THEORETICAL STUDY OF THE CHARACTERIZATION OF MIXED-LIGAND COMPLEXES OF Ni (II) DIMETHYLGLYOXIME

Adejoro, I. A., Akintoye, B. Adeboye, O. O. and Akinyele, O. F.

Department of Chemistry, University of Ibadan, Ibadan, Nigeria (Corresponding Author: moadeb5848@yahoo.com) (Received: 19th May, 2015; Accepted: 14th July, 2015)

ABSTRACT

The non-electrolyte mixed-ligand complexes of the general formula [M(Hdmg)B], M=Ni(II), Hdmg=dimethylgloximato monoanion, B=2-aminophenol (2-aph), diethylamine (dea) or malonic acid (MOH) were synthesized and characterized. However theoretical calculations were carried out to obtained the geometric and thermodynamic parameters, vibrational and electronic properties, dipole moments and HOMO-LUMO band gaps of the complex with different substituents. These properties were obtained using the PM3 and DFT with B3LYP at 6-31G* level. Comparisons were made on the calculated bond length, bond angle, dihedrals and vibrational frequencies and it was observed that the calculated data were in good agreement with experimental data.

Keywords: Geometric Parameters, Dipole Moments, Band Gaps Modelling.

INTRODUCTION

The term computational chemistry is generally used when a mathematical method is sufficiently well developed that it can be used automatically on a computer. Quantum mechanics gives a mathematical description of the behavior of electrons that have never been found to be wrong. However, the quantum mechanical equations have never been solved exactly for any chemical system other than the hydrogen atom. Thus, the entire field of computational chemistry is built around approximate solutions. Some of these solutions are very crude but are still more accurate than any experiment that has yet been conducted (David, 2001). It also helps chemists to make predictions before running the actual experiment so that they can be better prepared for making observations (Shodor, 2000). Chelation chemistry has been gaining recognition in recent times because of its great importance in medicine and related areas of life sciences. It is also important in the design of respiratory, slow and controlled release of drugs. It has also been established that the efficacies of some therapeutic agents increase upon coordination (Ajibola, 1990; Obaleye et al., 1997). Metal complexes, especially mixed-ligands are reported to exhibit different activities (Kudirat et al., 1994; Yeamin et al., 2003; Oguniran et al., 2007). Molecular modeling is an aspect of computational

chemistry that gives accurate results compared with experimental results. It is used to account for properties such as bond length, bond angle, dihedrals vibrational frequencies, atomic charge distributions etc (Conradie, 2010). PM3 semi empirical quantum mechanical calculations were carried out on a Novel Dichlorobis (N-{4-[(2pyrimidinyl-kNamino)sulfonyl} acetamide|copper(II), containing a metabolite Nacetylsulfadiazine and the result obtained compared perfectly well with the experimental data. (Adejoro et al., 2012). Calculations on novel polymeric Zn (II) complex containing the antimalarial Quinine as ligands gave values that agreed perfectly well with experimental data (Adejoro et al., 2013). Theoretical calculations on novel aminopyridino – 1-4-η-cyclohexa-1, 3diene iron tricarbonyl complexes revealed that the complex was thermodynamically stable (Odiaka et al., 2010). Theoretical calculations were done on mixed-ligand complexes (Scheme 1) of Co(II) dimethylglyoxime (Adejoro et al., 2014a) and Cu(II) dimethylglyoxime (Adejoro et al., 2014b). This work used theoretical approach using semiempirical PM3 and Density Functional Theory (DFT) methods of calculation in Spartan to validate the experimental result obtained by Osunlaja et al., 2011.

Scheme 1: Structure of the complex B=2-aminophenol(2-aph) $B^1=Hydrogen$ $B=diethylamine (dea) <math>B^1=diethylamine (dea)$ $B=malonic acid (MOH) <math>B^1=Hydrogen$

COMPUTATIONAL METHODOLOGY

Conformational search was performed on the molecule to locate the structure with the lowest energy. The conformational search were carried out using molecular mechanics force field (MMFF) which is quite successful in assigning low energy conformers and in providing quantitative estimates of conformational energy differences (Warren, 2003). Semi-empirical PM3 and Density functional methods were used to carry out molecular calculations on the complexes. The structures were fully optimized (Figs. 1a, b and c) and geometric calculations were done to obtain the bond length, bond angle, and bond dihedrals of the complexes. Thermodynamic calculations, vibrational and electronic properties, heat of formation, dipole moment, E-HOMO, E-LUMO and band gaps were calculated.

