Ife Journal of Sciencevol. 8, no. 2 (2006) 105

ACOMPUTATIONAL ERROR ESTIMATE OF THE TAUMETHOD FOR LINEAR
INITIAL VALUE PROBLEMS

S.A. EGBETADE"
Department of Computer, Mathematics and Statistics, The Polytechnic, Ibadan.

(Submitted: 25 July 2005; Accepted: 03 August 2006)

Abstract
In Onumanyi and Ortiz (1982), a computationally efficient and general error estimation technique of the tau
method for global solution of linear initial value problems (IVP’s) defined in the finite interval [q,5] was reported.
The result has been extended in different directions and then applied to non-linear problems. In the present
paper, we consider a theoretical estimate of the error of tau method for solution of linear initial value problems in
the interval [0,1]. The error estimation technique is based on the practical approach of Onumanyi and Ortiz
(1982). Numerical examples are given to illustrate the procedures.

Keywords: Error estimate, tau method, Chebyshev polynomials, tau approximant, linear initial value problems,
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1. Introduction

The study of error is of central concern in numerical analysis since most numerical methods only provide
approximations to the exact solution of mathematical problems. It is important therefore to estimate or
bound the resulting error and any numerical method that fails to provide a suitable procedure for doing this
is incomplete.

The first attempt on an error estimation of the tau method was given by Lanczos (1938) where he developed
asimple algebraic approach to this problem using the relation of the Chebyshev polynomials to the trigonometric
function and which was applied only to the restricted class of 1st order differential equations of the form

A(x)y'(x) + B(x)y(x) + C(x) = 0

where 4, B and C are given polynomials. Fox (1962) also reported an error estimation procedure for the
tau method which can handle similar problems and of orders higher than one. However, his approach is
rather complicated. Hence, the search for other methods which the present work is aimed at addressing,
The basic approach of the tau method necessary for a clear understanding of the sequel will be restated in
Section 2. Section 3 is on the global error estimation technique of the tau method. Numerical examples will
be given in Section 4 and finally our conclusion will be stated in Section 5.

2. Global Tau Method

Accurate approximate polynomial solutions of linear ordinary differential equations with polynomial coefficients
can be obtained by the tau method introduced by Lanczos (1938). The method is related to the principle of
economization of a differentiable function implicitly defined by a linear differential equation with polynomial
coefficients.

To illustrate the method, fet us consider the m-th order linear differential equation

m N; . . 3 )
Ly(x) = Z[Z p;x’ ]y"’ x)=)fx", asxsb (M

i=0 \_j=0 i=0

with the smooth solution y(x) satisfying a set of multi-point boundary conditions

=]
L'y(x,) = Za(,y"’(x”) =B, Jj=12,...,m @
i=0
where N,F are given non-negative integers; A X, ﬂ/’ f, and p, are given real numbers (x, are points
belonging to the interval a <x<b for which the conditions (2) are specified) and y*(x) denotes the
derivative of order i of y(x).
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The idea of Lanczos is to approximate the solution of the differential equation (1) by the n-th order degree
polynomial,

" *
y,(x)=Y ax', n<w»
i=0

which is the exact solution of a perturbed equation obtained by adding to the right hand side of (1) a
polynomial perturbation term. The polynomial y (x) satisfies, then, the differential system

n I
Ly,(x) = Z [Z pyx ]yf,” (x)=> fx'+H,(x) )
i=0
m=1 ) :
L*yn (x) = Za[]‘yu(”(x[/);j =1’2,---,n (4)

i=0

where the perturbation term, H (x), is constructed in such a way that the differential system (3) has a
polynomial solution of degree n. Generally, H (x), following Lanczos, is taken as a linear combination of
powers of x multiplied by Chebyshev polynomials. The choice of the Chebyshev polynomial T (x) defined

by
T.(x) = cos(rcos " [{2(x — a) (b — a)} - 1])=Z’:C;"’xj G)

(withy C? =2*"(b—a)™ stems from the desire to distribute the error max | y(x) - yn(x) |
evenly throughout the range [a,6]. From the point of view of accuracy, the perturbatxon term of the form

m+5-1

H (X)— Z -1 ~lll+l+[(x) (6)
= max{N, —~

where 0<isim ¥ will be considered in the present work. The parameters 7,. 1=12,...,m+s

are fixed so that the conditions (4) are satisfied exactly. -

To determine the coefficients a, i = 0(1)n in y (x) involves solving a system of linear algebraic equatlons
At =b  obtained by equatmg corresponding coefficients of like powers of ¥ in (3) and then using

conditions (4) T = (lyyers s Tysens T, )

As pointed out by Ortiz (1969), the tau method is of order p, in the sense that if the exact solution of (1) is

itself a polynomial of degree less than or equal to p then method will reproduce it.

