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FORMATION, EASTERN DAHOMEY BASIN, SOUTHWESTERN NIGERIA: 
IMPLICATION ON PROVENANCE AND DEPOSITIONAL CONDITIONS.
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Thirty three limestone samples of  the Paleocene Ewekoro Formation from exploratory drill cores within Ibeshe 
cement quarry, southwestern Nigeria were investigated for major, trace and rare earth elements abundances 
using inductively coupled plasma spectrometry (ICP-MS) analytical method. The aims were to investigate the 
depositional settings and source of  rare earth element (REE). The major oxides concentration showed 
significant variations among the limestone facies. Higher SiO , Al O  and Fe O  contents were observed in the 2 2 3 2 3

marly and sandy facies than the fossiliferous limestone, whereas the fossiliferous facies were enriched in CaO 
content. The trace elements content of  the limestones normalized with the Post-Archean Australian Shale 
(PAAS) values revealed significant enrichment in Nb, Sr and U, whereas Ba, Th, Rb and other trace elements 
contents were depleted. The PAAS normalized REE + Y of  the limestones displayed relatively uniform patterns 
of  (i) slightly enriched LREE; (ii) positive Ce anomaly; (iii) positive Gd anomaly; (iv) positive Eu anomaly (v) high 
Y/Ho ratio. The characteristics non-seawater-like REE patterns, elevated ΣREE, high La /Yb  ratios and high N N

Y/Ho ratios, suggested that variations in REE contents were mainly controlled by the amount of  terrigenous 
contaminations in the limestones. Ratios of  La/Sc, La/Co, Th/Co, Th/Cr, Cr/Th and Th/Sc suggested that the 
terrigenous inclusions in these limestones were derived mainly from intermediate to felsic source rocks. The 
negative correlation of  Sr with Mn and positive correlations of  Eu with elements such as Zr, Y, Th and Hf  
suggested that the observed positive Eu anomalies in the limestones might be due to diagenetic processes. The 
geochemical parameters such as Ce anomaly, authigenic U, Mn*, V/(V+Ni), V/Ni ,Th/U ratios indicated that 
the limestones of  Ewekoro Formation were deposited in restricted to open shallow marine environments under 
fluctuating oxidizing to anoxic conditions. 

Keywords: Ewekoro Formation, Rare Earth Elements, Depositional Condition, Provenance, Dahomey 
Basin.
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INTRODUCTION
Geochemistry of  sedimentary rocks is a valuable 
tool to infer factors that control sediment 
characteristics during and after their deposition 
and to delineate the relationship between specific 
units of  both clastic and carbonate strata 
(Nagarajan et al., 2008; Armstrong-Altrin et al., 
2009; Frimmel, 2009; Madhavaraju and Lee, 
2009). The importance of  geochemistry in 
determining the source area of  sedimentary rocks, 
paleo-weathering conditions as well as tectonic 
evolutions of  sedimentary basins is well 
established in many literatures (Taylor and 
McLennan, 1985; Cullers et al., 1988; McLennan et 
al., 1990; Nagarajan et al., 2007). The 
concentration of  rare earth elements (REE) in 
clastic and carbonate rocks provides important 
information on marine depositional conditions 
like surface productivity variations (Toyoda et al., 
1990), oceanic paleo-redox conditions (Wang et al., 

1986; Liu et al., 1988; German and Elderfield, 
1990; Murray et al., 1991) and diagenetic processes 
(Nath et al., 1992; Madhavaraju and Ramasamy, 
1999; Armstrong-Altrin et al., 2003).

The Ewekoro Formation (Paleocene) is one of  the 
stratigraphic units in the eastern Dahomey Basin. 
It is composed dominantly of  limestone with 
subordinate thin bands of  shale, marl and sand 
(Jones and Hockey, 1964). The limestone, which is 
the focus of  this study, is of  particular importance 
due to its regional industrial potential for cement 
manufacturing. Consequently, there are a quite 
number of  geological studies focusing largely on 
stratigraphy, paleontology, petrology and 
geochemistry of  the limestone of  Ewekoro 
Formation (Jones and Hockey, 1964; Reyment, 
1965; Adegoke et al., 1971; Ogbe, 1972; Fayose and 
Asseez, 1972; Okosun, 1988; Oladeji, 1992; Nton, 
2001; Elueze and Nton, 2004; Adekeye et al., 2006; 
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Akaegbobi et al., 2011). However no detailed study 
of  geochemical constraints on provenance and 
depositional conditions has been carried out. 
Hence, this study focuses on the use of  
geochemical characteristics (including major, trace 
and rare earth elements geochemistry) to trace the 
depositional environment, to interpret the 
possible source of  REEs, and to know the reason 
for variations of  Eu and Ce anomalies as well as 
predict the paleo-redox conditions in the 
limestones of  Ewekoro Formation.   

