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ABSTRACT 

 
This manuscript presents a second derivative two-step hybrid block method derived through collocation 
techniques. The derived scheme and the sixth order compact difference schemes are used to efficiently solve 
the nonlinear FitzHugh-Nagumo Partial Differential Equations (PDE). The sixth order standard compact 
difference schemes are used to semi-discretize the nonlinear FitzHugh PDE to a first-order system of 
ordinary differential equations (ODE). The derived two-step hybrid block scheme profer approximate 
solution to the resulting system of ODEs. The analysis of the derived hybrid methods are shown. The 
numerical results reveal that the derived block scheme is efficient and effective for solving FitzHugh-Nagumo 
PDE. 
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INTRODUCTION 
We are interested in solving one-dimensional nonlinear FitzHugh-Nagumo PDE of the form 

                               𝑉𝑡 = 𝑉𝑥𝑥 + 𝑉(1 − 𝑉)(𝑉 − 𝜇)                                                                             (1𝑎) 
with the initial condition 

                               𝑉(𝑥, 0) =  𝑓(𝑥),             𝑎 ≤ 𝑥 ≤ 𝑏,                                                            (1𝑏)
  
and two boundary conditions as 

                        𝑉(𝑎, 𝑡) = 𝑓1(𝑡) = 𝑉1(𝑡),    𝑉(𝑏, 𝑡) = 𝑓2(𝑡) = 𝑉𝑁+1(𝑡),     𝑡 ≥ 0                      (1𝑐) 

where the variables 𝑡, 𝑥 and 𝑉 denote time, 
space and the solution of the problem 

respectively. Also 𝜇 𝜖 (0, 1) represent the 
overall dynamics of the equation parameter. 
The FitzHugh-Nagumo PDE (1) was named 
after two mathematicians Richard FitzHugh 
and John Nagumo who independently 
proposed it in the 1960s. It describes the 
behaviour of a neuron after stimulation by an 
external input current (Ara, 2019). The PDE 
had been used to study different phenomena in 
the fields of neurophysiology, population 
growth models, genetics, biology and many 
other fields of sciences (Ramos et al., 2022).   In 
the past years, various numerical methods have 
been applied to solve (1). Among these are 
Haar wavelet method (Hariharan and Kannan, 
2010), Jacobi-Gaus-Lobatto collocation 

method (Bhrawy, 2013), Galerkin finite 
element method (Ali et al., 2020), the q-
homotopy analysis approach (Kumar et al., 
2018), Compact and Finite Difference Schemes 
(Agbavon and Appadu, 2020), block hybrid 
method (Mehta et al., 2023; Ramos et al., 2022), 
to mention but a few. The Compact Difference 
Schemes are preferred over the standard Finite 
Difference Schemes to optimize accuracy in 
approximating the spatial derivatives in (1). 
Block methods profer approximate solutions to 
first-order system of ODEs. These block 
methods are self starting schemes introduced 
by Milne (Milne, 1953) and also provide 
approximate solution for more than one point 
at a time saving computational time.  Some 
researchers (Akinnukawe et al., 2016; 
Akinnukawe and Odekunle, 2023) had used 
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block methods for solving first and higher 
orders ODEs. 
This manuscript presents the combination of 
the sixth order compact difference schemes (Li 

and Chen, 2008) and the derived second 
derivative two-step hybrid block method to 
numerically solve the nonlinear FitzHugh-
Nagumo PDE. 

 
Development of SDTHBM 
The PDE (1) can be converted to first-order system of ODE: 

                                           𝑉′ = 𝑔(𝑡, 𝑉),        𝑉(𝑡0) = 𝑉0,     𝑡0 ≤  𝑡 ≤  𝑡𝑚,                                    (2) 

To derive SDTHBM, we assume 𝑡𝑚 = 𝑡0 + 𝑚ℎ with uniform step size h = tm − tm−1. The true 
solution of problem (1) can be approximated by the polynomial in (3)  

                                                 𝑉(𝑡) = ∑ 𝑎𝑟𝑡𝑟

7

𝑟=0

,                                                                                   (3) 

with first and second derivatives as 

                                             𝑉′(𝑡) = ∑ 𝑟𝑎𝑟𝑡𝑟−1

7

𝑟=1

,                                                                              (4𝑎) 

