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The design of  generalized form of  control functions capable of  engineering desired form of  
synchronization such as complete synchronization, antisynchronization, projective 
synchronization and function projective has very important applications in real life situations. 
Inspired by practical application of  generalized form of  synchronization, controllers which 
enable Modified Function Projective Synchronization (MFPS) between two multistable 
chaotic systems are derived based on the Routh-Hurwitz criterion via Open Plus Closed Loop 
(OPCL) technique. The controllers are derived in such a way that the transformation matrix 
can be chosen arbitrarily to achieve a desired synchronization scheme. Numerical simulation 
results presented show the e?ectiveness of  the proposed MFPS for transformation matrix 
with di?erent constant values and transformation matrix with time dependent functions. The 
result shows that the proposed MFPS could be used to securely transmit di?erent information 
signals at the same time.

Keywords: Modified Function Projective Synchronization (MFPS); OPCL; Routh-Hurwitz 
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INTRODUCTION
The fundamental principle of  synchronization in 
dynamical systems has been shown to be useful in 
gaining new insights into collective behaviour of  
dynamical systems. Synchronization of  chaotic 
systems is an important feature of  nonlinear 
dynamical systems which has been intensively 
investigated due to its potential practical 
application in secure communication, neuron 
systems, laser dynamics, image processing, 
chemical, biological systems and information 
science (Chen and Dong, 1998; Sprott, 2003; 
Aguirre et al., 2006; Gross et al., 2006; Miliou et al., 
2007; Ghosh and Bhattacharya, 2010). Practical 
i m p l e m e n t a t i o n  o f  a p p l i c a t i o n  o f  
synchronization to secure communication via 
public domain fiber-optic links is presented in 
(Argyris et al., 2005). Based on the importance of  
s y n ch r o n i z a t i o n ,  d i f f e r e n t  t y p e s  o f  
s y n c h r o n i z a t i o n  s u c h  a s  c o m p l e t e  
synchronization (Yao et al., 2013; Singh et al., 
2014), antisynchronization (Ojo et al., 2011; Yang, 
2012), projective synchronization (Wang and  
Chen, 2010; Nian and Wang, 2013), phase 
synchronization (Wang et al., 2010; Gholizade et 

al., 2013), generalized synchronization (Feng et al., 
2010; Koronovskii et al., 2013), modified 
projection synchronization (Li, 2007; Farivar et al., 
2012), function projective synchronization (Min, 
2013; Kareem et al., 2012), modified function 
projective synchronization (Yu et al., 2013; Lv et 
al., 2012) and others (Runzi et al., 2011; Ojo et al., 
2014) have been developed. Sequel to the 
discovery of  different types synchronization, 
several linear and nonlinear methods such as 
active control (Njah, 2011; Ojo et al., 2013), linear 
feedback (Ma et al., 2012; Baogui Xin and Zhiheng 
Wu, 2015 ), backstepping (Njah et al., 2010; Njah 
and  Ojo 2010), sliding mode control (Jawaada et 
al., 2012; Zribi et al., 2010), impulsive control (Lu et 
al., 2013; Li et al., 2015), adaptive control (Liu et al., 
2008; Yang, 2011) and open-plus-closed-loop 
(Roy et al., 2011; Grosu et al., 2009; Sudheer and 
Sabirn, 2010; Padmanaban et al., 2011)  have been  
discovered in search of  improved and effective 
methods for achieving stable synchronization. 
A m o n g  t h e  n o n l i n e a r  m e t h o d s  o f  
synchronization, the OPCL is outstanding 
because it has been applied to synchronize both 
identical and non- identical systems loop (Roy et 
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al., 2011; Grosu et al., 2009; Sudheer and Sabirn, 
2010; Padmanaban et al., 2011). Also, it has been 
discovered that it can be practically implemented  
(Padmanaman et al., 2012). 