GEOLOGY AND STRATIGRAPHY OF 
DAHOMEY BASIN
Dahomey Basin is an extensive coastal 
sedimentary basin on the margin of  Gulf  of  
Guinea. It is part of  a system of  West African 
margin basins developed during the period of  the 
rifting associated with the separation of  South 
American and African plates and subsequent 
opening of  Gulf  of  Guinea in the late Jurassic to 
early Cretaceous (Burke et al., 1971; Whiteman, 
1982). Rifting, block faulting and subsidence 
accompanying opening of  Gulf  of  Guinea led to 
deposition and accumulation of  sediments in the 
basin (Whiteman, 1982). The Nigerian sector of  
the basin (Eastern Dahomey Basin) extends from 
the boundary between Benin Republic and 
Nigeria to Benin Hinge line. It consists of  
Cretaceous-Recent sedimentary formations 
(~3000 m thick) outcropping in an arcuate belt 
roughly parallel to the coastline (Whiteman, 1982; 
Billman, 1992) (Fig. 1). The structural setting, 
general geology and hydrocarbon potential of  
eastern Dahomey Basin have been summarized by 
Jones and Hockey (1964), Reyment (1965), 
Adegoke (1969), Omatsola and Adegoke (1981), 
Nwachukwu and Adedayo (1987), Ekweozor and 
Nwachukwu (1989), Billman (1992), Okosun 
(1998), Nton et al. (2006). Billman (1992) divided 
the stratigraphy of  the entire basin into three 
chronostratigraphic packages; pre-lower 
Cretaceous folded sediments, Cretaceous 
sediments and Tertiary sediments. 

The oldest dated sediments onshore are the 
Cretaceous sediments which rest unconformably 

on the crystalline Basement Complex. Further 
offshore, the Cretaceous sediments thicken and 
rest unconformably on the pre-lower Cretaceous 
sediments (Billman, 1992). In Nigerian sector of  
the basin, the Cretaceous sequence referred to as 
Abeokuta Group is sub-divided into three 
formations; Ise, Afowo and Araromi Formations 
(Omatsola and Adegoke, 1981). Ise Formation 
(Neocomian-Albian) is the oldest lithic fill and is 
unconformably disposed on the basement 
complex. It comprises of  conglomerate and grit at 
the base, overlain by coarse grained loose sand 
interbedded with kaolinitic clays (Omatsola and 
Adegoke, 1981). Afowo Formation is the middle 
layer of  the Cretaceous sequence. It is composed 
of  transitional sand and sandstone with variable 
but thick interbedded marine shales, siltstone and 
claystones. The sandy facies are tar bearing, while 
the shales are organic-rich. The formation has 
been dated Turonian-Maastrichtian (Billman, 
1992). Araromi Formation (Maastrichtian-
Paleocene) is the uppermost unit and is made up 
of  fine to medium grained sandstone at the base, 
overlain by shale and siltstone with interbeds of  
limestone, marl and lignite.

The Tertiary sediments consist of  Ewekoro, 
Akinbo, Oshosun, Ilaro and Benin Formations. 
Ewekoro Formation (Paleocene) is composed 
mainly of  fossiliferrous well bedded limestone 
with subordinate thinly banded shale, marl and 
sand. The limestone is traceable for a distance of  
about 320 km from Ghana toward the eastern 
margin of  Dahomey Basin. Akinbo Formation 
(Paleocene-Eocene) consists of  shale and clay 
units overlying Ewekoro Formation (Ogbe, 1972). 
Its base is defined by glauconitic band. Oshosun 
Formation overlies the Akinbo Formation and 
consists of  phosphate-bearing, greenish-grey or 
beige clay and shale with interbeds of  sandstone 
(Okosun, 1998). Ilaro and Benin Formations are 
predominantly coarse sandy estuarine, deltaic and 
continental beds which are difficult to identify on 
the field. 

