ETHNOBOTANICAL PLANTS USED FOR FERTILITY CONTROL AND DELIVERY ENHANCEMENT AMONG AKOKO AND OSE ABORIGINES IN ONDO STATE, NIGERIA

Oluwajuyigbe, B. M.^{1,*} and Ige, O. E.²

Department of Plant Science and Biotechnology, Faculty of Science, Adekunle Ajasin University, Akungba-Akoko, Ondo State Nigeria. *Corresponding Author's Email: bomaprestige@ gmail.com; 08064846663/07040546877 (Received: 5th December, 2024; Accepted: 2rd April, 2025)

ABSTRACT

The aboriginal people in parts of Akoko and Ose areas of Ondo State have dialectical convergence, which is a peculiar greeting known as "HAO". The people revel in their knowledge of herbal medicine and efficacy of herbs especially for fertility, pregnancy controls and delivery enhancement processes. In the developed countries, fertility control and ease of childbirth are controlled through orthodox practice, while in the developing countries, traditional methods are sometimes adopted. On this basis, an ethnobotanical survey was conducted among the HAO people, to identify and document medicinal plants used for fertility control and delivery enhancement processes. Traditional medical practitioners, traditional birth attendants, herb sellers, traders, and farmers in the respective Local Governments were interviewed using a semi-structured questionnaire. A sample size of 300 respondents was randomly selected. The questionnaire considered the local plants' names, common names, species, families, plants parts used, and methods of preparation and administration. Data obtained were processed and subjected to descriptive and inferential statistics. Analysis of variance (ANOVA) revealed significant differences ($p \le 0.05$) among species occurrence and location for both fertility control and delivery enhancement processes. Occurrence of species for fertility control and delivery enhancement processes ranged from the lowest in Citrus sinensis (0.67) and Acanthus montanus (0.67), to the highest in Sida acuta (13.33) and Carica papaya (7.33) respectively. The results also revealed that 27 plant species belonging to 19 families were responsible for delivery enhancement processes, while 20 plant species belonging to 15 families were responsible for fertility control. Four (4) species of Malvaceae and Euphorbiaceae were responsible for delivery enhancement processes and fertility control. Since ethno-medicines are affordable, accessible and available to all, it is therefore recommended that there should be experimental validation of efficacy, establishment of effective dosage and prompt revitalization strategy to protect indigenous knowledge from complete desertion.

Keywords: Ethnomedicinal plants, fertility control, delivery enhancement, indigenous knowledge.

INTRODUCTION

The use of natural products with its healing properties is as old as human civilization and for a long period, minerals, animals and plant products were the main sources of drugs (Illamola et al., 2020). As many as 80% of the world's populace depends on traditional medicine for their primary health care needs (WHO, 2017). It is also estimated that 85% of the population in developing countries depends mainly on traditional healthcare systems (Centre for Gender and Social Policy Studies, 2012). African continent have a long history with the use of plants and in some African countries, up to 90% of the population rely on medicinal plant as a source of drugs (Hostettmann et al., 2000). As a matter of fact, the knowledge and the uses of indigenous ethnomedicinal plants have been acquired and improved- over in this present generation, as

medicinal plants are now recognized nationwide, both by rural communities and urban regions (Manju and Ahad, 2021). Most people in the rural areas at some stage in their life turn to traditional health care because of accessibility, availability, affordability and inherent trust in the method (Ogbe et al., 2009; Tarun et al., 2014). The traditional use of plants in treating ailments by the rural dwellers is a common practice that has been used and found effective even when the use of orthodox has failed. However, the abundance of information on the traditional medicinal uses of plants in Africa is presently in danger of disappearing since the knowledge of how to use medicinal plants is mostly passed down orally and is poorly documented (Gurib- Fakim, 2006), although written information has been produced for some specific regions. Moreover, the most serious threat to local medicinal plants knowledge, however, appears to be due to cultural change, particularly the influence of modernization and the western worldview (Voeks and Leony, 2004), which has contributed to under mining traditional values among the young people (Gidayet al., 2003). The documentation of traditional knowledge, especially on the medicinal uses of plants, has provided many important drugs of modern day (Balick and Cox, 1996). In Nigeria, despite the modern family planning techniques adopted by medical practitioners in the hospital as a way to reduce population rate and caesarean section carried out so as to safe life when complications arise, most women still depend on traditional medicine to ensure safe family planning, and safe child delivery process, especially in the rural communities (Peprah et al., 2019). Population explosion is an extra burden on all aspects of development, education, health care, housing sanitation and environment (Pradhan et al., 2012). Over-population, unwanted pregnancy, followed by unsafe abortion can be avoided by use of "Contraceptives". To find lasting solutions to this over-population problem that the world is facing presently, there are needs for the reduction in the size of family at large, thus the use of fertility control or contraceptives sets in. The use of contraceptives, especially herbal contraceptives nowadays is of great significance, because it is believed to be an effective way or method to checkmate the problem of rapid population growth. The use of contraceptive has numerous health benefits such as preventing unplanned pregnancies, ensuring optimum spacing between births, reducing maternal and child mortality, and improving the lives of women and children in general (Anthony et al., 2018). The popularity of herbal medicines among pregnant women can be mainly attributed to the belief that herbal products, being natural, are safe with fewer adverse effect compared to conventional drugs (Ernst, 2002; Barnest et al., 2018; Peprah et al., 2019). The indications for the use of herbal medicines during pregnancy may vary across regions and countries, and can be mother- or child-related (Illamola et al., 2020). Herbal medicines may be used sometimes as part of maternal care to treat pregnancy-related problems, and often to improve the well-being of the mother and/or the unborn child. The most commonly reported indications are nausea and

vomiting, prevention of miscarriage, preparation for and/or facilitation of labor, improvement of fetal outcomes, common cold or flu, gastrointestinal problems (such as: constipation, flatulence, pain conditions), relief of anxiety, treatment and/or prevention of anemia, and treatment of edema (Kennedy et al., 2013; John and Shantakumari, 2015; Illamola et al., 2020). Labour comes with pain, hence expectant mothers would desire for procedures and materials that would quicken the process and provide relief to the extreme pain. Women in developing countries are known to patronize traditional medicines; hence, it is most probable that traditional medicines will be used for labour purposes. (Ameade et al., 2018).

MATERIALS AND METHODS

The study was conducted between May 2022 and March 2024, in three (3) different local government areas of Ondo State which comprises of: Ose Local Government with latitude 7° 03 ¹17.82 ¹¹ N, and longitude 5° 44 ¹35.88 ¹¹ E; Akoko South East Local Government with latitude 7° 31 ¹³7 ¹¹ N and longitude 5° 46 ¹⁶ ¹¹ E; and Akoko South West Local Government with latitude 7° 23 ¹51.6 ¹¹ N and 5° 41¹ 40.7 ¹¹E respectively (Figure 1). The communities, in each studied local government area are as follows:

- 1. Ifira-Akoko, Ipe- ,Akoko, Ipesi-Akoko and Sosan in Akoko South East Local Government Area;
- 2. Ikun Akoko and Oba- Akoko in Akoko South West Local Government Area and
- 3. Afo, Idoani, Idogun, and Imeri in Ose Local Government Area.