                                            𝑉′′(𝑡) = ∑ 𝑟(𝑟 − 1)𝑎𝑟𝑡𝑟−2

7

𝑟=2

,                                                                (4𝑏) 

where 𝑎𝑟 𝜖 𝑅, 𝑟 = 0(1)7 are unknown 
parameters that should be determined. Since 
there are eight parameters to be determined and 
we need eight equations to find the eight 

unknown hence equation (3) is a seven degree 

polynomial with 𝑎𝑟 , 𝑟 = 0(1)7. Interpolating 
equation (3) and collocating equation (4) at 
given grid points gives 

                                      𝑉𝑛+𝑗 = 𝑉(𝑡𝑛+𝑗),          𝑗 = 0,                                                                         (5𝑎) 

                               𝑉′𝑛+𝑗 = 𝑉′(𝑡𝑛+𝑗) = 𝑔𝑛+𝑗 ,          𝑗 = 0,
1

2
, 1,

3

2
, 2                                             (5𝑏) 

                                 𝑉′′𝑛+𝑗 = 𝑉′′(𝑡𝑛+𝑗) = 𝑔′𝑛+𝑗,          𝑗 = 0,2                                                       (5𝑐) 

where 𝑉𝑛+𝑗,   𝑔𝑛+𝑗and  𝑔′𝑛+𝑗 are 

approximations for  𝑉(𝑡𝑛+𝑗), 𝑉′(𝑡𝑛+𝑗)and 

𝑉′′(𝑡𝑛+𝑗) respectively. In matrix form, the 

system of eight equations in equation (5) will be 
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Equation (5) is solved simultaneously to obtain 

the coefficients 𝑎𝑟 , 𝑟 = 0(1)7. Then the 

resulting coefficients 𝑎𝑟 , 𝑟 = 0(1)7 are 
substituted into equation (3) and its derivatives. 

Evaluation is done at the points 𝑡
𝑛+

1

2

, 𝑡𝑛+1 ,

𝑡
𝑛+

3

2

 and 𝑡𝑛+2 to give the following second 

derivative two-step block hybrid schemes 
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𝑉
𝑛+

1
2

=  𝑉𝑛  +  
ℎ

241920
[62923 𝑔𝑛  + 69728 𝑔

𝑛+
1
2

− 17712 𝑔𝑛+1 + 9248𝑔
𝑛+

3
2

− 3227𝑔𝑛+2 

+ 
ℎ2

16128
[337𝑔′𝑛 + 41𝑔′𝑛+2]                                                                                    (6𝑎) 

𝑉𝑛+1 =  𝑉𝑛  + 
ℎ

15120
[3381 𝑔𝑛  + 8576 𝑔

𝑛+
1
2

+ 3456 𝑔𝑛+1 − 384𝑔
𝑛+

3
2

+ 91𝑔𝑛+2] 

+ 
ℎ2

1008
[15𝑔′𝑛 − 𝑔′𝑛+2]                                                                                              (6𝑏) 

𝑉
𝑛+

3
2

=  𝑉𝑛  +  
ℎ

8960
[2177 𝑔𝑛  + 4512 𝑔

𝑛+
1
2

+ 4752 𝑔𝑛+1 + 2272𝑔
𝑛+

3
2

− 273𝑔𝑛+2] 

+ 
ℎ2

1792
[33𝑔′𝑛 + 9𝑔′𝑛+2]                                                                                           (6𝑐) 

𝑉𝑛+2 =  𝑉𝑛  +  
ℎ

945
[217 𝑔𝑛  + 512 𝑔

𝑛+
1
2

+ 432 𝑔𝑛+1 + 512𝑔
𝑛+

3
2

+ 217𝑔𝑛+2] 

  + 
ℎ2

63
[𝑔′𝑛 − 𝑔′𝑛+2]                                                                                                       (6𝑑) 

Equations (6a) - (6d) form the Second 
Derivative Two-step Hybrid Block Method 

(SDTHBM) developed to efficiently solve the 
nonlinear FitzHugh-Nagumo PDEs  (1). 