Akaegbobi and Ogungbesan: Geochemistry of  the Paleocene Limestones of  Ewekoro Formation
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MATERIALS AND METHODS
Samples were collected from six exploratory drill 
cores within Dangote Cement Quarry near Ibeshe 
village, southwestern Nigeria (Fig. 1). The samples 
were picked from limestone intervals within the 
Ewekoro Formation (Fig. 2). For preliminary 
investigation, 20 representative samples of  the 
limestone were cut into slabs from which thin 
sections were made for identification of  carbonate 
components. These were studied under a flat stage 
petrographic microscope. Depositional texture, 
grain composition and microfossil assemblage 
were determined in thin sections of  the samples.

Whole-rock chemical analysis for major, trace and 
rare earth elements concentrations in 33 limestone 
samples were determined using inductively 
coupled plasma-mass spectrometry (ICP-MS) at 
Acme Analytical Laboratory Limited, Vancouver, 
Canada. The selected samples were first wash to 
remove any contamination and then air dried and 
ground in an agate mortar. 5 g of  each measured 
sample was placed in a well labeled white 
cellophane bags and send for geochemical 

analysis. At the laboratory, two methods of  
digestion were employed for this analysis; a 
lithium borate fusion digestion to analyzed for 
major oxides, rare earths (La-Lu) and refractory 
trace elements (Ba, Co, Cs, Hf, Nb, Rb, Sr, Ta, Th, 
U, V, Zr and Y) by Inductively coupled plasma 
emission spectrometry (ICP-ES) using a 
simultaneous/sequential Thermo Jarell-Ash 
Enviro II ICP equipment, and an aqua regia 
digestion to analyzed for  Cu, Mo, Ni, Pb and Zn 
using a Varian Vista Pro Inductively Coupled 
Plasma Mass Spectrometer.  An internationally 
recognized standard reference material known as 
SO-18 was used for reference. Replicate analyses 
of  samples indicate errors better than 1% for 
major elements, whereas between ranges of  3-5% 
for both trace and rare earth elements. Loss on 
ignition (LOI) was determined by heating dried 

osamples to 1000 C for 2 hours. The results of  
major, trace and rare earth elements were 
presented in Table 1-3. The trace and rare earth 
elements (REE) data were normalized relative to 
Post-Archean Austrialian Shale (PAAS) values of  
Taylor and McLennan (1985).

Fig. 1: Regional Geological map of  Dahomey Basin showing the extent of  the basin from Ghana in the 
west to Nigeria in the east (modified after Billman, 1992)

Akaegbobi and Ogungbesan: Geochemistry of  the Paleocene Limestones of  Ewekoro Formation
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RESULTS AND DISCUSSION
Petrography
The microscopic study revealed that the 
framework components of  the studied limestone 
samples consisted of  skeletal and non-skeletal 
grains, sparry calcite, micrite and some quartz 
grains (Fig. 3). Skeletal grains comprise broken 
and whole shells of  foraminifera, bryozoa, 
echinodermata, ostracoda, mollusca and 
brachiopoda. Shell structures of  foraminifera and 
echinoderms were generally preserved, while 
others had variably been replaced by calcite spar 
(Fig. 3a-d). Non-skeletal grains consisting mostly 
of  peloids and ooids were identified in the studied 
samples. Ooids were abundant in many samples 
and were generally associated with bioclast 
surrounded with micritic matrix. The presence of  
ooids and peloids usually indicate low-energy, 
warm and shallow seas supersaturated with 
CaCO  and having restricted circulation. Sparry 3

calcite was present mostly as pore-filling cements. 
Three generations of  sparry calcite cementation 
were identified in the studied limestones; the 
earliest generation was fine crystalline rim cement 
around allochems (Fig. 3e), which was interpreted 
to have been precipitated under marine phreatic 
zone. The second generation was relatively large, 
equant and blocky crystalline cements that filled 
pore spaces between allochems and also the 
internal space in allochems (Fig. 3b&c). This was 
the most common in the studied samples and was 
interpreted to have been precipitated under 
meteoric phreatic-burial zone. The third 
generation of  cements occupied fractures (Fig. 
3e). Limestone microfacies include bioclastic 
packstone, Oolitic bioclastic packstone, bioclastic 
wackstone-packstone and sandy bioclastic 
packstone that are related to three facies belt of  
lagoon, shoal and open shallow marine.   