These communities have a unique greeting, which is "HAO" but different languages or dialect. This makes them to be referred to as "HAO" speaking people of Ondo State, Nigeria. The study area was selected with special considerations that they have very low access to primary health care services, had knowledge on the uses of plants, as well as their remoteness.

This ethnobotanical information were collected through visits to the "Akoko and Ose" communities to document their indigenous knowledge (IK) regarding medicinal plants used to aid and to facilitate birth process, to reduce the time and associated pain of labour, and plants

used as contraceptives. The main respondents during the study were Traditional Medical Practitioners (TMPs), Traditional Birth Attendants (TBAs), Herb-sellers, Farmers, and Traders who gained information on the use of herbs either by inheritance or by training were questioned. A total of 300 respondents (30 respondents each from 10 different communities of 3 local government areas of the same senatorial district were interviewed with the aid of semistructured questionnaire matrix. This allowed for focused, conversational and two-way communication between the interviewer and the person being interviewed. Before recording the information and knowledge of the healers, prior informed consents were sought and the purpose

of the study explained to the respondents. The semi-structured interviews and discussions were held with the specialist resource users and other knowledgeable people by use of interview schedules for each respondent. The respondents consisted of men and women, young and elderly people of age, ranging from 20 years to over 90 years of age were randomly chosen (129 males and 171 females) and the objectives of this study were explained to them in their local language-Yoruba. Relevant information on the plant species; their local names, parts used, growth habit, methods of cultivation, medicinal uses, and methods of preparations, modes of administrations, dosage and duration of treatment (where specified) were gathered for permanent records.

ASE=Akoko South East Local Government, ASW= Akoko South West Local Government, OSE= Ose Local Government.

Data collection: Respondents were approached one by one according to the sampling techniques explained, and interviewed after their consent and data were recorded confidentially in questionnaire. The family names of the plants were arranged alphabetically alongside their scientific names, local names, plant parts used, growth habits, common names, methods of cultivation, medicinal uses, sex, age, and methods of preparation.

Statistical Analysis: A descriptive method using frequencies and percentages were used to analyze the socio- demographic data of the respondents. The results of the ethnobotanical survey were analyzed using four quantitative measures: Analysis of variance (**ANOVA**), Informant Consensus Factor (**ICF**), Relative Frequency of Citation (**RFC**) and Use-Value (**UV**).

Analysis of Variance (Anova): Data collected were subjected to Analysis of Variance (ANOVA) and means separated with Duncan's Multiple Range Test (DMRT) at $P \le 0.05$ using SPSS version 20.

Relative Frequency of Citation (R*FC)* (%): According to (Tardio and Pardo-de-Santayana, 2008), Relative Frequency of citation was calculated using the formula:

Relative Frequency of Citation

(RFC) <u>Number of informants who mentioned the use of species (Ns)</u> The total number of respondents interviewed (N)

Where Ns = Number of informants who mentioned the use of species

N = Total number of informants that cited the species to treat any given disease.

Use - Value: According to Phillips *et al.* (1994), UV (Use-Value) was calculated using the formula:

 $UVs = \Sigma Us$

Where; UVs = Use Value for the species

 Σ Us = Sum of the uses mentioned for a species N = Total number of Respondents

Generally, UV is calculated to; Calculate for individual plants to give a quantitative measure of its relative importance to the informants objectively; and to determine the extent of medicinal use for a given plant species.

ICF Formula:

ICF = (Nur - Nt) / (Nur - 1)Where:

- Nur = Number of use-reports (i.e., the total number of times a plant species is mentioned for a particular use)
- Nt = Number of taxa (i.e., the number of plant species mentioned for that use)
 Calculating ICF for Delivery
 Enhancement:
- Nur = 190 (total use-reports for delivery enhancement)
- Nt = 27 (number of plant species mentioned for delivery enhancement) ICF = (190 - 27) / (190 - 1) = 163 / 189 ≈ 0.86

Calculating ICF for Fertility Control:

- Nur = 110 (total use-reports for fertility control)
- Nt = 20 (number of plant species mentioned for fertility control) ICF = (110 - 20) / (110 - 1) = 90 / 109 ≈ 0.83

Interpretation:

- ICF values range from 0 to 1.
- Higher ICF values indicate higher consensus among informants regarding the use of plant species for a particular purpose.
- ICF values closer to 1 indicate high consensus, while values closer to 0 indicate low consensus.
- In this case, the ICF values suggest a relatively high level of consensus among informants regarding the use of plant species for delivery enhancement (ICF ≈ 0.86) and fertility control (ICF ≈ 0.83)

RESULTS

The socio- economic classification of respondents within the Akoko and Ose people of Ondo State, Nigeria is as shown in Table 1. A total of three hundred (300) informants comprising 171 men and 129 women, were involved in the study area. The age group of the respondents that were active is between 36 to 80 years. They have the highest percentage of response in these studies. Among these respondents, traditional medical practitioner (TMP), traditional birth attendant (TBA), herb sellers and famers are notable (Table 1). The economic status (80%) of this study area was largely small communities.

FEATURE	DESCRIPTION	FREQUENCY		AVERAGE TOTAL	POR (%)	
		ASE	ASW	OSE		
Gender	Male	57	25	47	129	43.00
	Female	63	35	73	171	57.00
Age	20 - 35 years	11	2	3	16	5.33
	36 - 50 years	33	21	36	90	30.00
	51 - 65 years	42	23	41	107	35.67
	66 - 80 years	32	10	33	75	25.00
	81 - 95 years	2	3	7	12	4.00
Literacy	Literate	88	47	89	224	75.00
status						
	Illiterate	32	13	31	76	25.33
Religious	Christianity	70	28	80	178	59.33
	Islam	13	12	7	32	10.67
	Traditionalist	37	20	33	90	30.00
Occupation	Trading	14	8	16	38	12.67
	Farming	20	8	21	49	16.33
	(HEB)	21	11	19	51	17.00
	TBA	27	14	28	69	23.00
	TMP	38	19	36	93	31.00
Economic Status	Medium	-	30	30	60	20.00
	Small	120	30	90	240	80.00
	Large	-	-	-	-	-

Table 1: Socio Economic Classification of Respondents in Akoko and Ose People of Ondo State.

