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Seismic and well information have been incorporated with a genetic inversion workflow using a supervised 
neural network in the F3 block, offshore Netherlands with a view to properly predicting porosity distribution 
within the selected reservoirs. This would provide spatial distribution of  porosity within the field. Petrophysical 
parameters were estimated for the identified reservoirs (FS4, FS8, XYZ and ABC) across the four wells (F02-01, 
F03-02, F03-04 and F03-06) ranging from 780 to 1500 ms. Acoustic impedance (AI) and porosity cubes were 
generated using a genetic neural network. Thereafter, acoustic and porosity maps were extracted for the selected 
reservoirs. The results of  the inversion reflect that the acoustic impedance in the region varies from 2000 to 6000 
kPa.s/m, indicating unconsolidated and less compacted formation within the study area. Porosity within the 
selected reservoirs varies from 0.25 to 0.40, which reflects very good to excellent porosity values within the study 
area. The plot of  porosity from well (F02-01) and the predicted porosity from genetic inversion reveals a 
relatively good correlation coefficient of  68%. The hydrocarbon regions within the F3 block are in the Upper 
Jurassic – Lower Cretaceous strata which are found below the interval available for this study. The study 
underscores that the genetic inversion algorithm has proven effective in predicting porosity within the study 
area.

Keywords: Genetic inversion, Porosity cube, Neural network, Acoustic impedance, Reservoir quality.

(Received: 3rd January, 2023; Accepted: 23rd April, 2023)

ABSTRACT

159Ife Journal of Science vol. 25, no. 1 (2023)

INTRODUCTION 
Reservoir quality depends on the spatial 
distribution of  porosity and permeability of  sand 
and carbonate reservoirs. Both parameters are 
major players that determine the economic 
viability of  any reservoir for hydrocarbon 
exploration or exploitation. They therefore need 
to be quantified in all stages of  the life cycle of  an 
oil and gas field; from the basin focus, via appraisal 
and field development through secondary and 
tertiary recovery in order to minimize cost and 
maximize return on investment (Armitage et al., 
2018). Porosity is one of  the properties that have 
tremendous impact on reserve estimation and 
production forecasts.  It could be measured in the 
laboratory from core data or during well testing. 
Both techniques are expensive however; it could 
also be estimated from well logs (neutron, density 
and sonic log). Despite its relevance, challenges 
still arise when estimating it, majorly because it 
varies significantly over a reservoir volume and 
most of  the traditional methods only sample it at 
well locations and not directly across the whole 
field. Seismic measurements help to delineate 
geologic structures within the reservoir body but 
difficult to directly estimate porosity.  Inversion is 
a suitable tool that could be adopted to improve 

the spatial prediction of  reservoir properties from 
3D seismic data (Adeoti et al., 2017; Adesanya et al., 
2021). It is capable of  incorporating seismic and 
well information to generate spatial distribution 
of  porosity beyond well controls which is very 
essential for a successful development plan for 
hydrocarbon exploration (Bhatt and Helle, 2002; 
Tiab and Donaldson, 2004; Adekanle and 
Enikanselu, 2013). Hampson et al. (2001) applied 
neural network for reservoir characterization 
using a linear and non-linear multi-attributes 
transform between a subset of  the attributes and 
the target log values. The models generated 
enhanced interpretation. Likewise, Pavlova and 
Reid (2010) successfully predicted porosity cubes 
using genetic inversion, the results assisted in 
planning for new well locations in Panax's 
Limestone Coast Geothermal Project. Mojeddifar 
et al. (2015) adopted a pseudo-forward equation 
(PFE) to generate porosity models of  gas 
reservoir in the F3 block of  North Sea. The 
derived acoustic impedance and porosity were 
cross plotted with that of  well data to validate the 
PFE model generated which reflected about 
93.8% correlation coefficient. Ali and Ahmed 
(2017) carried out genetic inversion on 3D seismic 
data to characterise the reservoir for prospects 