 
Theoretical Analysis of SDTHBM 
Zero-stability of the method 
The schemes in (6a) - (6d) is presented in matrix form as: 
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Equation (7) is written as 𝐸(1)𝑉𝑛+𝑖 = 𝐸(0)𝑉𝑛−𝑖 + ℎ𝐵(1)𝐺𝑛+𝑖 + ℎ𝐵(0)𝐺𝑛−𝑖 + ℎ2𝐵(2)𝐺′𝑛+𝑖 
which is already normalized. The first characteristic polynomial of (7) is defined as: 
 

S(∅) = det[∅𝐸(1) − 𝐸(0)]
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S(∅) = ∅3(∅ − 1) = 0, 
since ∅1 = ∅2 = ∅3 = 0, ∅4 = 1, then the hybrid schemes (6) are zero-stable. 
 

Error Constant and Order of the SDTHBM 
The error constants and order of the Method 
(6) are obtained by evaluating their local 
truncation error (LTE) as seen in (Akinfenwa 
et al., 2020). 
 

Let V(𝑡𝑛)be a sufficiently differentiable 

function and recall that V′(𝑡𝑛) =
𝑔(𝑡𝑛),   V′′(𝑡𝑛) = 𝑔′(𝑡𝑛). We consider the 

Taylor's series expansion of 𝑉 (𝑡𝑛 +
1

2
ℎ) ,

𝑉(𝑡𝑛 + ℎ), 𝑉 (𝑡𝑛 +
3

2
ℎ) , 𝑉(𝑡𝑛 +

2ℎ), 𝑔 (𝑡𝑛 +
1

2
ℎ) , 𝑔(𝑡𝑛 + ℎ), 𝑔 (𝑡𝑛 +

3

2
ℎ) ,

𝑔(𝑡𝑛 + 2ℎ), 𝑔′(𝑡𝑛), 𝑔′(𝑡𝑛 + 2ℎ). The local 
truncation error of each of the schemes (6a) - 
(6d) is obtained by performing the Taylor's 
series expansion of each of its component. The 
LTE of the scheme (6a) is: 

 

LTE = 𝑉 (𝑡𝑛 +
1

2
ℎ) − (𝑉(𝑡𝑛) + ℎ

62923𝑔(𝑡𝑛) + 69728𝑔 (𝑡𝑛 +
1
2 ℎ) − 17712𝑔(𝑡𝑛 + ℎ)

241920
 

+
9248𝑔 (𝑡𝑛 +

3
2 ℎ) − 3227𝑔(𝑡𝑛 + 2ℎ)

241920
+ ℎ2

337𝑔′(𝑡𝑛) + 41𝑔′(𝑡𝑛+2ℎ)

16128
) = 𝐶8ℎ8𝑉8(𝑡𝑛) + 𝑂(ℎ9) 

 
The same process is repeated for equations (6b) 
- (6d) to obtain the LTE of the individual 
scheme. After the expansion and simplification 

of equation (6), the order and error constant of 
the schemes (6a) - (6d) are obtained and 
tabulated as follows: 

 
Table 1: The Order and Error Constants of SDTHBM  

Schemes Order (𝑝) Error Constant 

(𝐶𝑝+1) 

𝑉
𝑛+

1
2
 7 

−
3

1146880
 

𝑉𝑛+1 8 1

6350400
 

𝑉
𝑛+

3
2
 7 

−
3

1146880
 

𝑉𝑛+2 8 1

3175200
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Consistency and Convergence of 
SDTHBM 
A numerical scheme is consistent if the scheme 

have order p ≥ 1 (Henrici, 1962). Hence the 
SDTHBM is consistent since it is of order at 
least seven as shown in Table 1. Also 
SDTHBM is convergent since it is zero-stable 
and consistent (Fatunla, 1988). 

 
Stability Analysis 
We applied the SDTHBM (6) to the Dahlquist 
test equation: 

 

V′(t) =⋋ V(t),     Re(⋋) < 0,                    (9a) 
to obtain the region of absolute stability for the 

method where z = h ⋋, we have 
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Clearly, (9b) can be written as: 
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where W(z) = A−1B denotes the stability 
matrix. Then the eigenvalues of the stability 

matrix are obtained as 0, 0, 0, Q(z) where Q(z) 
is the stability function. 