Calculations

Thermodynamic, band gaps and electronic calculations were done using the equations below:

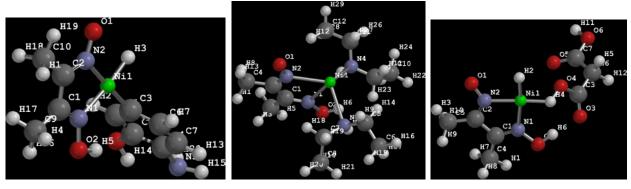
$$\Delta G = \Delta H - T \Delta S \tag{1}$$

Where ΔG is the free energy change of formation.

 ΔH is the enthalpy change of formation

 ΔS is the entropy change

T is temperature at 298 kelvin


The band gap and electronic properties were calculated using:

$$E_{gap} = E_{Lumo} - E_{Homo}$$
 (2)

where $\boldsymbol{E}_{\!\scriptscriptstyle{gap}}$ is the energy gap

 E_{Lumo} is the energy of the lowest unoccupied molecular orbital

 $E_{\mbox{\tiny Homo}}$ is the energy of the highest occupied molecular orbital

Fig1a: NiHdmg(2-aph)

Fig 1b:NiHdmg(dea)₂

Fig 1c: NiHdmg(MO)

Fig. 1: The Structures of Mixed-ligand of Ni (II), Complex.

RESULTS AND DISCUSSION

Geometric Parameters:

Calculations were carried out on the structure with the lowest values; this was obtained using confomer distribution calculation with MMFF_{aq}.

Geometric parameters were obtained after optimization using PM3, DFT (6-31G*). The bond distances, bond angles, and dihedrals are shown Tables 1-3.

Table 1: Selected Bond Distances, Bond Angles, and Dihedrals of 2- aminophenol Dimethylglyoxime Nickel(II) (Å)

Bond length	PM3	DFT/ B3LYP 6-31G	Bond angles	PM3	DFT/ B3LYP 6-31G	Dihedrals	PM3	DFT/ B3LYP 6-31G*
Ni ₁ -H ₂	1.7794	2.8825	Ni ₁ -N ₃ -C ₅	106.294	115.257	Ni ₁ -N ₄ -C ₆ -C ₅	-0.220	1.632
Ni ₁ -N ₃	1.8217	1.8635	Ni ₁ -N ₃ -O ₈	79.774	125.071	Ni ₁ -N ₃ -C ₅ -C ₆	18.538	6.756
Ni ₁ -N ₄	1.7881	1.8517	Ni ₁ -N ₄ -C ₆	109.706	115.328	Ni ₁ -C ₁₀ -C ₁₂ -C ₁₅	-160.345	-55.201
Ni ₁ -C ₁₀	2.1865	2.1516	Ni ₁ -N ₄ -O ₇	119.615	120.319	Ni ₁ -C ₁₀ -C ₁₃ -C ₁₄	120.022	56.072
N ₃ -C ₅	1.4358	1.3140	Ni ₁ -C ₁₀ -C ₁₂	69.587	75.286	Ni ₁ -N ₃ -O ₁₈ -H ₉	-161.599	-48.693
N ₃ -O ₈	1.4847	1.3893	Ni ₁ -C ₁₀ -C ₁₃	161.834	72.350	Ni ₁ -C ₁₀ -C ₁₂ -H ₁₆	32.318	122.086
N4-C6	1.4243	1.3359	H ₂ -Ni ₁ -N ₃	173.553	165.006	Ni ₁ -N ₄ -C ₆ -C ₂₃	177.360	-178.023
N ₄ -O ₇	1.1832	1.2467	H ₂ -Ni ₁ -N ₄	90.477	81.632	H ₂ -Ni ₁ -N ₃ -C ₅	92.568	-5.402
C5-C6	1.3734	1.4396	H ₂ -Ni ₁ -C ₁₀	33.826	18.490	H ₂ -Ni ₁ -N ₄ -C ₆	-164.705	-178.649
C ₅ -C ₁₉	1.4695	1.4952	N ₃ -Ni ₁ -H ₂	173.553	165.006	H ₂ -Ni ₁ -N ₄ -O ₇	12.078	1.521

Table2: Selected Bond Distances, Bond Angles, And Dihedrals of Diethylamine Dimethylglyoxime Nickel(II) (Å)