https://dx.doi.org/10.4314/ijs.v25i1.15



160

evaluation in AL-Kumait oil field south Iraq. The 
results helped to identify the possible locations for 
exploration development. Li et al. (2019) 
introduced an inversion technique that combines 
spectral decomposition and genetic inversion. 
The models generated enhanced interpretation 
and readjusted tuning effects. Kushwaha et al. 
(2020) used a multi-layer feed-forward neural 
network (MLFN) to predict porosity by 
integrating seismic and well data acquired 
offshore F3 block, Netherlands. The MLFN 
revealed a relationship between porosity logs and a 
set of  seismic attributes, which in turn were used 
for porosity prediction. Africa (2021) used genetic 
inversion and seismic attribute to identify 
potential hydrocarbon zones and characterised 
the reservoirs in the Northern Orange basin, 
offshore South Africa. The need for lateral 
variation of  porosity beyond well controls in the 
study area is of  great concern, though porosity can 
be estimated from core samples and well log data 
available. However, these only revealed porosity at 
the well locations or the zone where core samples 
were taken, not within the whole field. This 
informed the application of  seismic inversion 
techniques to predict reservoir porosity within the 
F3 Block offshore Netherlands (Mojeddifar et al., 
2015; Kushwaha et al., 2020).  This study adopted 
genetic inversion algorithm which is simple, fast 
and reliable to predict the spatial porosity 
distribution so as to identify new locations for 
economic decision.

Location and Geology of  Study Area
The study area is situated offshore within the 
Dutch sector of  the North Sea, Netherlands. It 

2
covers about 380 km  and it is characterised by 
reflectors belonging to the Miocene, Pliocene and 
Pleistocene with a large-scale sigmoidal deltaic 
package consisting of  sands and shales (Figure 1). 
Most of  the region's hydrocarbons are being 
sourced by the Upper Jurassic syn-rift, organic-
rich marine distribution within the F3 Block for 
prospect evaluation mudstones (the Kimmeridge 
Clay Formation) (Brooks et al., 2001). Cretaceous 
and Cenozoic post-rift thermal subsidence and 
burial enabled the source rocks to become mature 
for hydrocarbon generation along the rift axes 
from Paleogene times onward (Johnson and 
Fisher, 1998). Hydrocarbon migration in the basin 
is primarily vertical, but there occurs a significant 
lateral migration that is however restricted to the 
Upper Jurassic and Paleogene successions. Almost 
every clastic and carbonate sedimentary 
succession, ranging in age from, and including, 
Devonian and Eocene strata serve as reservoirs 
for hydrocarbons. Pre-rift producing fields 
comprise Palaeozoic, Triassic to Lower Jurassic 
and Middle Jurassic categories (Brooks et al., 
2001). The Middle Jurassic tilted fault-block play is 
best developed in the East Shetland Basin and is 
one of  the most productive in the North Sea. The 
syn-rift hydrocarbons producing fields display a 
wide variety of  trapping mechanisms, including 
tilted fault blocks, domes, and stratigraphic 
closures. Thick, post-rift Lower Cretaceous 
mudstones serve as regional seals for many of  the 
traps. Mass-flow sandstone reservoirs of  
Paleogene age are estimated to contain about 20% 
of  the oil province's proven hydrocarbon reserves 
(Pegrum and Spencer, 1990). 
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Basic Concept of  Genetic Inversion
This technique helps in extracting from the 
seismic data, the underlying geology which gave 
rise to seismic data. It is a semi-automatic 
technique that relies on multi-layered neural 
networks as well as algorithms that could be used 
to train selected properties from the well data 
which would be applied on the seismic volume to 
generate acoustic impedance cube and thereafter 
porosity cube. The quality of  the inversion 
products are determined by blind well test which 
involves the cross plot of  predicted porosity with 
porosity from the well data. The neural workflow 
is characterised by an activation (sigmoid) 
function stated in equation 1.

                                (Veeken et al., 2009) (1)
and an input/hidden-layer relationship:

(Veeken et al., 2009)                                 (2)

In addition, W,  and w,  represent the bias of  the n p+1

input layer and the bias of  the hidden layer, 
respectively (Veeken et al., 2009). 