 

Q(z) =
−z5−14z4−95z3−375z2 − 840z − 840

z5−14z4+95z3−375z2 + 840z − 840
 

 
Finally, let us consider a set 
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  s = {z ϵ C: |Q(z) < 1|}. 
 

The set s is the absolute stability region of the 
SDTHBM. This region is shown in Figure 1 
and it is A-stable in nature. Note that the region 

of absolute stability of SDTHBM is the shaded 
region of the graph in Figure 1. 

 

 
Figure 1: A graph showing the stability region of the proposed method 

 
Discretization of the space variable 
The sixth order compact difference scheme is 
used to semi-discretize the spatial derivatives in 

(1) (Li and Chen, 2008). To do this, we 
partitioned the space interval [a,b] into N+1 
equal parts as 

 

∆𝑥 = 𝑥2 − 𝑥1 = 𝑥3 − 𝑥2 =. . . = 𝑥𝑁+1 − 𝑥𝑁 . 
The 𝑉𝑥 at the interior node satisfies the following relation: 

1

3
𝑉′𝑗−1 + 𝑉′𝑗 +

1

3
𝑉′𝑗+1 =

1

∆𝑥
[

1

36
(𝑉𝑗+2 − 𝑉𝑗−2) +

7

9
(𝑉𝑗+1 − 𝑉𝑗−1)] ,      𝑗 = 3,4, . . . , 𝑁 − 1, (10) 

and the following relations holds at the boundary points 1, 2, N, N + 1. 
for j = 1,  
 

V′1 + 6V′2 =
1

∆𝑥
[−
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15
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5
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for j = 2,  
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1
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3
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for j = N,  
5
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V′

N−1 + V′
N +

5

32
V′

N+1 

=
1
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[
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VN+1 +
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VN−1 +

5
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VN−2 −
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1
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VN−4 −

3
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VN−5],               (13) 
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for j = N + 1,  

6V′N + V′N+1 =
1

∆𝑥
[
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1
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VN−5],    (14) 

 
For any value of N, equations (10) - (14) can be expressed in matrix form as: 

                                         𝑅1𝑉′ = 𝑅2𝑉                                                                                                   (15) 
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From equation (15), the approximate value of 

𝑉𝑥can be obtained by 𝑉𝑥 = 𝑉′ = 𝑅1
−1𝑅2𝑉. 

Note that 𝑅1 and 𝑅2 matrices are not used in 
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the computations below because of the absence 

of 𝑉𝑥 in the FitzHugh PDE. 

Following the above procedure as in𝑉𝑥, the 
approximate value of the second order spatial 

derivative 𝑉𝑥𝑥  is obtained as: 

 
 
 

                                       𝑉𝑥𝑥 = 𝑉′′ = 𝑅3
−1𝑅4𝑉                                                                               (16) 
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Finally, substituting 𝑅3
−1𝑅4𝑉 for 𝑉𝑥𝑥 in equation (1) we have: 

𝑉𝑡 = (𝑅3
−1𝑅4 − 𝜇𝐼)𝑉 + (1 + 𝜇)𝑉2 − 𝑉3 























−























++























−=





























+++

−

+

3

1

3

3

2

3

1

2

1

2

2

2

2

1

1

2

1

4

1

3

1

2

1

)1()(

N

N

N

N

N

N

N

N

V

V

V

V

V

V

V

V

V

V

V

V

IRR

dt

dV
dt

dV

dt

dV
dt

dV

 

 
which is now the resulting nonlinear system of 
ODE to be solved numerically using the new 
derived block method (SDTHBM) in equations 
(6a) - (6d). 
 
1. Numerical Results 
Three special cases of the FitzHugh-Nagumo 
partial differential equation are solved to show 
the accuracy of SDTHBM. The numerical 

results obtained from SDTHBM are compared 
with numerical results from existing methods 
and exact solution of the PDE. Mathematica 
13.3 software is used for the computation of 
the work. The calculations of the maximum 

absolute error 𝑀∞ and the root mean square 

error 𝑀𝑟𝑚𝑠 are done using the formulae below. 