Bond length	PM3	DFT/ B3LYP 6-31G	bond angles	PM3	DFT/ B3LYP 6-31G	Dihedrals	PM3	DFT/ B3LYP 6-31G
Ni ₁ -N ₂	1.8470	1.8802	Ni ₁ -N ₂ -C ₈	108.362	116.230	Ni ₁ -N ₃ -C ₉ -C ₈	-6.073	1.682
Ni ₁ -N ₃	1.7981	1.8963	Ni ₁ -N ₂ -O ₁₁	81.974	124.684	Ni ₁ -N ₂ -C ₈ -C ₉	-11.874	-9.834
Ni ₁ -N ₄	1.9228	1.9535	Ni ₁ -N ₃ -C ₉	111.574	115.492	Ni ₁ -N ₂ -O ₁₁ -H ₂	171.558	110.618
Ni ₁ -N ₆	1.9391	1.9751	Ni ₁ -N ₃ -O ₁₀	121.267	124.829	Ni ₁ -N ₂ -C ₈ -C ₁₃	170.499	171.770
N ₂ -C ₈	1.4308	1.3211	Ni ₁ -N ₄ -H ₅	108.151	106.965	Ni ₁ -N ₃ -C ₉ -C ₁₇	176.404	-178.870
N ₂ -O ₁₁	1.5042	1.4160	Ni ₁ -N ₄ -C ₂₁	96.817	111.681	Ni ₁ -N ₄ -C ₂₁ -H ₂₂	111.919	62.220
N ₃ -C ₉	1.4280	1.3421	Ni ₁ -N ₄ -C ₂₈	131.790	111.706	Ni ₁ -N ₄ -C ₂₁ -H ₂₃	-4.204	-52.642
N_{3} - O_{10}	1.1908	1.2576	Ni ₁ -N ₆ -H ₇	110.477	100.387	Ni ₁ -N ₄ -C ₂₁ -C ₂₄	-125.898	-174.299
N ₄ -H ₅	1.0018	1.0210	Ni ₁ -N ₆ -C ₃₅	89.824	112.829	Ni ₁ -N ₄ -C ₂₈ -H ₂₉	-52.992	13.290

Table 3: Selected Bond Distances, Bond Angles and Dihedrals for the Malonic Acid Dimethylglyoxime Nickel(II) (Å)

Bond Length	PM3	DFT/ B3LYP 6-31G	bond angles	PM3	DFT/ B3LYP 6-31G	Dihedrals	PM3	DFT/ B3LYP 6-31G
Ni ₁ -H ₂	1.6055	1.4804	Ni ₁ -N ₃ -C ₅	97.966	111.805	Ni ₁ -N ₄ -C ₆ -C ₅	-9.563	-4.873
Ni ₁ -N ₃	1.8741	1.9014	Ni ₁ -N ₃ -O ₈	91.614	121.745	Ni ₁ -N ₃ -C ₅ -C ₆	40.765	20.966
Ni ₁ -N ₄	1.7816	1.8270	Ni ₁ -N ₄ -C ₆	105.348	113.670	Ni ₁ -N ₃ -O ₈ -H ₉	-157.951	-110.168
Ni ₁ -H ₁₀	2.4220	2.4282	Ni ₁ -N ₄ -O ₇	127.557	127.436	Ni ₁ -H ₁₀ -O ₁₃ -C ₁₁	-123.165	-154.043
N ₃ -C ₅	1.4017	1.3273	Ni ₁ -H ₁₀ -O ₁₃	47.481	50.031	Ni ₁ -N ₃ -C ₅ -C ₁₄	-142.129	-162.018
N_3 - O_8	1.4541	1.4413	H ₂ -Ni ₁ -N ₃	175.752	170.807	Ni ₁ -N ₄ -C ₆ -C ₁₈	167.788	179.026
N ₄ -C ₆	1.4192	1.3640	H ₂ -Ni ₁ -N ₄	88.805	92.573	H ₂ -Ni ₁ -N ₃ -C ₅	40.366	48.250
N ₄ -O ₇	1.1930	1.2493	H ₂ -Ni ₁ -H ₁₀	103.141	117.377	H ₂ -Ni ₁ -N ₄ -C ₆	-148.000	-158.575
C5-C6	1.3966	1.4198	N ₃ -Ni ₁ -H ₂	175.752	170.807	H ₂ -Ni ₁ -N ₄ -C ₇	32.769	21.822
C ₅ -C ₁₄	1.4773	1.4413	N ₃ -Ni ₁ -N ₄	90.339	83.843	H ₂ -Ni ₁ -N ₃ -O ₈	-74.306	-95.583