Fig. 2: Well sections of  sampled boreholes (N-S) showing depth of  the limestone intervals

Akaegbobi and Ogungbesan: Geochemistry of  the Paleocene Limestones of  Ewekoro Formation
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Geochemistry
Major and Trace Elements
The concentrations of  major oxides and trace 
elements in the analyzed limestone samples were 
presented in Tables 1 & 2 respectively. High 
variations were observed in the major oxides 
contents of  the analyzed limestones. SiO  2

concentration varied from 1.76 to 48.96%. High 
SiO  contents (~10 - 48%) were observed in marly 2

and sandy limestones, whereas low concentration 

was found in fossiliferous limestones.  The 
contents of  Al O  (0.37–8.55%) and Fe O  2 3 2 3

(0.47–7.06%) showed similar trends in the 
samples. The CaO content varied from 14.1 to 
52.95%. Fossilifeous limestone samples showed 
higher concentration in CaO than marly and sandy 
facies. The contents of  K O, TiO , P O , MnO and 2 2 2 5

Cr O  were low in all the analyzed samples (Table 2 3

1). CaO showed distinct negative correlation with 
other major elements (statistically significant at 

Fig. 3: Thin section photographs of  limestone microfacies of  the Ewekoro Formation. (a)–Bioclastic packstone containing 
abundant fragments of  echinoderm, molluscan (bivalves and gastropods) and foraminifera floating in micritic matrix. (b)-
Oolitic bioclastic packstone containing corals, bivalves gastropods bryozoans, echinoderms, peloids and ooids floating in 
micritc matrix with some sparite. (c)–Bioclastic wackstone-packstone with abundant fragments of  recrystallized molluscs, 
echinoderms and altered ooids. (d)–Bioclastic packstone with abundant echinoderms, foraminferas, peloids and 
recrystallized gastropods. (e)–Bioclastic packstone containing ostracods, bryozoans, molluscs, echinoderms and sparite in 
micrite matrix. (d)–Sandy bioclastic packstone containing sandy quartz grains, bioclasts, few sparite and micrite matrix.

Akaegbobi and Ogungbesan: Geochemistry of  the Paleocene Limestones of  Ewekoro Formation
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0.01 level), which probably suggested that CaO 
exhibits different mode of  origin. The positive 
correlations of  Al O with SiO Fe O MgO, K O, 2 3 2, 2 3, 2

TiO , P O , MnO and Cr O (r = 0.49, 0.81, 0.52, 2 2 5 2 3 

0.82, 0.92, 0.65, 0.42 and 0.74 respectively) 
indicated that these elements were associated with 
detrital phase (Nagarajan et al., 2007).

The PAAS-nor mal ized trace e lements  
concentrations showed significant variations in 
transition trace elements (TTE: Sc, Co, Cu, Ni, V, 

Zn, Cr and Mn) and high field strength elements 
(HFSE: Zr, Hf  and Nb) (Fig. 4). Overall, PAAS-
normalized patterns of  the limestones showed 
significant enrichment in Nb, Sr and U, whereas 
Pb, Ba, Th, Rb were lower than PAAS. The Sr 
content (~119-587 ppm) was lower than the 
average value of  the lithosphere carbonates (610 
ppm; Turekian and Wedepohl, 1961). The low Sr 
content suggested diagenetic alteration due to 
meteoric water rock interaction. 