𝑀∞ = 𝑚𝑎𝑥|𝜀𝑗| 

𝑀𝑟𝑚𝑠 = (∑
𝜀𝑗

2

𝑁 + 1

𝑁+1

𝑗=1

)

1
2

 

𝜀𝑗 = 𝑣(𝑥𝑗 , 𝑡) − 𝑉(𝑥𝑗 , 𝑡) 

where 

⚫ 𝑣(𝑥𝑗 , 𝑡) denotes the theoretical solution at point (𝑥𝑗 , 𝑡). 

⚫ 𝑉(𝑥𝑗 , 𝑡) denotes the approximate solution at point (𝑥𝑗 , 𝑡). 

⚫ 𝜀𝑗 represents the error at point 𝑗 and  𝑗 = 1, 2, . . . , 𝑁 + 1.   

 
Experiment 1 
Consider, 

 𝑉𝑡 = 𝑉𝑥𝑥 + 𝑉(1 − 𝑉)(𝑉 − 𝜇) 

with μ = 0.75 and initial condition: 

𝑉(𝑥, 0) =
1

2
+

1

2
𝑡𝑎𝑛ℎ (

1

2√2
𝑥) ,        𝑥 𝜖 [−10,    10] 

boundary conditions: 

V(−10, t) =
1

2
+

1

2
𝑡𝑎𝑛ℎ (

1

2√2
(−10 −

2𝜇 − 1

√2
𝑡)), 

V(10, t) =
1

2
+

1

2
𝑡𝑎𝑛ℎ (

1

2√2
(10 −

2𝜇 − 1

√2
𝑡)), 

and exact solution: 

V(𝑥, t) =
1

2
+

1

2
𝑡𝑎𝑛ℎ (

1

2√2
(𝑥 −

2𝜇 − 1

√2
𝑡)), 
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Table 2:    𝑀∞ for Experiment 1 at t = 0.2 

𝑁 M∞ SDTHBM M∞(method in 
Akkoyunlu, 2019) 

12 3.9505 × 10−5 3.9857 × 10−4 

24 2.4452 × 10−6  2.3475 × 10−5 

48 6.4200 × 10−8  8.3749 × 10−6 

64 3.6500 × 10−8  5.9363 × 10−6 
Number of 

iterations 
1 20 

  

Table 3: 𝑀∞ for Experiment 1 at  μ = 0.75 and N = 100 

𝑡 M∞(method in 
Ahmad et al., 2019) 

M∞(method in 
Ramos et al., 2023) 

M∞ SDTHBM 

 
0.2 1.8896 × 10−5 1.8876 × 10−5 1.6664 × 10−8 
0.5 4.1554 × 10−5  4.1519 × 10−5 3.6950 × 10−7 
1 6.9891 × 10−5  6.9734 × 10−5 4.0990 × 10−6 

1.5 9.1687 × 10−5  9.1180 × 10−5 1.6744 × 10−5 

2 1.0969 × 10−4  1.0854 × 10−4 4.4916 × 10−5 
3 1.3942× 10−4 1.3651× 10−4 1.7390 × 10−4 

 

Table 4: 𝑀𝑟𝑚𝑠 for Experiment 1 at  μ = 0.75 and N = 100 

𝑡 Mrms(method in 
Ahmad et al., 2019) 

Mrms(method 
in Ramos et al., 2023) 

Mrms SDTHBM 

 

0.2 2.1960 × 10−7 7.4559 × 10−6 2.4966 × 10−9 
0.5 1.5696 × 10−6  1.6411 ×

10−5 

5.7614 × 10−8 

1.0 7.1449 × 10−6  2.7433 ×
10−5 

6.5297 × 10−7 

1.5 1.7262 × 10−5  3.5345 ×
10−5 

2.6934 × 10−6 

2.0 3.1857 × 10−5  4.1285 ×
10−5 

7.3000 × 10−6 

3.0 7.2878 × 10−5 4.9731 × 10−5 2.9095 × 10−5 

 
 

Experiment 2 
Consider, 

 𝑉𝑡 = 𝑉𝑥𝑥 + 𝑉(1 − 𝑉)(𝑉 − 𝜇) 

with μ = 0.75 and initial condition (Inan et al., 2020) 

V(𝑥, 0) =
1

1 + exp (
−𝑥

√2
)

,     0 ≤ x ≤ 1, 

and exact solution: 
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V(𝑥, 𝑡) =
1

1 + exp (
−w

√2
)

,     t > 0, 

where 𝑤 = 𝑥 + 𝑐𝑡 and c = √2 (
1

2
− μ). 