Definition 1

The differential system (3) will be called the tau problem corresponding to the differential system (1).

Definition 2

The n-th degree polynomial, y (x) , which satisfies the tau problem (3) will be referred to as the tau approximant

of (1) and the tau solution of (3).

3. Global Error Estimation for IVP’s

For'the tau problem (3), the global error function e,(x)=yx)-y,(x), as<x<b

satisfies the error differential system

1

Le, (x)= Z(Z Px Je(”(x)=—H,, (x)‘ Q)

m-1

Le ()= Za,, eNa)=0; j=12,...,m (8)

where g = g.

By the economization of power series, the reduction of the n-th degree polynomial ¢0 +é o+ x"
to one of degree #-1 in the interval [q, b] involves an error polynomial ¢ T L (x)/C, (m)

of degree n. Replacing n by n-m+1 in the monomial 7 (x)/C™ and choosmg a polynomial
= (x - )", of degree m, then " !

€n (x) = E’”"l (x) - ¢n/um (.X)/ b (x)/crgllrr:l;;‘]) Q 9

where @, is now considered an undetermincd constant in ).

IN
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The choice 2, (x) = (x—a)”
is to ensure that E,  (x) satisfies all the homogeneous conditions of e, (x). We economize E, ,(x) by

considering the perturbed error equation
m+s-1

LE11+1 (x) = _Hn ('x) + Z 2—'111+‘\'—/7-‘n~m+1'+2 (x) (l 0)
i=0

where the extra tau parameters  71»--+» Ty are to be determined along with @, From the left hand side
of (10) we have

LE“_H(X) :%( n+s+l +/1 n+s +l

m+\+lx
1

where A ;v=12,...,m+s+1,...; aregiven constants (see equation below) and D, = C}i’_’;”'jj” . Now
by considering (11) in the form

= ’”“+...) (1)

LE (x) _ ¢n R]T/H»\H (x) 4 2T ks NP7 R M2 nks N (x) g Rm+.\-+lTn~m+l (x) 4o } (12)
1 - 1 ~( (n—m+l)
" Dl C;(IT:T : (’N’:\—'\) Cﬂimlﬂ
we obtain the recursive formula
Rv = A]
-1 (11+54+2-v)
— . n+s+2-y R
R, =2, Z——CUMZ Riv=23,. . m+s+] (13)
n+s+2~i
where
v n+2—i
A, = Z A jl)( . ]D,,v=l,2,...,m+s+l
i=1 J
v—=I1
( 1 . 1 y(n-m+l) B
Cnnmmtﬂ + Z (—_1)’ ( . ] Cn —ir=v+r+2 (14)
r=l
v=L12,...,m
D" = | m ( H
( n+1) rv(n—m+ .
nnn:—lu )+2 + Z( 1) 124 (’)r—ﬂl—v+r+2 4 (1 5)
| v=m+l,....m+s+1

Finally, comparing the coefficient of ~ 7,,_,,;(x) in (10) and (12) to determine 7,,...,7,,, and 4,

leads to ¢,, _ D|2 T oo R
R

Substituting (16) into (9) gives the aposteriori estimate
m‘aX{le'l ('x)y} = rn_‘faXﬂEnH (X)‘}

<222 b - a1, VR

, %= 0 (16)

m+s+
m+s+l

Rn/+.s‘+l #0 (17)
The exact error is obtained using 100 equidistant points, as
&= max|y(x,) -y, (x,), i=0(1)100 (18)

The above formulation of the error estimation procedure for tau method gives a better accuracy at the
expense of computer time only as demonstrated in the numerical examples considered below. For these
examples, the numerical results were obtained using the computer Tau Program which we developed for the
tau method and which incorporates the error formula (17) and the exact error (18).