POR: Percentage of respondents; HEB: Herb-seller; TBA: Traditional birth attendant; TMP: Traditional medical practitioner. ASE: Akoko South East, ASW: Akoko South West, OSE: Ose

Field observation revealed that the respondents were well familiar, and knowledgeable with medicinal values of plants in their environment. Information on medicinal plants used for fertility control and delivery enhancement in the studied area is presented in Table (2a and 2b). information like: Plant's botanical names, family, local names, English names,

	PLANT SPECIES	LOCAL		COMMON
S/N	(BOTANICAL NAME)	NAME	FAMILY	NAME
1	Abrus precatorius L.	Ojuo logbo	Papilionaceae	Crab's eye/ rosary pea
2	Acanthus montanus (Ness) T. Anderson	Ahon- ekun	Acanthaceae	Leopard's claw
3	Alchornea laxiflora (Benth.) Pax & K. Hoffim.	Pepe	Euphorbiaceae	Three-vined beat string
4	Allium sativum L.	Alubosa ayun	Liliaceae	Garlic
5	Boerhavia diffusa L.	Etiponla	Nyctaginaceae	Punarnava
6	Bryophyllum pinnatum (Lam.)	Abamoda	Crassulaceae	Resurrection plant, Life plant
7	Carica papaya L.	Ibepe	Caricaceae	Pawpaw
8	Citrus aurantifolia (Christm& Panzer) Swingle	Osan wewe	Rutaceae	Lime
9	Citrus limon (L).Osbeck	Osan laimu	Rutaceae	Lemon
10	Curcuma longa L	Ajoo	Zingiberaceae	Turmeric
11	Elaeis guineensis Jacq.	Adin	Arecaceae	Red palm oil
12	Euphorbia hirta L.	Iroko iju	Euphorbiaceae	Asthma weed Herb
13	Manihot esculenta Crantz.	Ege	Euphorbiaceae	Native cassava
14	Musa paradisiaca L	agbagba	Musaceae	Plantain
15	Ricinus communis L.	Ewe Lala	Euphorbiaceae	Castor bean / castor oil plant
16	Senna alata (L.) Roxb	Asunwon- oyinbo	Fabaceae	Ringworm Plant
17	Piper guineense Schumach. & Thonn	Iyere	Piperaceae	African pepper
18	Vernonia amygdalina Delile	Ewuro	Asteraceae	Bitter leaf
19	Zea mays L.	Agbado	Poaceae	Maize
20	Zingiber officinale Roscoe.	Ginija /Atale	Zingiberaceaes	Ginger

 Table (2a): Plant Species Responsible for Fertility Control Among Akoko and Ose People of Ondo State, Nigeria.

 Table 2(b): Plant Species Used for Delivery Enhancement Among Akoko and Ose People of Ondo State, Nigeria.

S/N	PLANT SPECIES	FAMILY	LOCAL NAMES	COMMON NAME
	(BOTANICAL NAMES)			
1	Abelmoschus esculentus (L.) Moench	Malvaceae	Ila	Okra or Lady's finger
2	Aframomum melegueta K. Schum	Zingiberaceae	Ataare	Alligator Pepper
3	Alchornea cordifolia (Schum & Thonn.)	Euphorbiaceae	Ipa	Christmas bush.
4	Cissampelos owariensis P. Beauv. Ex DC.	Menispermaceae	Jemijoko/ jokoje	Velvet leaf
5	Citrus sinensis (L.) Osbeck	Rutaceae	Oronbo, Osan-minmu	Sweet Orange
6	Commelina diffusa. Brum. F.	Commelinaceae	Itopere	Spreading day flower
7	Corchorus olitorius L.	Malvaceae	Ewedu	Jute plant
8	Elaeis guineensis Jacq.	Arecaceae	Mariwo ope	Red palm oil
9	Glypheae brevis (Spreng.) Monach.	Malvaceae	Atori	Masquerade tree
10	Jatropha curcas L.	Euphorbiaceae	Lapalapa Funfun	Physic nut
11	Kigelia africana (Lam.) Benth.	Bignoniaceae	Pandoro	Cucumber plant
12	Lagenaria breviflora (Benth.) Roberty.	Cucurbitaceae	Okiri / tagiri	English white colocynth
13	Leea guineensisG. Don	Vitaceae	Alugbokita	West indian holly
14	Mangifera indica L.	Anacardiaceae	Mangoro	Mango tree
15	Momordica charantia L.	Cucurbitaceae	Ejirin were	Africa cucumber/ balsam pear
16	Musa paradisiaca L	Musaceae	Ogede agbagba	Plantain
17	Myrianthus arboreus P. Beauv	Moraceae	Ewe ade / obisere	Giant yellow mulberry
18	Newbouldia laevis Seem.	Bignoniaceae	Igi Akoko	Fertility tree / tree of life
19	Scoparia dulcis L.	Plantaginaceae	Eleminirin	Sweet broom weed
20	Secamone afzelii (Schult.) K. Schum	Asclepiadaceae	Alu / arilu	Secamone
21	Sida acuta Burm F.	Malvaceae	Iseketu	Wire weed /tea weed
22	Spondias mombin L.	Anacardiaceae	Iyeye /okikan	Yellow mombin
23	Talinum triangulare (Jacq.) Willd.	Portulacaceae	Egure	Water leaf /water lettuce
24	Tragia benthamii Baker	Euphorbiaceae	Esinsin	Tragia
25	Uraria picta (Jacq.) DC.	Fabaceae	Alaparada	Dabra
26	Uvaria afzelii Sc. Elliot	Annonacaeae	Eleruju/ eru-	Cluster pear
	• •		iju	L.
27	Vitex doniana (Sweet)	Verbenaceae	Oori/ Oriri	Black plum

The results of analysis of variance (ANOVA) for species occurrence for fertility control and delivery enhancement are presented in Table (3a and 3b). ANOVA revealed significant different for both fertility control and delivery enhancement across government areas under investigation.

134

		1	5	
Source of variation	DF	Sum of square	MS	F
Species	19	150.33	7.91	1.85*
Location	2	23.63	11.82	2.77*
Error	38	162.37	4.27	

Table 3(a): Analysis of Variance for Plant Species Used for Fertility Control.

Table 3(b): Analysis of Variance for Plant Species Used for Delivery Enhancement.

Source of variation	DF	Sum of square	MS	F
Species	26	623.65	23.99	8.27*
Location	2	27.88	13.94	4.81*
Error	52	150.79	2.90	
× C' 'C D < 0.05				

*: Significant at $P \leq 0.05$; ns: not Significant.