Meanwhile, multistability is a nonlinear dynamical 
behaviour in which more than one attractor 
coexist in a dynamical system for a given set of  
parameters and transition from one form of  
attractor to another form of  attractor in this 
dynamical system can be achieved by switching 
the initial conditions. This phenomenon of  
multistability has attracted a lot attention due to its 
existence and occurrence in various fields of  life 
such as neuroscience, laser optics, biology, physics 
and chemistry (Brambilla et al., 1991; Prengel et 
al.,1994; Schiff  et al., 1994; Marmillot et al., 1991). 
Lyapaunov exponents of  multistable systems vary 
with respect to the choice of  initial conditions. 
The basins of  attraction of  different attractors of   
multistable systems are interwoven in a complex 
manner and separated by one or several chaotic 
saddles with the dimension of  the basin 
boundaries very close to the dimension of  the 
state space (Saha et al., 2014). In a nutshell 
multistable systems are characterized by a high 
degree of  complex dynamical behaviour due to 
the interaction among the coexisting attractors 
(Chudzik et al., 2011). To the best of  our 
knowledge, Modified function projective 
synchronization of  the multistable system has not 
been considered via the OPCL method despite 
the practical applications of  the method and the 
system to real life situation. 

Motivated by the above discussion, this paper 
considers a generalized form MFPS for a 
multistable system that is capable of  engineering a 
desired synchronization scheme such as complete 
synchronization, antisynchronization, projective 

synchronization and function projective 
synchronization and which has very important 
applications in real life situations. The rest of  this 
paper is organized as follows. In section 2, detail 
description of  the material and method are 
presented. Section 3 gives the result and 
discussion while section 4 concludes the paper.

MATERIALS AND METHOD
The multistable system in (Saha et al., 2014) is
described by the set of  first order differential 
equations below
    = yz + a

2
    = x  - y         (1)
   = 1 - bx
For the given differential equations (1), the matrix 
J is 

J =         (2a)

The equilibrium point for the system is given as x  0
2 2

= 1/b, y = 1/b , z  =−ab  and its Jacobian is0 0

 J  =           (2b)o

and the corresponding characteristic equation is
3 2 −1 −1λ  + λ  + (b  + 2ab)λ + b  = 0         (3)

It is worthy of  note that though the system has 
one fixed point it exhibit complex dynamical 
nonlinear behaviour such as chaos, shrimp and 
multistability (Saha et al., 2014). Of  particular 
interest to us among these nonlinear behaviour is 
multistability where the bifurcation figures varies 
with the initial conditions and some of  them are 
shown in Figure 1. Two-dimension attractors for 
the initial conditions used in this research work is 
shown in Figure 2
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Figure 1: Bifurcation diagram for a = 0.01 and b=4.0 with initial condition (a) 2.2, 3.1, 1.1
                      (b) −0.2, −0.1, −0.1 (c) 0.2, 0.1, 0.1 (d) −0.2, −0.1, 0.1

Figure 2: Phase portrait of  chaotic attractor for initial conditions 1.0, 0.1, 0.1 ((a) and (b)) and for 
initial conditions 1.2, 1, 1 ((c) and (d))
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Meanwhile, using the OPCL technique discussed 
by (Roy et al., 2011; Grosu et al., 2009), the 
technique is applied to realize modified function 
projective synchronization in two nonlinear 
systems. Now, to achieve this, consider a drive 
nonlinear system:

 
   =  Ax + f(x)         (4)                                                                                                             
and the response nonlinear system:
   =  By + f(y)                                                 (5)

1 2 T n T
where x = (x ,x ,...,x )  ∈ Â  and y = (y ,y ,...,y )  ∈ n 1 2 n

n
Â  are the state vectors of  system (4) and (5) 

nxnrespectively. A, B ∈  Â , are the constant 
matrices. n is the order of  the systems and f(x), f(y) 
and are nonlinear functions of  the systems which 
are continuous and differentiable. The response 
system dynamics after the control function has 
been applied is

   = Cy + f(y) + U                                          (6)
where U, the coupling function is defined as

U =         f(g) +                                            (7)

where J(g) is the Jacobian of  f(g) dynamical 
system, H is an arbitrary constant Hurwitz matrix 
(n x n) whose elements are such that all its 
eigenvalues have negative real parts and goal 

T dynamics g = α(t)x where g= (g , g , g ,…, g ) and 1 2 3 n
Tα= (α , α , α ,…, α )  are arbitrary scaling constants 1 2 3 n

or functions. Also the error state variable e = (y − 
g) is the error between the response and the goal 
dynamics at any time. Expanding f(y) = f(g + e) 
using Taylor's yields

f(y) = f(g) +              +...                             (8)

Using (6) and (8), the error dynamics of  the drive 
and response systems can be written as
    = He      (9)

where H is Hurwitz matrix. Then, if  e→ 0 as t→∞ 
asymptotic stable synchronization is achieved.