Table 1: Major oxide concentration (%) for limestones of  the Ewekoro Formation
                          
Well ID/Sample 

No Depth (m) SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 LOI Sum 

BH2.10/1 3 6.12 1.36 1.25 0.36 49.61 BDL 0.03 0.09 0.22 40.70 99.89 

BH2.10/2 7 2.45 0.90 0.47 0.42 52.95 BDL 0.04 0.04 0.13 42.60 99.92 

BH2.10/3 11 3.46 0.79 1.50 0.48 51.58 BDL 0.03 0.03 0.21 41.80 99.89 

BH2.10/4 15 29.03 0.37 0.96 0.17 38.93 BDL 0.05 0.09 0.43 29.90 99.95 

BH2.10/5 20 34.48 4.01 4.76 0.72 28.52 0.04 0.33 0.33 1.69 24.90 99.83 

BH2.10/6 24 34.41 8.55 3.29 1.20 25.05 0.03 0.61 0.43 0.63 25.60 99.84 

BH2.10/7 29 19.48 0.62 0.92 0.67 42.32 0.01 0.05 0.07 0.12 35.60 99.89 

BH2.6/1 8 48.96 5.17 7.06 2.59 14.10 0.01 1.30 0.27 0.89 19.40 99.87 

BH2.6/2 10 18.98 4.87 4.52 12.24 21.64 0.03 0.82 0.24 0.71 35.40 99.71 

BH2.6/3 13 20.94 2.63 2.43 1.77 37.49 0.02 0.27 0.17 0.36 33.80 99.89 

BH2.6/4 16 5.48 1.43 0.90 0.92 49.08 0.02 0.09 0.07 0.24 41.70 99.91 

BH2.6/5 18 5.80 1.78 0.74 1.48 48.48 0.02 0.12 0.07 0.23 41.10 99.88 

BH2.6/6 24 8.38 1.87 2.79 5.93 40.59 0.01 0.10 0.06 0.18 39.90 99.80 

BH3.18/1 18 2.09 0.66 0.80 2.18 50.91 0.02 0.09 0.03 0.19 42.90 99.91 

BH3.18/2 24 2.57 0.82 0.73 1.27 51.68 0.02 0.12 0.03 0.15 42.50 99.91 

BH3.18/3 30 2.74 0.84 0.74 1.31 51.75 0.02 0.08 0.05 0.13 42.20 99.9 

BH3.8/1 7 1.76 0.70 1.09 0.46 52.81 0.02 0.04 0.03 0.10 42.80 99.91 

BH3.8/2 9 5.04 0.96 1.71 0.37 50.83 0.01 0.05 0.05 0.20 40.60 99.89 

BH3.8/3 11 17.32 0.41 0.61 0.24 44.97 0.02 0.04 0.05 0.31 35.90 99.94 

BH3.8/4 14 23.48 1.18 1.62 0.26 39.56 0.05 0.12 0.10 0.18 33.30 99.95 

BH3.8/5 19 13.20 0.74 1.48 0.26 46.54 0.02 0.05 0.04 0.33 37.20 99.93 

BH3.8/6 22 23.34 0.64 1.18 0.25 40.53 0.01 0.05 0.05 0.11 33.70 99.88 

BH3.13/1 19 12.14 1.60 1.46 1.71 45.35 0.02 0.07 0.06 0.26 37.20 99.86 

BH3.13/2 21 19.80 2.09 1.96 1.24 40.80 0.02 0.12 0.07 0.22 33.50 99.89 

BH3.13/3 25 15.21 1.61 1.42 1.55 43.29 0.03 0.09 0.06 0.30 36.30 99.89 

BH3.13/4 28 32.49 0.79 1.15 1.02 35.89 0.02 0.07 0.12 0.29 28.10 99.92 

BH3.13/5 29 32.87 0.56 0.81 0.87 35.61 BDL 0.05 0.12 0.18 28.80 99.93 

BH3.13/6 31 27.32 0.52 0.66 0.71 38.52 BDL 0.03 0.07 0.16 31.90 99.94 

BH3.15/1 7 25.70 5.51 5.31 10.30 19.66 BDL 0.98 0.30 0.69 31.10 99.74 

BH3.15/2 10 10.95 1.97 1.99 1.84 43.70 BDL 0.30 0.10 0.50 38.50 99.89 

BH3.15/3 13 2.66 0.86 0.88 0.70 51.85 BDL 0.09 0.03 0.34 42.50 99.92 

BH3.15/4 16 3.43 1.19 1.04 0.76 51.09 0.02 0.16 0.04 0.13 42.00 99.91 

BH3.15/5 20 6.92 1.91 2.06 1.33 47.11 0.03 0.13 0.06 0.23 40.00 99.87 

BDL – Below detention Limit

Akaegbobi and Ogungbesan: Geochemistry of  the Paleocene Limestones of  Ewekoro Formation
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Fig. 4: PAAS-normalized trace elements distribution of  limestone samples from Ewekoro 
Formation.

Table 2: Trace elements concentrations (ppm) for limestones of  the Ewekoro Formation, eastern 
Dahomey Basin.