The Relative Frequency of Citation (RFC) shows the local importance of each plant species, while (Use Value) UV is calculated to determine the extent of medicinal use for a giving plant species (Table 4a & 4b). Plants with wide therapeutic uses or those that are widely accepted for the cure of a particular ailment will score a high UV. The relative frequency of citation positions correspond with the fact that this plant was reported by high number of informants, four plant species, Carica papaya, (7.33%), Piper guineensis (5.00%), Allium sativum (2.67%) and Citrus aurantifolia (2.67%) had the highest relative frequency of citation (RFC) ; these same plant species, i.e Carica papaya (0.20), Piper guineensis (0.14), Allium sativum (0.07) and Citrus aurantifolia (0.07) also had the highest use value (UV) for fertility control in the study area, Hence, Sida acuta (13.33%), Corchorus olitorius (9.33%), Abelmoschus esculenta (4.67%) and Talinum triangulare (4.00%) had the highest relative frequency of citation (RFC); also high use value (UV) of (0.21) for Sida acuta, (0.15) for Corchorus olitorius, (0.07) for Abelmoschus esculenta (0.06) and (0.06) for Talinum triangulare for delivery enhancement (Table 4a and 4b) respectively. The mean values for occurrence (MVO) of plants species responsible for fertility control and delivery enhancement across the three

local government areas are also presented in Table 4a &4b. In the analysis of the three surveyed locations, Carica papaya exhibited the highest mean value (2.91), while Piper guineense followed closely with a mean value of (2.52). These findings suggest that Carica papaya and Piper guineense were the most frequently encountered plant species in the observations for fertility control. In contrast, Acanthus montanus and Manihot esculenta had the lowest mean value of (0.33), indicating their infrequent occurrence across the three local government areas for fertility control which is presented in Table 4a. Across the three locations examined for delivery enhancement, Sida acuta exhibited the highest mean value (2.67), indicating it had the most frequent occurrences among all observed plant species while Corchorus olitorius, Abelmoschus esculentus, followed closely with a mean value of (1.76). These findings suggest that Sida acuta were the most frequently encountered plant species in the observations. Conversely, four plant species (Aframomum melegueta, Cissampelos owariensis, Jatropha curcas, and Myrianthus arboreus) displayed the lowest mean value (0.33), signifying their limited occurrences across the three locations under investigation for delivery enhancement which are presented in table 4b.

Oluwajuyigbe and Ige: Ethnobotanical Plants Used for Fertility Control

Table 4(a): Relative Frequency of Citation (RFC) (%), Use Value (UV) and Mean Values for
Occurrence (MVO) of Plant Species Used for Fertility Control.

	PLANT SPECIES			
S/N	(BOTANICAL NAME)	(RFC)%	(UV)	(MVO)
1	Abrus precatorius L.	1	0.03	1.00 ± 1.00^{ab}
2	Acanthus montanus (Ness) T. Anderson)	0.67	0.02	0.33 ± 0.67^{a}
3	Alchornea laxiflora (Benth.) Pax & K)	1.33	0.04	0.88 ± 1.33^{ab}
4	Allium sativum L.	2.67	0.07	$0.88 \pm 2S.67^{ab}$
5	Boerhavia diffusa L.	1.33	0.04	1.33 <u>+</u> 1.33 ^{ab}
6	Bryophyllum pinnatum (Lam.)	1.33	0.04	0.88 ± 1.33^{ab}
7	Carica papaya L.	7.33	0.20	2.91 <u>+</u> 7.33 ^c
8	Citrus aurantifolia (Christm & Panzer) Swingle	2.67	0.07	1.76 <u>+</u> 2.67 ^{ab}
9	Citrus limon (L).Osbeck.	1.67	0.05	1.20 ± 1.67^{ab}
10	Curcuma longa L.	1	0.03	0.58 ± 1.00^{ab}
11	<i>Elaeis guineensis</i> Jacq.	1.33	0.04	0.67 <u>+</u> 1.33 ^{ab}
12	Euphorbia hirta L.	1	0.03	1.00 <u>+</u> 1.00 ^a
13	Manihot esculenta Crantz	0.67	0.02	0.33 ± 0.67^{a}
14	Musa paradisiaca L.	1.33	0.04	0.88 ± 1.33^{ab}
15	Ricinus communis L.	1.67	0.05	0.67 ± 1.67^{ab}
16	Senna alata (L.) Roxb.	1	0.03	0.58 ± 1.00^{ab}
17	Piper guineense Schumach. & Thonn	5	0.14	2.52 ± 5.00^{bc}
18	Vernonia amygdalina Delile	1.67	0.05	0.88 ± 1.67^{ab}
19	Zea mays L.	1.33	0.04	1.33 <u>+</u> 1.33 ^{ab}
20	Zingiher officinale Roscoe.	0.67	0.02	0.67 ± 0.67^{a}

RFC: Relative Frequency of Citation, UV: Use Value, Mean values followed by similar superscripts within a column are not significantly different from one another at $P \le 0.05$ using DMRT

136

Table 4(b): Relative frequency of Citation (RFC) (%), Use Value (UV) and Mean Values forOccurrence (MVO) of Plantspecies Used for Delivery Enhancement.

	PLANT SPECIES			
S/N	(BOTANICAL NAME)	(RFC)%	(UV)	(MVO)
1	Abelmoschus esculentus (L.) Moench	4.67	0.07	1.76 ± 4.67^{b}
2	Aframomum melegueta K. Schum	1.67	0.03	0.33 ± 1.67^{ab}
3	Alchornea cordifolia (Schum & Thonn.)	1	0.02	0.58 ± 1.00^{a}
4	Cissampelos owariensis P. Beauv. Ex DC .	1.33	0.02	0.33±1.33ab
5	Citrus sinensis (L.) Osbeck	0.67	0.01	0.67±0.67a
6	<i>Commelina diffusa</i> . Brum.	1.33	0.02	1.33±1.33ab
7	Corchorus olitorius L.	9.33	0.15	1.76±9.33c
8	<i>Elaeis guineensis</i> Jacq.	1.67	0.03	0.88±1.67ab
9	Glypheae brevis (Spreng.) Monach.	1.33	0.02	1.33±1.33ab
10	Jatropha curcas L.	1.33	0.02	0.33±1.33ab
11	Kigelia africana (Lam.) Benth.	1	0.02	0.58±1.00a
12	Lagenaria breviflora (Benth.) Roberty	0.67	0.01	0.67±0.67a
13	Leea guineensis G. Don	1.67	0.03	0.67±1.67ab
14	Mangifera indica L.	0.67	0.01	0.67±0.67a
15	Momordica charantia L.	1	0.02	1.00±1.00a
16	Musa paradisiacal L.	1.33	0.02	0.88±1.33ab
17	Myrianthus arboreus P. Beauv	0.67	0.01	0.33±0.67a
18	Newbouldia laevis Seem.	2	0.03	1.15±2.00ab
19	Scoparia dulcis L.	1	0.02	1.00±1.00a
20	Secamone afzelii (Schult.) K. Schum	1	0.02	0.58±1.00a
21	Sida acuta Burm.F.	13.3	0.21	2.67±13.33d
22	Spondias mombin L.	3.33	0.054	1.20±3.33ab
23	Talinum triangulare (Jacq.) Willd.	4	0.06	1.15±4.00ab
24	Tragia benthamii Baker	2	0.03	$0.58 \pm 2.00 ab$
25	Uraria picta (Jacq.) DC	2.67	0.04	0.67±2.67ab
26	<i>Uvaria afzelii</i> Sc. Elliot	1.33	0.02	0.88±1.33ab
27	Vitex doniana (Sweet)	1.33	0.02	0.67±1.33ab

RFC: Relative Frequency of Citation, UV: Use Value, Mean values followed by similar superscripts within a column are not significantly different from one another at $P \le 0.05$ using DMRT.

