated by the method of residues
as

u(@ =Y 1) £ = (2( MG f(0)j
Ez Res(f,ia)+ 1

2~ sinm(+a) 2a4°

T
=——cotma +

2a 2a°

_ I—-macotna
24’

which is the well-known closed form generating

9

function of the ¢ function of an even integer
argument. Next we obtain the generating function
of the Riemann zeta function of an odd integer
argument multiplied by a positive integer.

Generating function of the Riemann zeta
function of an odd integer argument
multiplied by a positive integer

Theorem 2 The functionw (a) defined by the integral
sinhax x
wia) = [

3.1)

e’ —1

is a generating function of the Riemann ¢ function
of an odd positive integer argument multiplied by
a positive integer.

Proof. Using (2.2), we have

rsinhax xdx
0 2a e -1

- 2, _dX
7'[2(2n+1)'2 e -1

‘Z fx(z,q(f;})efix ‘Za menc@nsd). (3.2)

Therefore, the function w(a) defined by the
integral (3.1) is a generating function of the
Riemann zeta function of an odd integer
argument multiplied by a positive integer.

In order to express w(a) in closed form we write

of inh ax
w(a) = e ™ X1 ax dx
o=
= 2a da\’

BRI
~2ada\a®>-k*

cosh axdx)

(3.3)
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Consider the identity

;az—kz)z_ 4a(;(k+a) Z(k a)j

Expressing each of the sums on the right hand
sideasa trigamma function, we have

St

k=1

———@'(a+1) —y'(-a+1))

But
y'(a+l) =y'(a)-l/a®
and
y'(—a+l) =-y'(a)+n’ cscma
Hence
= 3 L:_LZGZ‘V "(a)-m’a’ csc*na—1
W(a) ;(az —ﬂ2)2 4a e .

Generating function of the Riemann zeta
function of an odd integer argument

Theorem 3 The function V(a) defined by the integral
1 dx
va)= "

e —1

cosh ax —

(4.1)

is a generating function of the Riemann zeta
function of an odd integer argument.

Proof. From (3.1) and (3.2) we have

0

Z M n+1)E (2n+3),

n=0

o s1nh ax xdx

aw(a) = I

from which, after integrating both sides of (aw)a
with respect to a, we find

dx 1 _ ZC_, (27’1 +3)a2n+2 _
- n=0

g; 2n+1)a™, 4.2)

which shows that the v(a) given in (4.1) is the
generating function of £ (2n+1).

Before ending this section, we give a closed form
for the generating function of the Riemann zeta
function of an odd integer argument.

Itis known that (Srivastava and Choi, 2012)

ZC(ZnJrl) a’" 2log(£8 a;] va, |al<l,
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which, upon differentiation with respect to a gives

YL@t Da ==y (-0 -2y (1+0) -1 43)

0.5772157 is the Euler-Mascheroni

constant and y(z) is the digamma function
defined by

V(o) - %mg re)

:—V+i(l 1

n+z

where y =

], z#0,-1,-2,...

Thus, from (4.2), (4.3) and (4.1), it is established
that

< wa_ 1y(d-a)+y(l+a) v
wa) nZz; Q2n+1)a 5 y "

CONCLUSION

As noted in the introduction, valuable
information about any mathematical quantity is
stored in the generating function of that quantity
or object.

In this paper, we have derived new integral
representations for the generating functions of
the Riemann zeta function of integer arguments.

For even integer arguments, we found the
following representation
© sinh d
u(a)= [ sinhax _dx _ Zaz"g 2n+2),
while for odd arguments, we obtained
(@) = J.oo sinh ax xa’x1 B zaz,, (n+1)C (20 +3)
- n=0
and
h 1 d
va)= [ coshax—! ax _ Zg Qn+1)a*™",
n=1
We also showed that
1—macotna
u(a) = 2—2,
1 2a a)—-m’a’ csc’na — 1
w(a) = y'(a)— 2
da a
and

l\u(l a)+y(l+a) v
a

v(a) =
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