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- COMBUSTION

SAMUEL S. OKOYA
Department of Mathematics, Obafemi Awolowo University, Ile-Ife, ngerla

Abstract
In branched- cham thermal explosxon theory, it is usually impossible to obtain analytical solutions and someumes
a substantial computation may be required to calculate the temperature, activation energy and modified Semenov’s
number at transition from discontinuous to continuous behaviour, Invariably, it is possible to reduce the governing
equation to accommodate other important mathematical model in the theory of combustion. With this aspect of
the equation, transition temperature, activation energy and Semenov s number can be estimated analytically.
Previously obtained results are special cases of ours.

1. Introductlon : ’ ' :

Using the dimensionless variables, 0, B ®, a of the variable approach of the author [6; 7] and the literatures
contained there - in, the homogeneous equation for a branched - chain thermal reaction in an adiabatic
vessel that modelled the competition between a heat production (due to exothermic reaction) and heat loss
to the surroundings (coolmg) represented by the standard power - law form for the temperature can be

written as ‘ v
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v = B(BT,/ a)" (KT, /vip)" exp(-1/ B), ©

M= XSV 5 1fr=1, for conductive losses
oSe/V , Ifr=4, for radiative losses =~ (7)
The initial condition for the exothermic reaction is given by '

6(0) =0. | ®)

In the above formulation 4 is the rate of initiation of radicals, B, is the m™ order rate constant for the chain
branching, C'; is the specific heat capacity, E is the activation energy, h is the planck’s constant, Q is the
exothermicity per mole reactant, R is the Universal gas constant, S.is the surface area, t is the time, T _is the

initial temperature, T is the temperature, V is the volume, « is the energy released, € is the emissivity of the
radiant, K is the Boltzmann’s constant, p is the heat loss term, v is the vibration frequency, ¢ is the Stefan-
Boltzmann’s constant, y is the heat transfer coefficient, p is the density, m is the order of branching reaction,
n is the numerical exponent of the pre-exponential factor arising from the Arrhenius rate constant and
n&{-2,0, 1/2}, o, is a constant number, r is the order of heat loss and r &{0, 1, 4}. .

Of'interest in this formulation are values of p and ® at which the solution 8.is to be determined as a smooth
function of B and ®@. In most cases, the value of @ is txed and the control parameter is p. )

~ The nonlinear ordinary differential equation (1) and the initial condition (8) and related problems have been
studied both analytically for p =m =0 and r =1 (see [4, 5, 9]). In the event that m=0, analysis have been
carried out both analytically and numerically in [1, 10]. In the above reactions with B = 0, ®(8) reaches a
maximum after starting from zero, and increase without limit. When B is small (B < B,), ®(6) passes first
through a maximum, then through a minimum, and finally grows without bound asg — co . When = B,
®(0) passes through a point of horizontal inflexion corresponding to the merging of the maximum and
minimum. The corresponding values of ® and 0 are referred to as ®,_and 0,. The authors of [2, 4, 6, 7]
studied the transitional set {®,, B, 6} under realistic assumptions on equation (1).

This paper reports some exact results for @, B, and 6_and employs an obvious but powerful technique of
taking the constant multiple of the (r + 1)"term from the Binomial expansion of the heat loss term on the
right hand side of equation (1). Our results conform with readily derived special case of r =1 in [2, 4, 7],
allow earlier computational work for r'= 4 in [6], to be appraised and provide new exact results for the
generalized Newton’s law of heat exchange. ' -

- 2. The reduced model problem and result : o -
Sequel to the fact that there is no general analytical solution for equation (1) when r> 1 and a= 0 [6], it is
possible to establish analytically a lower bound for ®_that is close to the numerically computed value. We

- assume that the heat loss term in equation (1) can be represented in the simple form C§', where C is a

constant to be determined. More generally, we consider the heat loss term in equation (1) as the general
~ term of the Taylor expansion of (' +86)" p"about 6 = 0 (see [8] for a similar consideration).