MATERIALS AND METHODS
Data Gathering
The 3D post-stack time-migrated seismic data 

Figure 1: Regional stratigraphy of  the Central Graben, North Sea (Stricker and Jones, 2016).
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acquired in Netherlands Offshore F3 Block was 
used in this study (Figure 2). The data set was 
obtained via the Open Seismic Repository on the 
OpendTect website. It covers 651 in-lines and 951 
cross-lines with time range of  1,848 ms, at 
sampling rate of  4 ms and bin size of  25 m. The 
data was acquired in order to explore for oil and 
gas in the Upper-Jurassic – Lower Cretaceous 
strata, which are below the interval of  the data 
available for this study that only comprises 
reflectors belonging to the Miocene, Pliocene and 
Pleistocene. Along with the 3D seismic data, the 
repository also provides four wells (F02-01, F03-

02, F03-04 and F03-06). Only one well (F02-01) 
had an effective porosity log. All wells had a 
density log except well F06-01. Resistivity and 
neutron logs were absent from all the wells but 
well tops were available which were used in 
lithology correlation across the study area. All 
wells also had check shot log which were used to 
establish the time-depth relations in the well. The 
mapped horizons (FS8, FS4, XYZ and ABC) 
ranging from 780 to 1500 ms guided the genetic 
inversion. The workflow adopted in this study is 
displayed in Figure 3.

Figure 2: Base map showing the location of  the F3 Block and the available wells.

Figure 3: Workflow adopted in this study.
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Well Log Analysis
Gamma ray log was used for lithology 
discrimination. The high gamma ray response 
indicates shale formation while low gamma 
response indicates sand/sandstone formation. 
Some of  the relevant logs required for the study 
unavailable were computed using empirical 
formulae stated in equations (3 - 10). The F02-1 
logs were used to validate the computed logs.
To compute density log, velocity log had to be 
computed first from the sonic log using the 
relationship: 

                       (m/s)                                    (3)

The density log was computed from the velocity 
log using Gardener's equation, which relates both 
density,  r and velocity, V  by;p

3
(g/cm ) (Gardener et al., 1974).                      (4)  
Equations (3 and 4) have been modified to factor 
in unit conversions.  The total porosity log was 
computed from the density log using the 
sandstone matrix porosity formula:   

                                                                  (5)

Where Æ  = Density-derived porosity r  = D ma
3sandstone matrix density (2.65 g/cm ) r = b 

measured bulk density  r  = mud-filtrate density f
3(1.05 g/cm )

Firstly, Shale volume (Vsh) was computed 
according to Clavier et al. (1971) equation 6 given 
by;

                                                                  (6)

Where                                                        (7)

GR  is a gamma ray log reading in 100% matrix ma

rock, GR  is a gamma ray log reading in 100% shale

shale, and GR  is a gamma ray log reading in a log

zone of  interest.
The total porosity within the shaly region was 
calculated using equation 8 according to Oras et al. 
(2019);    

                                                                 (8)

Where Æ = Density-derived shale porosity               t-shale 
3

r   = shale matrix density (2.54g/cm )ma

r = measured bulk densityb   

3
r   = mud-filtrate density (1.05g/cm )f

The effective porosity was calculated using 
equation 9 according to Oras et al. (2019);      

                                                                (9)

The S-wave velocity log was computed from 
equation 10 according to Castagna et al. (1985):
Vp = 1.16*Vs+1.36 or; 
Vs = 0.8621*Vp - !.1724                          (10)

Correlation of  Events on Both Seismic and 
Well Data
Well data which is a point data acquired in 1D, 
needs to be tied to the seismic data for accurate 
prediction of  reservoir properties such as porosity 
away from the well bore. To achieve this, check-
shot data from well F02-01 was used to establish 
the time-depth relations for good well-to-seismic 
tie. The de-spiked sonic and density logs were 
convolved with a 50 Hz Ricker wavelet to generate 
an acoustic impedance log from which reflection 
coefficient sticks were generated, thereafter 
producing a synthetic seismogram. A good match 
was observed after 5 ms bulk shift which gave 
52.6% correlation coefficient. 