Electronic Properties:

The electronic structure of the metal complex is described by its band structure (David, 2001). This is obtained from HOMO-LUMO calculation. The calculated HOMO-LUMO band gap using PM3 method is greater than that of the DFT/B3LYP/6-31G*. PM3 calculation for NiHdmg(2-aph) is +6.64, NiHdmg(dea)₂ is +8.06

and NiHdmg(MO) is +8.06 while with DFT/B3LYP/6-31G* it is +3.01, 7.13 and 3.55eV for the three complexes repectively (Table 4). This result shows that PM3 method have a better predictive ability on the stability of the metal complexes compared with DFT/B3LYP/6-31G* method.

Table 4: Electronic Properties of the Ni (II) complexes

COMPLEXES	Dipole moment/debye		EHOMO/ eV		ELUMO/eV		Bandgap/Ev	
	PM3	DFT	PM3	DFT	PM3	DFT	PM3	DFT
NiHdmg(2-aph)	1.54	5.69	-12.08	-9.23	-5.44	-6.64	+6.64	+3.01
NiHdmg (dea) ₂	1.55	4.46	-8.94	-8.87	-0.88	-1.74	+8.06	+7.13
NiHdmg(MO)	3.75	3.59	-8.94	5.29	-0.88	-1.74	+8.06	+3.55

Thermodynamic Properties and Stabilities

The stability of a complex depends greatly on the thermodynamic parameters. Complexes are thermodynamically stable if ΔG and ΔH are negative. The more negative ΔG and ΔH , the more positive ΔS and the more stable the complex becomes. As shown in Table 5 with Pm3 ΔG (-0.218, -0.226 and -0.778), ΔH (-0.161, -0.161 and -0.722) and ΔS (499.03, 491.75 and 491.73), with

DFT/B3LYP/6-31G* ΔG (-2287.091, -2351.755 and -2342.723), ΔH (-2287.034, -2351.686 and -2342.666) and ΔS (505.82, 504.68 and 504.68) for NiHdmg(2-aph), NiHdmg(dea)₂ and NiHdmg(MO) respectively. The values as obtained from DFT at B3LYP level with 6-31G* basis set, predicts the stability of the Dimethylglyoxime Ni(II) complexes better compared with PM3.

Table 5: Thermodynamic Properties of the Nickel(II) complexes

COMPLEXES	Methods	Heat of formation kJmol ⁻¹	SCF Total energy/au	Free energy/ au	Enthalpy/ au	Entropy Jmol ⁻¹ K ⁻¹
NiHdmg(2aph)	PM3	-1104.503	-	-0.218	-0.161	499.03
	DFT/6-31G*	-	-2287.293	-2287.091	-2287.034	505.82
NiHdmg(dea) ₂	PM3	-1583.084	-	-0.226	-0.161	491.75
	DFT/6-31G*	-	-2352.134	-2351.755	-2351.686	504.68
NiHdmg(MO)	PM3	-2495.829	-	-0.778	-0.722	491.73
	DFT/6-31G*	-	-2342.723	-2342.723	-2342.66	504.68

Vibrational Frequencies

The vibrational frequencies obtained theoretically were in perfect agreement with experimental result and experimental spectral results suggest the binding of Hdmg, 2-amino phenol or malonic acid through the N atom and O atoms respectively to the metal ion. It was discovered that DFT with basis set 6-31G* has values closer to experimental values. The absorption bands and their corresponding vibrations for the three complxes are shown Tables 6 with their corresponding IR spectra in Figures 2a, b and c. The v(O-H) obtained with DFT(3717–3547 cm⁻¹), (3658 cm⁻¹) and (3682–3687 cm⁻¹) for 2-aph, (dea)₂ and MO

respectively compared well with experimental values which are attributed to the O---H-O h y d r o g e n b r i d g e s b e t w e e n t h e dimethylglyoximato ions (Nakamoto, 1986). The band υ (N-H) (3578–3489 cm⁻¹) and (3456-3392 cm⁻¹), υ (N-O) (1378 cm⁻¹), (1521-1509 cm⁻¹) and (1519 cm⁻¹) are also closer to experimental values while there is a large variation between the theoretical band obtained for υ (Ni-N) (3120 – 3066, 866 and 1037 cm⁻¹) compared with experimental data (520 cm⁻¹) for 2-aph, (dea)₂ and MO respectively.