With this physically reasonable assumption on the heat loss term, the governing equation reduces to
‘ dg » (7] co’
—=a+60"(1+ £6)" ex - ’
ar =T ) p[1+ﬂ9] o O
The problem is now defined by equation (9). It is worth noting that equation (9) can be derived for some
extreme situations where Newton’s law of heat exchange r =C = 1 does not describe the typical features of
the process: for instance, convective heat transfer to boiling helium is described by a cubic law (r=3 and C
=[] g A : :
The variation of transient temperature d6/dz in equation (9) reveals the changing rate of reaction temperature
or the difference between heat generated and heat removed. Larger values of d6/dr reveal that the heat
generated is higher than the removed heat. Finally, this accumulated heat leads to the system runaway or
even branched-chain thermal explosion. Therefore the temperature variation rate at runaway is [d*0/d’] =

0. The modified Semenov’s number at the critical point 8 = Oc,of the system runaway or reduced branched-
chain thermal explosion are DN Lo '
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For the same value of @_ in equation (10) and (1 1) when a = 0, we can obtain the quadratic equatiori
(m—r)(1+ 66,) +np, 0+ 50,)+0, =0. (12)

The solutions of equation (12) depend on the sign of the quantity »
| D_=(1+nﬁ)2+4/3(m—r). S (13)

When D > 0, the two roots are real and unequal with the lower branch of the curves representing ignition
while the higher branch of the curve represents extinction. Clearly, the case of D < 0, corresponds to a
complex conjugate pair of roots which is not admissible. The special case of D = 0 admits repeated roots for
which transition to continuous behaviour prevails and criticality is lost. Thzis implies - :

ﬂ,r=/i,,(m,n,r)=[‘/r“”’"‘/"'f’""]',

(14)

n

provided 0 <m <rand m+n<r. Substituting eqtiation (14) into the solution of (12) gives the transitional
value of 0 as : ' ‘

alr' = 9,,'(”7’”:") = (‘\/r m +Jr m n) Jr m [}
«/r—mf-n

(15)

with 0 < m < and m + n <r. We now turn our attention to the transitional value of ®. A similar picture to
P and 0 emerges in the critical value of ®. However, it is straightforward but laborious to show that

’ 2 ) re-mn -n _ _
<D,,-=<I>,,.<m,n,r)=C( T ] [2”] e"p( I m)J’ (16)

n* +(n=2(r-m)Zz n-2Z n+Z

Z=(r-m-Jr—-m-n) ' 0<m<r

We observe that a special case of Semenov’s treatment occurs when m =n = 0 and r = 1 in the above
analysis. Thus, the transitional points of activation energy, temperature excess, Semenov’s dimenﬁsionless
number are g = g (0,0,1)=1/4, 65" =6,(0,01)=4 and @, =, (0,0,1) = 4exp(-2),
respectively. : : ,
Furthermore, from the analytical solutions (14)-(16) we notice the fol lowing profiles:

(i) For fixed values of m and n, B_is a manotonically decreasing function of r.

(ii) For fixed values of m and n, 0, is a monotonically increasing function of .

(iii) For fixed values of m and n, @, increases with increasing r.

3. Conclusions o :
Ina Is_teady reaction and no chemical consumption up to the time of ignition, we can obtain the following
results, ‘ : c '
(i) The method expounded is quite general and enables the precision of recent work (Okoya [6], [7] and the
references contained there-in) to be assessed. S ' o
(ii) The new results for transition of parameters in equations (14)-(16) are adequate for the generalized
Newton’s Jaw of heat. exchange. : . : . . .
(iii) ®, depends on the constant C and we modify the constant to get the ‘best’ choice consistent with-the
restrictions in the approximate procedure. Hence it is a good estimate that can be remarkably close to the
numerically computed values for the branched-chain thermal explosion. o '
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(iii) The ex ict solutions (14) and (15) which are good for the situation in (ii) are seen to underestimate the
computation of transitional values for branched - chain thermal explosxon and as such large relative errors
are encountered in the study. : L
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