Fault and Horizon Picking
After a successful seismic to well tie, faults were 
picked on seismic cube by observing areas of  
reflection discontinuity and displacement of  fault 
blocks at the fault plane, as well as relative 
termination or change in pattern of  reflection 
events. Afterwards, the reservoir tops of  interest 
(FS8, FS4, XYZ and ABC) ranging from 780 to 
1500 ms were identified and mapped across the 
seismic cube. 

Genetic Inversion
The AI inversion was driven by genetic algorithm 
which allowed the selection of  optimum 
parameters for quality inversion products. The F3 
seismic data was integrated with well data from 
(F03-02, F03-04 and F03-06) guided by mapped 
horizons (FS8, FS4, XYZ and ABC) ranging from 
780 to 1500 ms to generate inverted AI. The 
inverted AI was then plotted against the AI from 
the well data as a quality check. After the 
generation of  the inverted AI cube, the porosity 
cube was then generated according to (Veeken et 
al., 2009). The predicted porosity was then plotted 
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against the porosity from well (F02-01) as a quality 
check. The step by step procedure for the genetic 

inversion is displayed in Figure 4.

Figure 4: Genetic Inversion workflow (modified from Veeken et al., 2009).

RESULTS AND DISCUSSION
Derived Logs and Well Correlation
The derived logs are displayed in Figures 5 and 6. 
Figure 7 is the cross plot of  computed density log 
and density log from well (F02-01) with 
correlation coefficient of  99% while Figure 8 is 

the cross plot of  the computed effective porosity 
and effective porosity from well (F02-01) with 
correlation coefficient of  100%. These values 
validate the equations and parameters used in the 
well log analysis.

Figure 5: Derived total porosity logs (PHID) from density logs.
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Figure 6: Derived Vp and Vs logs for all the wells.

Figure 7: Cross plot of  computed density log (RHOBsyn) and density log (RHOB) for well (F02-01).

Figure 8: Cross plot of  computed effective porosity and effective porosity for well (F02-01).
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Figure 9 shows the correlation of  selected 
reservoirs across the wells (F02-01, F03-02, F03-
04 and F03-06) using gamma ray log. The well logs 
indicate that the transparent facies are of  
standardized lithology that can either be sand or 

shale. The sands are seen to thin out in the basin 
ward direction indicating a change in facies from 
coarse-grained deposits at the proximal part of  
the basin to finer-grained deposits at the distal 
part. 

 Figure 9: Correlation of  reservoir tops across the four wells.

Mapped Faults and Horizons
After a successful seismic to well tie (Figure 10) 
with 52.6% correlation coefficient. A major fault 
trending in the NE-SW direction was identified 
with fourteen minor faults. These faults 
immensely have significant effect on the geology 
of  the area (Figure 11). Five reservoir tops (FS8, 
FS4, XYZ and ABC) ranging from 780 to 15000 
ms were identified and mapped. The structural 
time maps were generated based on the mapped 
horizons (FS8, FS4, XYZ and ABC) as displayed 
in Figure 12 (a–d) which revealed structural 
closures and associated faults. The reservoir FS8 
which occurs at a depth of  about 500 m shows 

structural closures at the northeastern region that 
is associated with minor faulting occurring at that 
area. Reservoir FS4 at depth of  about 900 m 
reveals no structural closures while reservoir XYZ 
at 1350 m shows two closures at the northeastern 
and the southeastern areas, with the latter 
representing the top of  a faulted anticline. 
Reservoir ABC occurs at a depth of  1800 m and 
shows a well-developed anticline that has been 
greatly faulted. Minor faults are also observed to 
occur in the southwestern parts of  the reservoir. 
Reservoir ABC also pinches out north of  the 
study area. 
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Figure 10: Correlation of  events on both Seismic and well data.

Figure 11: Mapped faults and horizons.