The results obtained for fertility control in Table 5a and 5b revealed that, Leaves constitute the major part used; Leaves (30.0%), followed by Roots (25.0%), Seeds (20.0%), Fruits (15.0%), Bark (5.0%), Bulb (5.0%), likewise in Table 5b it

was revealed that the leaves constituted the major part used for delivery enhancement; Leaves (81.48%), Fruits (11.11%), Seeds (3.7%), and Roots (3.7%).

PPU	FRQ	(%)	
			20
LEAVES	B. pinnatum, V. amygdahna, A. laxiflora, Z. mays, A. montanus, E. hirta.	6	30
ROOTS	C. longa, C. limon, M. esculentus, C. papaya, Z. Officinale	5	25
SEEDS	A. precatorius, R. communis, P. guineense, E. guineensis.	4	20
FRUITS	B. diffusa, C. aurantifolia, M. paradisiaca	3	15
BARK	S. alata	1	5
BULB	A. sativum	1	5
TOTAL		20	100

Table 5	(a)) Frec	uency	/(Frq) and	Perce	ntage	$(^{0}/_{0})$	of	Plant	Parts	Usec	lfor	Fertilit	y (Contro	1.
---------	-----	--------	-------	-------	-------	-------	-------	---------------	----	-------	-------	------	------	----------	-----	--------	----

PPU=Plant Part Used FRQ = frequency, % = percentage.

Table 5(b) Frequency (Frq) and Percentage (%) of Plant Parts Used for Delivery Enhancement

PPU	PLANT SPECIES	FRQ	(%)
LEAVES	C. owariensis, C. olitorius, G. brevis, E. guineensis, J. curcas, L. guineensis, M.	22	81.48
	indica, M. charantia, S. afzelii, M. paradisiaca, S. acuta, S. mombin, T. benthamii,		
	T. triangulare, U. picta, M. arboreus, C. diffusa, V. doniana, A. cordifolia, C.		
	sinensis, S. dulcis, N. leavis.		
FRUIT	A. esculentus, K. africana, L. breviflora.	3	11.11
ROOT	U. afzelii.	1	3.7
SEED	A. melegueta.	1	3.7
TOTAL		27	100

PPU=plant part used, FRQ = frequency, % = percentage.

Table (6a and 6b) shows the methods of preparation and modes of administration of plant species used for fertility control and delivery enhancement. The tables revealed how the Akoko and Ose aborigines prepare and administer these plant species for their well-being.

Table 6	(a) Metho	ds of Prepa	iration an	d Modes	of A	dminist	ration o	of Plan	t Speci	es Us	ed for	Fertility	Contro	эl.
---------	-----------	-------------	------------	---------	------	---------	----------	---------	---------	-------	--------	-----------	--------	-----

		LOCAL	METHOD	MODES OF
S/N	PLANT SPECIES	NAME	OF PREPARATION	ADMINISTRATION
				The seed power A. precatorius is
1	Abrus precatorius L.	Oju ologbo	The seed is grinded into powdery form.	taken as drugs.
	1	, 0		0
	Acanthus montanus		Grind the leaves of E. hirta, with seeds of A. melegueta,	Consume once in a month after
2	(Ness) T. Anderson)	Ahon- ekun	cook for five minutes,	menstruation
	Alchornea		Crush fresh A. laxiflora leaves with water and filter,	
	Laxiflora(Benth.) Pax		Add small salt and little potash. Place it inside dew	
3	& K)	Pepe	until dawn.	Drink before breakfast.
				Chewing regularly or To be chewed
4	Allium sativum L.	Alubosa ayun	Chewing	immediately after sex
			Get 9 fruits of B. diffusa, with 9 pieces of A. melegueta	Use the ring, when you want to
5	Boerhavia diffusa. L	Etiponla	and 9 local rings, and soak everything for nine days.	have sexual intercourse.
	Bryophyllum			
6	pinnatum(Lam.)	Abamoda	Chewing	Chewing regularly.
			Peel male C. papaya root, add sizeable Aframomum	
			melegueta seed, grind both together, little palm oil, and	
7	Carica papaya L.	Ibepe	cook with catfish.	Use after menstruation, for 3 days.
	Citrus aurantifolia		Pound the roots of S. afzelii, with A. melegueta, add	
	(Christm& Panzer)		little potash, and add fruits of C. aurantifolia and boil	
8	Swingle	Osan wewe	for 10 minutes.	Consume after sexual intercourse
	Citrus limon			
9	(L).Osbeck	Osan laimu	Extract juice of fruit Citrus limon	Juice to be drunk regularly

Oluwajuyigbe and Ige:	Ethnobotanical Plants	Used for Fertility Control
-----------------------	-----------------------	----------------------------

		LOCAL	METHOD	MODES OF
S/N	PLANT SPECIES	NAME	OF PREPARATION	ADMINISTRATION
				The powder is drank after
	Curcuma longa		Blend the dried roots of C. longa to	menstruation
10	L.	Ajoo	powdery foam.	for 3 days.
			Get the local oil extract of E. guineensis	
	Elaeis		seeds, locally known as Adin, add little	
	guineensis		A. sativum, and little A. melegueta seeds.	
11	Jacq.	Adin	Soak all together in a container.	Consume after sexual intercourse.
	Euphorbia		Grind the leaves of E. hirta with A,	Consume once in a month
12	hirtaL.	Iroko iju	melegueta, cook	after menstruation.
	Manihot			
	esculenta		Dried peeled powered cassava root is	Consume 1 spoonful of the
13	Crantz	Ege	soaked with illicit gin.	mixture after sexual intercourse.
	Musa	Ogede		
14	paradisiaca L.	agbagba	Extract the juice of fresh fruit.	To be drunk Regularly
	Ricinus		Get 1 seed of R. communis, and swallow	Take 1 seed of R. communis
15	communis L.	Ewe Lala	once in a year	orally for a year as contraceptives
			Pieces of bark of S. alata with seeds of	
	Senna alata	Asunwon-	Aframomum melegueta, soaked with illicit	
16	(L.) Roxb.	oyinbo	gin.	Drink regularly
	Piper guineense			
	Schumach. &			
17	Thonn	Iyere	Seeds pounded and extract with illicit gin	Drink regularly
			Get an empty shell or case of a snail, put	
	Vernonia		water into the shell, wrap the ring with	
	amygdalina		V. amygdalina, and immerse the wrapped	Use the ring at time of sexual
18	Delile	Ewuro	ring in the case or shell for nine days.	Intercourse
			Dried leaves of Z. mays with dried seeds	
			of Alligator pepper soak both together	Consume 1 spoonful of the
19	Zea may L.	Agbado	with illicit gin.	mixture daily.
	Zingiber			
	officinale	Ginija	Wash the ginger and grate. Boil for 5	
20	Roscoe.	/Atale	minutes.	Drink regularly

Table 6(b) Methods of Preparation and Modes of Administration of Plant Species Used for Delivery Enhancement