RESULTS AND DISCUSSION
In this section, detail derivation of  generalized 
form of  control functions that is capable of  
realizing MFPS between two multistable systems 
is presented. To achieve this goal the drive 

multistable system is given as:

               =                                                   (10)

while the response is given as:

                =                                                  (11)

The Jacobian of  the response system (11) is

      J(y)     =                                                  (12)

For simplicity the Hurwitz matrix is chosen as

      H       =                                                  (13)

The choice of  the transformation matrix is 

      α       =         (14)

To achieve the desired dynamical goal,

        =                              =                          (15)

Using the expression in (7) the expression of  
control functions that achieve modified function 
projective synchronization is given as

U =                                                              (16)

In order to ascertain the effectiveness of  the 
analytical result, we solved equations (10), (11) 
and (16) using ode45 fourth order Runge-Kutta 
algorithm run on MATLAB. Furthermore, the 
system parameter values and initial conditions 
shown in Figure 2 were used to ensure chaotic 
dynamics of  the state variables of  the multistable 
system. While, the choice of  α determines by a 
desired synchronization scheme such as complete 
synchronization, antisynchronization, projective 
synchronization, hybrid synchronization to be 
achieved. However, in this numerical simulation 
only two cases shall be considered

I. Modified Projective Synchronization: 
Choosing the scaling parameter value as α  = 1/3, 1
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α  = 1/2, α  = 2.0, modified projective 2 3

synchronization of  the drive system (10) and the 
response system (11) is achieved when the 
controllers are activated for t ≥  70. This is 
indicated by the convergence to zero of  the error 

state variables as shown in Figure 3 and the 
projection of  the state variables of  the drive 
multistable system on the response system as 
shown in Figure 4. The recovered scaling 
parameters are shown in Figure 5.  

Figure 4: Time evolution of  the state variables of  the drive (solid line) and the response (dashed line) 
variables when the controllers have been activated.
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ii. Modified Function Projective 
Synchronization: 
Choosing the scaling functions as α  = 0.01 + 1

20.05t, α  = 2 + 0.01t , α  = 1 + 2 sin 0.2πt, modified 2 3

function projective synchronization of  the drive 
system (10) and the response system (11) is 

achieved when the controllers are activated for t ≥ 
70. This is indicated by the convergence of  the 
error state variables to zero as shown in Figure 6 
and the projection of  the state variables of  the 
drive multistable system on the response system 
as shown in Figure 7. The recovered scaling 
f u n c t i o n s  a r e  s h o w n  i n  F i g u r e  8

Figure 5: Time evolution of  the recovered scaling constants where     =        ,     =        ,     =

Figure 6: The dynamics of  the error variables between the drive and the response systems with controllers deactivated 

for 0 < t < 70 and activated for t ≥ 70 where e  = x  − g , e  = x  − g , e  = x  − g  and e = 1 1 1 2 2 2 3 3 3
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Figure 7: Time evolution of  the state variables of  the drive (solid line) and the response (dashed 
line) variables when the controllers have been activated

Figure 8: Time evolution of  the recovered scaling functions where     =        ,     =        ,      =

CONCLUSION
Modified function projective synchronization of  
multistable chaotic system have been achieved 
based on the Routh Hurwitz criteria via the Open-
plus-closed-Loop method. It has been shown 
from the analytical and numerical results that 

different controllers which are suitable for 
different types of  synchronization scheme can be 
achieve from the general results. The modified 
function projective of  multistable system 
provides higher and better security of  
information transmission as result of  different 
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scaling function involved and the multistable 
nature of  the system. The recovery of  the scaling 
functions is an indication that more than one 
message can be securely transmitted and 
recovered after synchronization process has been 
completed.
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