Figure 12 (a-d): Time structural map of  the reservoirs of  interest (FS8, FS4, XYZ and ABC).
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Inverted Acoustic Impedance Cube
Figure 13 shows high match between the inverted 
AI cube and inserted AI log from the well (F03-04) 
while Figure 14 is the cross plot of  the inverted AI 
and AI from well (F02-01) with correlation 

coefficient of  96%. The inverted AI cube shows 
impedance variation of  2000 to 6000 kPa.s/m. 
The observed associated low impedance indicates 
presence of  unconsolidated sand formation. 

168

Figure 13: Inline 440 showing GR log (black) and AI log (pink) from well (F03-04) on (a) seismic 
cube (b) inverted AI cube.
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Figure 14: Cross plot of  inverted AI and AI from well (F02-1).

Predicted Porosity
Figure 15 is the  predicted porosity cube which 
reveals the spatial distribution of  porosity ranging 
from 0.1 to 0.48 while Figure 16 is the cross plot of  

the predicted porosity and porosity from well 
(F02-01) with correlation coefficient of  68%, this 
indicates good prediction and it equally agrees 
with findings of  (Kushwaha et al., 2020).

Figure 15: Inline 440 showing GR log (black) and porosity log (green) from well (F03-04) on 
(a)  seismic cube (b) predicted porosity cube.
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Extracted AI and Porosity Maps from Top 
of  Reservoirs (FS8, FS4, XYZ and ABC)
The extracted AI map at time slice 1692 ms 
(Figure 17) shows good inverted AI distribution 

across the field. The AI slice reflects yellow to 
green colour  indicating low AI sand (3000 
kPa.s/m) compared to the background purple 
indicating  high AI (6000 kPa.s/m) sand/shale. 
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Figure 16: Cross plot of  predicted porosity and porosity from well (F02-01). 

Figure 17: 2D window showing (a) seismic cube (b) inverted AI Cube at time slice 1692 ms

The extracted porosity map at time slice 1692 ms 
(Figure 18) shows good porosity distribution 
across the field with little changes in porosity 
laterally and vertically. The variation of  porosity 
across the reservoirs is between 0.25 – 0.40, which 
is comparatively high thereby confirming that the 

area is unconsolidated formation. There seems to 
be no preferred pattern of  porosity distribution 
across the maps (Figures 20 & 21), except 
reservoir ABC which seems to have very low 
values just at the north-eastern boundaries. 

Adeoti et al.: Porosity Prediction Using 3D Seismic Genetic Inversion



171

Figure 18: 2D window showing (a) seismic cube (b) generated porosity cube at time slice 1692 ms

Figure 19: Response of  the porosity logs at the reservoirs.

   Figure 20: Reservoir FS8 porosity map on (a) 2D window (b) 3D window.
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CONCLUSIONS
In this study, reservoir porosity has been predicted 
from the genetic inversion of  offshore seismic 
data incorporated with well data of  F3 Block, 
Netherlands. Four reservoirs (FS8, FS4, XYZ, and 
ABC) were identified from the wells and thus 
mapped across the entire field. The missing 
petrophysical logs (density, Vs, Vp, porosity, AI) in 
some wells were computed using relevant 
equations. The predicted AI and porosity cubes 
were validated by blind well test. This involves the 
cross plot of  predicted AI and AI from well (F-02-
01) and plot of  predicted porosity and porosity 
from well (F-02-01). The plots revealed 96% and 
68% correlation coefficient respectively. These 
indicate good predicted AI and porosity cube. The 
porosity maps extracted at top of  reservoirs (FS4, 
FS8, XYZ and ABC) reveal the spatial distribution 
of  porosity across the field ranging from 0.25 to 
0.4 described as very good to excellent porosity.  
These extracted porosity maps can guide well 
placement for development plans. However, the 
hydrocarbon regions within the F3 block are in the 
Upper Jurassic – Lower Cretaceous strata which 
are found below the interval available for this 
study. Hence, the method deployed in this study 
has shown the effectiveness of  the technique in 
predicting porosity away from the well.
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