S/N	PLANT SPECIES	LOCAL	METHODS OF	MODES OF
		NAME	PREPARATION	ADMINISTRATION
1	Abelmoschus esculentus (L.)	Ila	Cook the fruits of A. esculentus for 2	Consume at the time of child delivery.
	Moench		minutes.	
2	Aframomum melegueta K.	Ataare	Chewing	Chew 9 seeds of A. melegueta at the period
	Schum			of child labour
3	Alchornea cordifolia (Schum	Ipa	Chewing	Chew a few leaves of A. cardiflolia at the
	& Thonn.)			hours or days of delivery.
4	Cissampelos owariensis P.	Jemijoko /	Grind the leaves of C. owariensis	Consume at 7th months old pregnancy
	Beauv. Ex DC.	jokoje	with 1 U. picta and cook, put little	until the time of delivery
			salt and oil	
5	<i>Citrus sinensis</i> (L.) Osbeck	Oronbo,	Pluck the leaves of <i>C. sinensis</i> and	Use to bath when the pregnancy is at 9
		Osan- minmu.	mixed with native soap.	month
6	Commelina diffusa. Brum. F.	Itopere	Crush the leaves of <i>C. diffusa</i> , and	Consume at the time of child labour
7		E 1	purged with warm water	
/	Corchorus outorius L.	Ewedu	Crush plenty leaves of C. ontorius in	Drink a glass cup of the extract at regular
0	El	Manimuman	Cruck fresh lasers of E minumi	Intervals during labour for quick delivery
0	Elaeis guineensis Jacq.	Mariwoope	Crush fresh leaves of E. guineensis	Consume at the hour of child labour.
9	Glypheae brevis (Spreng.)	Atori	Mix the leaf of <i>G</i> . <i>brevis</i> with native	Use it to bath as at 9th month's pregnancy.
	Monach.		soap.	
10	Jatropha curcas L.	Lapalapa	Mix the leaf of <i>J. curcas</i> with native	Use to bath when the pregnancy is 9
		Funfun	soap.	months.
	<i>Kigelia africana</i> (Lam.)		Mix the dried flower of K. africana	
11	Benth.	Pandoro	with native soap	Use it to bath as at 9 months
	Lagenaria breviflora(Benth.)		Cut the fruit of <i>L. breviflora</i> , boil for	Drink a glass cup, at the time of child
12	Roberty	Okiri / tagiri	20 minutes.	labour.
				Drink a glass cup, at the time of child
13	Leea guineensis G. Don	Alugbokita	Crush the leaves of L. guineensis	labour
			Get 9 dried leaves of M. indica, put	
			in a pot, and add water and 1 local	Eat the boiled egg when cool and drink the
'14	Mangifera indica L.	Mangoro	egg with it to boil.	water of M. Indica at the time of labour.
			Collect the leaves of M. charantia,	Use as sponge to bath with native soap at 9
15	Momordica charantia L.	Ejirin were	and mixed with native soap.	months.

S/N	PLANT SPECIES	LOCAL	METHODS OF	MODES OF
		NAME	PREPARATION	ADMINISTRATION
			Mix the leaves of <i>M. paradisiaca</i> with	
16	Musa paradisiaca L	Ogedeagbagba	native soap.	Use it to bath as at 9 months pregnancy.
	Myrianthus arboreus P.	Ewe ade /	Mix the leaves of M. arboreus with	Use to bath at exactly when the woman is
17	Beauv	obisere	native soap	labouring
			Grind the fresh leaves of N. laevis	
			with A. melegueta, add little salt and	
18	Newbouldia laevis Seem.	Igi Akoko	oil, then cook for 5 minutes.	Consume during child labour
			Grind the leaves of S. dulcis, add	
			little salt and break 1 local egg with	
19	Scoparia dulcis L	Eleminirin	it, cook for five minutes	Consume during child labour
			Grind 9 leaves of S. afzelii itogether	
	Secamone afzelii (Schult.) K.		with 1 leaf of U. picta, cook with	
20	Schum	Alu / arilu	catfish for five minutes.	Consume at the time of child labour
			Uproot the leaf of S. acuta wash,	
21	Sida acuta Burm F	Iseketu	and squeeze	Drink the juice at the time of child labour.
22	Spondias mombin L.	Iyeye /okikan	Crush the leaves of S. mombin	Consume at the time of child labour.
	Talinum triangulare (Jacq.)			
23	Willd.	Egure	Crush the leaves of T. triangulare.	Consume at the time of child labour.
			Grind the leaves of T. benthamii	
24	Tragia benthamii Baker	Esinsin	with A. melegueta and cook	Consume when the pregnancy is due.
			Grind 9 leaves with of U. picta	
			together 9 pieces of A. melegueta,	It can be used as from 5 months old
25	Uraria picta (Jacq.) DC	Alaparada	add little oil and salt and cook.	pregnancy to the time of delivery
		Eleruju/ eru-	Grind the roots of U afzelii together	
26	Uvaria afzelii (Sc. Elliot)	iju	with A. melegueta, and cook.	Consume at the time of child labour
			Chew 7 pieces of A. melegueta with	
27	Vitex doniana (Sweet)	Oori/ Oriri	leaves of V. doniana	Chew at hour of labour.

Figure 2 (a and b) shows a bar chart representing the percentage and frequency of methods of preparations, having tinctures (20%) as the highest preparatory methods of plant species used for fertility control and concoction (30%) also been the highest for delivery enhancement, respectively.

Figure (2a): Bar chart showing the percentage and frequency of methods of preparation of identified medicinal plant species used for fertility control.

Methods of preparation

Figure 2(b): Bar chart showing the percentage and frequency of methods of preparation of identified medicinal plant species used for delivery enhancement.

DISCUSSION

Ethnobotany has played important roles for the development of new drugs for many centuries and becoming increasingly important in defining strategies and actions for conservation or reculperation of residual forests (Pandey and Tripathi, 2017). The information collected from different groups of people for the same condition would not only be documented but also can be comparatively analyzed with ease providing further information as to similarity, differences or frequency with which a particular plant is used for the same condition, which is a good indication of efficacy (Maregesi et al., 2007). The highest numbers of respondents in this study are women. This gender disparity is consistent with other studies conducted in rural area of Nigeria, where women were more likely to participate in community-based research (Odebumi et al., 2022). This could be due to the fact that women are more concerned with maternal healthcare and were easily accessed during the study. The current results corroborate the findings of (Odebumi et al., 2022), which reported the dominance of female participants with herbal knowledge in an ethnobotanical survey done in Ogbomosho South and North local government area of Oyo State, Southwestern, Nigeria. The age distribution showed that the most active group of respondents were within the age range of 51-65 years old. This has to do with the fact that the elderly people that are of age, are the main custodian of traditional knowledge because they might have inherited the knowledge from their fore fathers and mothers and this knowledge has been passed on from one generation to another. The impact of this however poses a serious threat to the indigenous knowledge because it may eventually be lost following the demise of the older generation (Akanji et al., 2021: Falemara et al., 2021). Majority of the respondents have small economic status, indicating limited financial resources. This emphasizes the need for economic empowerment initiatives targeting vulnerable populations. Field observation revealed that the respondents were well familiar, and knowledgeable with medicinal values of plants in their environment. The use of these plant species for both fertility control and delivery enhancement highlights the significance of traditional knowledge and cultural practices among the Akoko and Ose people. Members of the family Malvaceae were frequently used for fertility control. This had been reported by Adeola et al., 2023, medicinal plants in Ogotun- Ekiti, Ekiti state, Nigeria". Whereas for delivery enhancement, the family Euphorbiaceae (3 species) had the highest occurrence, this also supported the work of Mukali et al. (2021). It was