Table 6: Absorption Bands with their Corresponding Vibration. Ni (II) Complexes (cm⁻¹)

Complexes	Vibrations	Experimental	PM3	DFT
NiHdmg (2aph)	O–H stretching	3415	3862 – 3827	3717 – 3547
0 (1 /	N-H stretching	3253	3528 – 3411	3578 – 3489
	Ni-N stretching	520	1161	3120 - 3066
	N-O stretching	1240	2006	1378
	Ni–H stretching	N/A	2288	3259
	C–C stretching	N/A	1769	1529
	C–N stretching	N/A	1492	1636 – 1558
	C=C stretching	N/A	1082	1623
	C-H saturation	N/A	3157-3144	1558
	C-H aromatic	N/A	3065 - 3025	3247 - 3220
NiHdmg (dea) ₂	O – Hstretching	3446	3819	3658
	C = Nstretching	1462	1502	1588
	Ni – Nstretching	520	792	866
	N – Ostretching	1239	1960	1521-1509
	N – Hstretching	N/A	3339-3317	3456-3392
	C – Hstretching	N/A	3182-3178	3185
	C – Cstretching	N/A	1791	1541
	C – Hbending	N/A	1447	1072
Ni Hdmg (MO)	O–H stretching	3443	3872-3623	3682 – 3687
	C-O stretching	1377	1983	1889-1828
	N-O saturation	1239	1966 – 1958	1519
	Ni-N stretching	520	1136	1037
	C-N stretching	1461	1559 -1370	1567 – 1334
	Cu-H stretching	N/A	3664 – 3129	3653 - 2009
	C–C stretching	N/A	1708 – 1319	1547
	C–H stretching	N/A	3012 - 2954	3148 - 3094
	Ni–H stretching	N/A	1183	1911
	C-H saturation	N/A	3161-3129	3653

NB: Experimental data (Nikamoto, 1996)

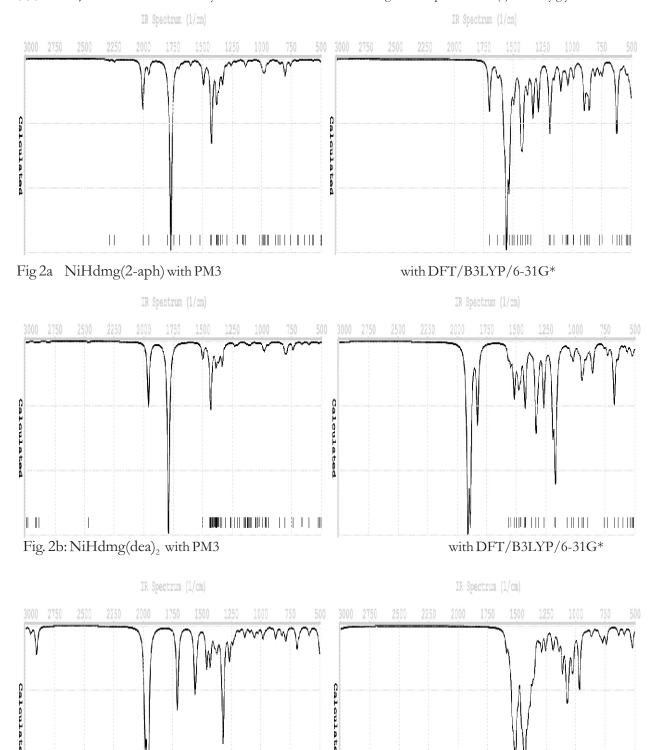


Fig. 2c: NiHdmg(MO) with PM3

П

with DFT/B3LYP/6-31G*

Electronic Spectra

In the electronic spectra of the complexes, the absorption bands observed in the UV/Visible region (Table 7) are presumed to be either due to charge transfer or intra-ligand transitions from the ligands or d-d transitions from the metal ions. The UV/Visible spectra data except for [Ni(Hdmg)(MO)] showed two major absorption bands as reported experimentally and the two d-d transition are assigned to ${}^{3}T_{1g}(F) \rightarrow {}^{3}A_{2g}$ and ${}^{3}T_{2g}(F) \rightarrow {}^{3}A_{2g}$ respectively (Osunlaja *et al.*, 2011). The UV/Visible spectrum of NiHdmg(2-aph) (Fig. 3a) showed well resolved absorption bands at 398 nm and 343 nm. These transitions are attributed to