4. Numerical Examples

We consider the following linear initial value problems.
Example 1

We consider the first order differential equation
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Ly(x) = y'(x)+2xy(x)=0, [0,1
(19)
y(0)=1

For this problem, 7 =1, s =0, 1, = L Bo=2.F,=1P,=0 Lf(x) = Oand the analytical solution
isgivenby y(x)=e™"

We assume a tau approximant i

y.(x)=Yax', n=6789 (20)
i=0
Which satisfies the tau problem
Y, ) +2,(x)=7T,,(x) @2
The associated error function ©» (x)’ then satisfies
e', (x)+2xe, (x)=-,T,(x) (22)
While the error approximam,E e+l (x)’ defined as
4,7, (x)
B, () =00 23)

Satisfies the perturbed error problem

LEnH (x) = —"TITM (X) + :ElTnH (.X') (24)
From the left hand side of (24), we have

LE,, (x) = %( "y ") 25)

1
Now, equation (25) may be re-written in the form

. RT, (x) RT (x
LE}'I—!»I (x) = ﬂ‘\ l w’(’:lkl() ) + 2 w:’ll() )] (26)
Dl i+l C‘n
where C' =D, .
By comparing the coefficient of 7 (x)in (24) and (26) gives
~ D,
n = 27)
¢ 2, (
Substituting (27) into (23) gives the aposteriori estimate
. - DT, (x)
En-rl ()C) - (28)

N
where 7, is obtained from (21) and R, is given by
Ry =4,
C(n+i)

R, =2 ——"R,

A ={Po +(n+OHP, }D, =2D,
Ay =+ DR D +[F,, +nP,1D,
=(n+1)D, +2D,
D, =C
D,=C"




109

Egbetade: Computational error estimate of the tau method for linear initial value problems

Some numerical results for this example are presented in Table 1 below.

. Table 1: Error and Error Estlmate for Example 1 :
n 6 ] 7 8 9

Error Estimate 2.75 % 106 1.80 x 107 3.77x 107 6.51 x 107
Exact Error 2.27 x 10° 1.49 x 107 3.25x 10° 6.03 x 107
Example 2 » :
Ly(x) = y"(x)+3y'(x)=~18x, [0,]]
29)
y(0)=0, y'(0)=5
In this case, m = 2,5 =0, f(JC)_,= —18x, Po;o’v': 0’; PI,'O =3. Pu =0, Pz,o =1, Pz,x =0, Pz.z =0
and the analytical solution is given by
y(x) =1+2x-3x" —e™
We seek a tau approximant ‘ '
v, (x) = Zax n= 6789 (30)
which satisfies the perturbed equa,txoh\ L
Y, () +3y, () =27, (x) 47,7, (x) Gn
The associated error approximant E, , (x),satisfies
LEn+l (X) - n+] Tz 1 + Z"T,Hl + z_:ZTn—l (32)
where . o)
Enﬂ (X) n n«l /C (33)
[For this problem, we obtain the error estimate
27n~3 IT l
B,y () = =i 34
‘ | R | :
R =4
(w(IH-”
R;, = //1/2 "—*~T
‘ 144}
Cr(ul
Ry =4,
C(IHI) v{(n)
Rz = /?q n-1 __E/.L’.J«
3 k C(n+l) C’('")

b
A = APy +(n+ 1P, +n(n+<1)P,2} D, =0
2y =+ VP, +n(n+DP,, D, +1{P,, + 1Py, +n(n-1)P, ,}D,
+{P,, +(n— 1)P,,, +n(n=D)(n~2)P,, |D,
=n{(n+1)D, + D, }

=C(I1~l)
-1

D, C,(,’_',)
(n-1)

D, =C7

Table 2 below shows some computed results for Example 2.

Table 2: Error and error estimate for example 2

n 6 7 8 9
Error Estimate 4.60 x 10° 7.37 x 107 119 x 107 3.86 x 107
Exact Error 424 x 10° 6.64 % 107 1.09 x 10°® 3.21 x 107

\

\
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5. Conelusion

An error estimation of the tau method has been described and applied to smooth polynomial solutions of
linear initial value problems. The error estimate is compared with the exact error and we observed that the
accuracy of the error estimate obtained improves as n, the degree of the tau solution increases. Also, the
estimate is good and gives correctly the order of accuracy of the tau approximant being sought.
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