observed in the study that, Musa paradisiaca and Elaeis guineensis appeared for fertility control and delivery enhancement, the presence of Musa paradisiaca and Elaeis guineensis in both suggests that these plants are used for multiple purposes, specifically for fertility control. This indicates that these plants have multiple uses in traditional medicine, which is not uncommon. Many plants have been found to have various bioactive compounds that can be used to treat different health conditions. In this case, Musa paradisiaca and Elaeis guineensis are both used for: Delivery enhancement: possibly to facilitate childbirth or ease labor pains and Fertility control: possibly to prevent or terminate pregnancy, or to regulate menstrual cycles. The same plants are used for different purposes, showcasing the versatility and may indicate their cultural significance and importance in traditional medicine. There are reasonable similarities that abound among the species identified by respondents in the three locations used in this study thus: suggesting that the aboriginals with similar culture are likely to have similar knowledge of the same plant species. Plants have given not only for fundamental human needs, but also for medicinal therapy from the beginning of humanity (Manju and Ahad, 2021). Traditional medicinal practices have a wide acceptability among "Akoko and Ose" people, probably because they believe in its effectiveness. This also may be due to lack of access to modern health care delivery system in the area. In addition, residents in the area are likely to find traditional medicines cheaper and available as compared to orthodox medicine. Most of the plants like, Sida acuta, Abelmoschus esculentus and Talinum triangulare are reported to be oxytocic (Kamatenesi-Mugisha, 2007). They are used to induce and maintain labour, help remove the retained placenta, regulate post-partum bleeding and as abortificients. These plant species increase the spontaneous activity of the uterus causing increase in contractions (Kamatenesi-Mugisha, 2007). Medicinal plants used to speed birth are usually taken towards the end of gestation period or at the on-set of labour pains. Plants that produce uterine contractions have similar action as that of oxytocin hormone, produced on the posterior lobule of the hypophysis, which stimulates the uterus (Pamplona-Roger, 2000). The traditional birth attendants, mothers-in-law, mothers, or the

expectant mother herself mainly prescribes these herbal remedies to induce labour. Pamplona-Roger (2000), reported that if such oxytocic plants are used during the first months of pregnancy, they could induce an abortion. This has been observed with some medicinal plants such as Vernonia amygdalina. Awe, (1990) reported that the infusions of leaves of Vernonia amygdalina are used as abortificients in women. Some plants used by traditional birth attendant may also have harmful effects, when taken in larger quantities, which can lead to the death of the unborn baby. High prevalent use of herbal medicine among African rural population is associated with a lack of access to public health care, as well as with social and cultural influence (Sindiga, 1995). A significant proportion of women worldwide use herbal medicines for the same purpose among other reasons (Ernst, 2002, Ramasubramaniam et al., 2015). The use of herbs by the women of these communities is to shortening the duration of labour, but most women in developed countries use herbal remedies as the principal method of managing pain and enhancing delivery (Tournaire and Theau- Yonneau, 2007). Population control has now assumed great significance in many developing countries and attracted the attention of governmental and other nodal agencies. Therefore, search for harmless, inexpensive, and effective oral agents for fertility control in human has a tremendous importance for the use of plant preparations, and medicament for pregnancy interception. Plant parts used as medicine were collected by healer themselves from natural resources (Akanji et al., 2021). The survey revealed four kind of plant parts used as medicinal materials for delivery enhancement; it is revealed that leaves were the most frequently used plantpart (Odelade et al., 2024; Azam et al., 2016; Adebisi et al., 2018). This may be explained by the fact that leaves are the site of photosynthesis and therefore the repository of most secondary metabolites. Although the use of leaves may seem less dangerous to the plants' biodiversity than the use of barks or whole plants. It can also contribute to the effect of global warming by reducing the carbondioxide uptake and oxygen production.

CONCLUSION

The documented medicinal plants were very useful for women to ease delivery and to control

fertility, when especially to those people who cannot afford modern medical care and in cases where access to modern heath facilities was not easy. Knowledge and use of herbal medicine for treatment of various ailments among the local people is still part of their life and culture, this calls for preservation of the integrity of the forest and indigenous knowledge of herbal medicinal uses.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the efforts and contributions of Department of Plant Science and Biotechnology, Adekunle Ajasin University, Akungba-Akoko, Ondo State and to the people of the study area for their contribution and cooperation during the ethnobotanical survey.

FUNDING

The research was self-sponsored.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest.

AUTHORS' CONTIBUTIONS

O. E, Ige conceived and designed the study and also supervised the project. While B. M, Oluwajuyigbe collected data, performed statistical analysis and drafted the manuscript.

REFERENCES.

- Adeola,K., Molawa, A. K., James, O., Vincent, J., and Samuel, A. (2023): Ethnobotanical study of medicinal plants in Ogotun-Ekiti, Ekiti State, Nigeria. *Asian Journal of Ethnobiology*, 6(2): 138-144.
- Adebisi, M. I., Bakare, U. A., and Umaru, M. L. (2018): *Tropical Journal of Natural Product Research*, 2(11):466-470.
- Akanji, O.C., Idu, M. and Ovuakporie-Uvo, O. (2021). Ethnobotanical Survey of Indigenous Flora for the Management of Cancer in South- Western, Nigeria. Current Traditional Medicine, 7(2), 1-27.
- Ameade, E. P. K, Zakaria, A. P., Abubakar, L., and Sandow. R. (2018): Herbal medicine usage before and during pregnancy –A Study in Northern Ghana. *Intr Journal Complement Alt Med.* 11(4):235-242.