metal-ligand charge transfer transitions while the band at 456 nm may account for d-d transition with d-orbital of the metal ion. The UV/Visible spectrum of NiHdmg(dea), (Fig. 3b) presents two distinct bands at 383 nm and 427 nm attributed to metal-ligand charge transition while the unresolved band at 452 nm may account for d-d transition with d-orbital of the metal ion. Likewise the bands in the UV/Visible spectrum of NiHdgm(MO) (Fig. 3c) at 425 nm, 440 nm and 476 nm are due to metal-ligand charge transfer transitions while the band at 511 nm is attributed to the d-d transition within the d-orbitals of the metal ion.

Table 7: Absorption Bands (UV/Visible) with their Corresponding Intensiites (nm)

NiHdm	g (2-aph)	NiHdm	ng (dea) ₂	NiHdmg (MO)		
Wavelength	Intensity	Wavelength	Intensity	Wavelength	Intensity	
398.48	0.0252079	383.96	0.0112627	425.21	0.00103689	
343.65	0.0107276	427.19	0.00376201	440.97	0.00366562	
456.93	0.00341757	452.32	0.00155451	476.55	0.00230483	
539.63	0.00751611	473.91	0.000143928	511.68	0.00202609	
674.35	0.000340581	527.78	0.001181173	564.12	0.00280195	
742.59	0.00161888	549.05	0.00123535	577.02	0.00282956	

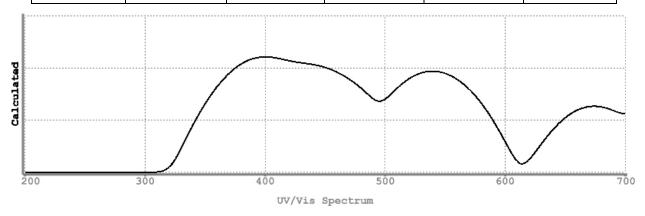


Fig 3aUltra-Violet/Visible Spectra of AminophenolDimethylglyoxime Nickel(II)

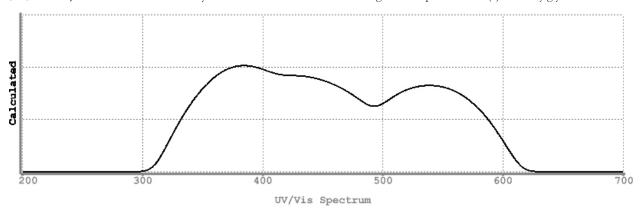


Fig 3b: Ultra-Violet/Visible Spectra of Diethylamine Dimethylglyoxime Nickel(II)

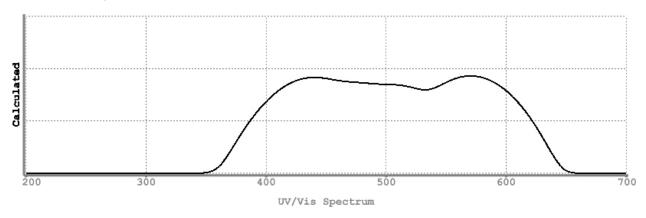


Fig 3c: Ultra-Violet/Visible Spectra of Malonic acid Dimethylglyoxime Nickel(II)

CONCLUSION

The properties of the Ni(II) mixed-ligand complexes of dimethylglyoxime were calculated using Semiempirical and DFT methods. The optimized geometries, dipole moments, geometric, thermodynamics, vibrational and electronic parameters were investigated. Computational method has presented us the opportunity to take a critical look at this mixed-ligand complexes of dimethylglyoxime to produce results which compared favourably well with experimental data. It has also given us the opportunity to compute results on the properties that cannot be obtained in laboratory experiments. In studying and predicting the geometric parameters, vibrational and electronic properties of these compounds, the PM3 semi-empirical method accounted well for the geometric parameters while the DFT/B3LYP/6-31G*, for the vibrational and electronic frequencies. It can then be concluded that both methods (Semiempirical PM3 and DFT/B3LYP) could be used for predicting the properties of transition metal complexes.