 
  

Table 5: Absolute errors for Experiment 2 at t = 0.04 and N = 10.  
𝑥  SDTHBM  ANM (Inan et al., 2020) 

0.2 2.0331 × 10−8 2.00 × 10−7 

0.4 2.7564 × 10−9          5.00 × 10−7 

0.6 4.1075 × 10−9         7.00 × 10−7 

0.8 3.2904 × 10−8          6.00 × 10−7 
Number of 

iterations 
1 8 

 
Experiment 3 

Consider stiff case of the FitzHugh-Nagumo equation (Agbavon and Appadu, 2020), 

 𝑉𝑡 = 𝑉𝑥𝑥 + 𝜏(1 − 𝑉)(𝑉 − 𝜇) 

where τ > 0 represents the natural growth rate. The initial condition is: 

𝑉(𝑥, 0) =
1

2
−

1

2
𝑡𝑎𝑛ℎ (

√𝜏

2√2
𝑥) ,        − 10 < 𝑥 < 10, 

The exact solution of the problem is: 

𝑉(𝑥, 𝑡) =
1

2
−

1

2
𝑡𝑎𝑛ℎ (

√𝜏

2√2
(𝑥 − 𝑐𝑡)) ,        − 10 < 𝑥 < 10, 

where c = √
τ

2
(2μ − 1). 

 

Table 6:  𝑀∞ for Experiment 3 at time t = 0.5 for μ = 0.2 and N = 100 

𝜏 Scheme 4 (Agbavon 
and Appadu, 2020) 

 SDTHBM  

0.5  4.132 × 10−6 2.1768 × 10−7 

1 2.4227 × 10−5        3.7778 × 10−7 

2 1.5759 × 10−4        5.4279 × 10−7 

∆t 0.00125 0.1 
 

 

Table 7:  𝑀∞ for Experiment 3 at time t = 0.5 for μ = 0.2, large values of τ various values of N 

𝜏 N  SDTHBM  
5 25 8.8723 × 10−4 

 48  1.3793 × 10−5 
 100   1.5527 × 10−7 

10 25   6.9994 × 10−3 

 48   1.3884 × 10−4 
 100   1.3537 × 10−6 
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RESULT DISCUSSION 

In Tables 2 and 3, the 𝑀∞ errors obtained using 
SDTHBM were smaller when compared with 
other existing methods and the convergent rate 
was faster after one iteration unlike the other 
method that converged after 20 iterations. 
Table 4 also showed better accuracy for the 
derived method when compared with two 
existing methods solving same problem with 
same parameters. The absolute error obtained 
using SDTHBM was better than that of ANM 
in (Inan et al., 2020) after solving Experiment 
problem 2 as shown in Table 5. Even at a 
higher time step size, SDTHBM solved the stiff 
case of the nonlinear FitzHugh-Nagumo PDE 
better than the scheme 4 of (Agbavon and 
Appadu, 2020) as shown in Tables 6 and 7. The 
numerical results shown in Tables 2 - 7 confirm 
that SDTHBM can efficiently and effectively 
proffer numerical solution to nonlinear 
FitzHugh-Nagumo partial differential 
equation. 
 
CONCLUSION 
Second derivative two-step hybrid Algorithm is 
developed and coupled with the standard sixth 
order compact difference schemes to 
numerically solve time dependent nonlinear 
FitzHugh-Nagumo partial differential 
equations. The FitzHugh-Nagumo PDE is first 
semi-discretized into first-order system of 
ODEs using the sixth order compact difference 
schemes and then the resulting ODEs are 
numerically integrated using the derived block 
Method, SDTHBM. The analysis of SDTHBM 
is shown to be zero stable, consistent, 
convergent and A-stable in nature. SDTHBM 
is applied to three special cases of the 
FitzHugh-Nagumo equation and it has proven 
effective in the numerical integration of 
nonlinear FitzHugh-Nagumo partial 
differential equation. 
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