- Anthony, I. A., Oladele, V. A., and Wilson, A, (2018): Use of traditional and modern Contraceptives among childbearing women: findings from a mixed methods study in two South western Nigerian states. *BMC public health*. 18 (1): 604.
- Awe, B. (1990): The role of women in management in the 90s. *Journal of Management in Nigeria* 26 (6):9-13.
- Azam, M. N., Rahman, M.N.S and Ahmed M. N. (2016): Appraisals of Bangladesh medicinal plants by folk medicine practitioners in the prevention and management of malignant neoplastic disease and management of malignant neoplastic diseases. *International scholarly research* notices, *articles ID* 7832120. pp.12.
- Balick, M. J., and Cox, P. A. (1996): Plants, people, and culture the *science of ethnobotany*. Scientific American Library, New York, pp. 17-53.
- Barnest, L. A. J., Barclay, L., Mccaffery, and K., Aslani, P. (2018): Complementary medicine Products used in pregnancy and lactation and an examination of the information sources Accessed pertaining to maternal health literacy: a systematic review of qualitative studies. BMC Complement. Altern. Med.18 (1), 229
- Centre for Gender and Social Policy Studies (2012). Obafemi Awolowo University, Engendering Reproductive Healthcare Practices in Nigeria. Available at (htpp://web 2.oauife.edu.ng/research/ egs/publication.htm).
- Ernst, E. (2002): Herbal medicinal products during pregnancy: are they safe? BJOG: An International Journal of Obstetrics & Gynecology 109: 227-235.
- Falemara, B.C., Joshua, V.I., Ogunkanmi, T.I. & Mbeng, W.O. (2021) Ethnomedicinal survey of indigenous medicinal plants in Jos Metropolis, Nigeria', *Journal of Medicinal Plants for Economic Development* 5 (1), 128
- Giday M., Asfaw Z., Elmqvist T., and Woldu Z. (2003): An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia. *Journal Ethnopharmacol*, 100: 43-49

- Gurib-Fakim A. (2006): Medicinal plants: Traditions of yesterday and drugs of tomorrow. *Mol. Asp. Med*; 27: 1-93.
- Hostettmann, K., Marston, A., Ndjokoand Wolfender, J. L. (2000): The potential of African Plants as a Source of Drugs. *Current Organic Chemistry*, 4, 973-1010.
- Illamola, S. M., Amaeze, O. U., Krepkova, L. V., Birnbaum, A. K., Karanam, A., and Job, K. M; (2020): Use of Herbal Medicine by Pregnant Women: What Physicians Need to Know? *Front. Pharmacology.* 10, 1483–1483.
- John, W. Harshberger (1896): Botanical Gazette (The University of Chicago Press) Vol. 213, pp. 146-154.
- John, L. J., Shantakumari, N. (2015): Herbal Medicines Use during Pregnancy: A Review from The Middle East. *Oman Med.* J. 30 (4), 229–236.

doi:10.5001/omj.2015.48

- Kametenesi-Mugisa, M. and Oryem-Origa, H (2007): Medicinal plants used to induce labour during childbirth in Western Uganda. *Journal of Ethnopharmacology*. 109: 1-9
- Manju and Ahad Tasavur (2021): Ethnobotanical studies: importance and conservation strategies in Biological Diversity: Current Status and Conservation Polices volume 1, Eds. Kumar., Kumar, S., Kamboj, N., Payum, T., Kumari, P. and Kumari, S. pp.24-25,

doi:10.26832/aesa-2021-bdcp-02.

- Maregesi, S. M;Ngassapa, O. D; Pieters, L; and Vlietinck, A. J. (2007): Ethnopharmacological survey of the Bunda district, Tanzania: Plants used to treat infectious diseases. *Journal of Ethnopharmacol.* 113: 457-470.
- Mukaila Y. O., Oladipo O. T., Ogunlowo I., Ajao A. A., Sabiu S. (2021): Which Plants for What Ailments: A Quantitative Analysis of Medicinal Ethnobotany of Ile-Ife, Osun State, Southwestern Nigeria. Evidence-Based Complementary and Alternative Medicine.; 2021:21. doi: 10.1155/2021/5711547.5711547.

Odebunmi, C.A., Adetunji, T.L, Adetunji, A.E, Olatunde, A., Oluwole, O. E, Adewale, I.A., Ejiwumi, A.O, Iheme, C.E and Aremu, T.O. (2022): Ethnobotanical Survey of Medicinal Plants Used in the Treatment of COVID-19 and Related Respiratory Infections in Ogbomosho South and North Local Government Areas, Oyo State, Nigeria. Plants (Basel); 11(19):2667. doi: 10.3390/plants11192667. PMID:

36235532; PMCID: PMC9573491.

- Odelade, E. T., Olaleye-Otunla, O. J., Alabi, D.M., Ogunlowo, I.I. and Folorunso, A. E. (2024): Ethnobotanical study of twenty species in the family Asteraceae in Ile- Ife, Osun-State, Nigeria.
- Ogbe, F. M. D, Eruogun, O. L., and Uwagboe, M. (2009): Plants used for female reproductive health care in Oredo local government area, Nigeria. Scientific Research Essay. 4: 120-130.
- Pamplona-Roger, G. D. (2000): Encyclopedia of Medicinal Plants. Education and Health Library, vol. 2. Editorial Safeliz, S.L. Spain.
- Pandey, A. K. and Tripathi, Y.C. (2017): Ethnobotany and its relevance in contemporary research. *Journal of medicinal plants studies* 5(3): 123-129.
- Peprah, P., Agyemang-Duah, W., Arthur-Holmes, F., Budu, H. I., Abalo, E. M., and Okwei, R. (2019): 'We are nothing without herbs': a story of herbal remedies use during Pregnancy in rural Ghana. BMC Complement. Altern. Med.19 (1): 6
- Phillips, O; Gentry, A. H; Reynel, C; Wilkin, P; and Galvez-Durand, C. B. (Mar1994): Quantitative Ethnobotany and Amazonian Conservation. *Conservation Biology*. 8(1): 225-248.
- Pradhan, D. K; Mishra, M.R; Mishra, A; Panda, A. K; Behera, R. K; Jha, S. and Choudhury, S. A. (2012): Comprehensive review of plants used as contraceptives. *International journal of Pharmaceutical Sciences and Research* 4 (1): 148-155.

144

- Ramasubramaniam, S., Renganathan, L., Vijayalakshmi, G. and Mallo-Banatao, M. V. (2015): Use of herbal preparations among parturient women: Is there enough evidence-A review of literature. *International Journal of Herbal Medicine* 2: 20-26.
- Sindiga, I. (1995): Traditional medicine in Africa: An introduction. *Traditional medicine in Africa, Nairobi. East African Educational Publishers* 1-15.
- Tardio, J., Pardo-de-Santayana, M., 2008. Cultural importance indices: a comparative analysis based on the useful wild plants of southern Cantabria (northern Spain). Econ Bot., 62(1):24–39.
- Tarun, C. T., Ratul, C. R., and Jogen, C. K. (2014): A study on the medicinal plants used by the local traditional healers of Dhemaji District Assam, Indian for curing reproductive health related disorders. Advances in Applied Science Research 5(1): 296-301.

- Tournaire, M. and Theau-Yonneau, A. (2007): Complementary and alternative approaches to pain relief during labor. *Evidence-based Complementary and Alternative Medicine* 4: 409-417.
- Voeks R. A and Leony, A. (2004): Forgetting the forest: assessing medicinal plant erosion in Eastern Brazil. Econ. Bot; 58:294-306.
- World Health Organization. Progress Report (2017): Reproductive health strategy to accelerate progress towards the attainment of international development goals and targets. *Geneva*. Epuahead of print (2010).

doi: 10.1016/S0968-8080(05)25166-2. doi: ISBN 9241562900 (NLM).