REFERENCES

Ajibola, A.O. 1990. Essential of Medicinal Chemistry. 2nd Edn., Sharson, Jersey, 28-446pp Conradie M.M. 2010. Rhodium and Iron Complexes and Transition States: A Computational, Spectroscopic and Electrochemical Study. *Unpublished Ph.D. thesis* in the Department of Chemistry, Faculty of Natural and Agricultural Sciences. University of the Free State.

David C. Y. 2001. *Computational Chemistry*- A practical guide for applying real world problems. Wileyinterscience ISBN 0-471-33368-9pp.

Adejoro, I.A.; Akintoye, B.; Adeboye, O.O. and Akinyele, O. F. 2014a. Theoretical Study of Mixed-Ligand Complexes of Co (II) Dimethylglyoxime: (Semi-empirical and DFT methods) Science Alert - Trends in Molecular Science 1-9.

Adejoro, I.A.; Akintoye, B. and Adeboye, O.O. 2014b. Theoretical Study of Mixed-Ligand Complexes of Cu(II) Dimethylglyoxime. Southern Brazilian Journal of Chemistry, 24.

Adejoro, I.A.; Oyeneyin, O.E.; Adeboye, O.O. and Obaleye, J. A. 2012. PM3 Semi Empirical Quantum Mechanical Calculations on a Novel Dichlorobis (N-

- { 4 [(2 pyrimidinyl-kN-amino)sulfonyl}acetamide]copper(II), Containing a Metabolite N-acetylsulfadiazine. *Journal of Computational Methods in Molecular Design*, 2 (4), 142-148
- Adejoro, I.A.; Oyeneyin, O. E.; Adeboye, O.O. and Obaleye, J. A. 2013. Characterization of a novel polymeric Zinc (II) complex containing the anti-malarial Quinine as ligand: A Theoretical Approach (Semi-empirical and DFT methods). *Am. J. Sci. Ind. Res.*, 4(1), 111-122
- Kudirat, Z.H.; Shamin, S.; Shuranjan and Aslam, H. 1994. Evaluation of *in vitro* antimicrobial and in vivo cytotoxic properties of peroxo-coordination complexes of Mg (II), Mn (II), Fe (II) and Ni (II) *Dhaka Uni. J. Pharm. Sci.*, 3(1-2), 1-4
- Nakamoto, K. 1986. *Infrared and Raman Spectra of Inorganic and Coordination Compounds*. 3rd Edn., John Wiley and Sons New York, 94-197, 205-233
- Obaleye, J.A.; Nde-aga, J.B. and Balogun, E.A. 1997. Some antimalaria drug metal complexes: Synthesis, characterization and their in vivo evaluation against malaria parasite. *Afr. J. Sci.*, 1. 10-12
- Odiaka, T.I.; Adejoro, I. A. and Akinyele, O. F. 2012. Semi- empirical (PM3) studies of novel aminopyridino 1-4-η -cyclohexa-1, 3-diene iron tricarbonyl complexes. *Am. J.*

- Sci. Indi, Res. 3(1). 1-13
- Oguniran, K.O.; Tella, A.C.; Alensela, M. and Yakubu, M.T. 2007. Synthesis, physical properties, antimicrobial potentials of some antibiotics complexes with transition metals and their effects on alkaline phosphatase activities of selected rat tissues. *Afr. J. Bio.*, 6(10), 1202-1208
- Osunlaja, A.A.; Ndahi, N.P.; Ameh, J.A. and Adetoro, A. 2011. Synthesis, physicochemical and antimicrobial properties of Co (II), Ni (II) and Cu (II) mixed-ligand complexes of dimethylglyoxime. Research Journal of Applied Sciences, Engineering and Technology 3(11), 1233-1238, 2011
- Shodor, 2000. Overview of Computational Chemistry. The Shodor Education Foundation, Inc. in Cooperation with the National Centre for Supercomputing A p p l i c a t i o n s . http://www.shodor.org/chemviz/overview/ccbasics.html.
- Warren J. H. 2003. A guide to molecular mechanics and Quantum Chemical calculations in Spartan. Wavefunction, Inc. ISBN 1-890661-18-X
- Yeamin, R. H.; Belayet, I.; Saidul and A. Shahidil, 2003. Antimicrobial studies of mixed-ligand transition metal complexes of maleic acid and heterocyclic bases. *Pak. J. Biol. Sci.*, 6(15), 1314-1316