Well 
ID/Sample 

No
Depth 

(m) Sc Co Cu Ni V Zn Cr Mn Zr Cs Hf Nb Rb Sr Th U Ba Pb
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Rare Earth Elements (REE)
The REE concentrations of  the analyzed 
limestones were presented in Table 3. ΣREE 
contents (41.4-390.8 ppm; average = 125.1 ppm; 
n=33) showed significant variations among the 
samples. The ΣREE contents of  the studied 
limestones were higher than the range for marine 
carbonates (0.04-14 ppm; Turekian and 
Wedepohl, 1961) and average typical marine 
carbonates (~ 28 ppm; Bellanca et al., 1997). The 
concentration of  REE was less in samples with 
higher CaO content. The positive correlations of  

SiO  and Al O  with ΣREE content, and negative 2 2 3

correlation of  CaO with ΣREE content (Fig. 5a-c) 
supported the observation that ΣREE content in 
carbonates is mainly controlled by the amount of  
detrital clays and heavy minerals (Piper, 1974). The 
PAAS-normalized REE+Y patterns of  the 
limestones (Fig. 6) exhibited a non-seawater like 
REE+Y pattern with enriched LREE 
[(Nd/Yb) : 0.97 to 2.26], variable Ce/Ce* SN

anomalies (0.65 to 1.14), more positive Gd /Gd* SN

anomalies  and high Y/Ho ratio (27.2-45.0).

Table 3: Rare earth elements concentrations (ppm) for limestones of  the Ewekoro Formation, eastern 
Dahomey Basin.

                                    
Well 

ID/Sample 
No  

Depth 
(m)  La  Ce  Pr  Nd  Sm  Eu  Gd  Tb  Dy  Y  Ho  Er  Tm  Yb  Lu  ΣREE

 

BH2.10/1  3  40.4  56.2  9.7  38.4  7.1  1.5  6.7  0.7  4.5  28.7  0.7  1.7  0.2  1.3  0.2  198.0  
BH2.10/2  7  13.7  21.1  3.1  13.9  2.5  0.6  2.9  0.4  2.5  19.8  0.4  1.3  0.2  1.0  0.1  83.6  
BH2.10/3  11  18.7  38.6  4.8  23.4  3.4  0.7  3.0  0.3  2.0  11.1  0.3  1.0  0.1  0.7  0.1  108.1  
BH2.10/4  15  18.4  31.6  4.6  20.6  4.0  0.9  4.0  0.5  3.3  20.6  0.5  1.3  0.2  1.2  0.2  111.8  
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Fig. 5: Bivariate plots showing the relationship between ΣREE vs SiO , ΣREE vs Al O , ΣREE vs CaO, 2 2 3

Mn vs Sr, Ce/Ce* vs Eu/Eu* and Al O  vs CaO contents for limestones of  Ewekoro Formation2 3
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Possible Source of  REE 
The non-seawater like pattern of  chemical 
sediments is attributed to high REE concentration 
due to contamination either with silicates from 
terrestrial particulate matter (Elderfield et al., 
1990); Fe-Mn oxides (Bau et al., 1996) or 
phosphates and sulphides derived from post-
depositional diagenetic process of  chemical 
leaching (German and Elderfield, 1990; Byrne et 
al., 1996; Zhao et al., 2009; Frimmel, 2009). Al O  2 3

and HFSEs (such as Sc, Th, Hf, Zr and Y) are 
higher in terrestrial sediments than seawater; 
hence, can be used to investigate the amount of  
contamination by terrestrial materials in 
limestones (Webb and Kamber, 2000). The 
significant positive correlations of  ΣREE with 
Al O , TiO , Sc, Th, Hf, Zr, Y (r = 0.80, 0.84, 0.88, 2 3 2

0.82, 0.60, 0.62, 0.96 respectively) and negative 
correlations with CaO (r = -0.63) confirm that the 
variations of  ΣREE in these limestones are 
associated with detrital input. 

The Er/Nd ratio in normal seawater is about 0.27 
(De Baar et al., 1988). High Er/Nd ratio in 
limestone effectively reveals the seawater 
signature retained by marine carbonate. Addition 
of  detrital material or diagenesis may reduce the 
Er/Nd ratio to less than 0.1 due to preferential 
concentration of  Nd relative to Er (Bellanca et al., 

1997; German and Elderfield, 1989). The Er/Nd 
ratio of  the studied limestones ranging from 0.04-
0.12 (average =0.07) support the detrital influence 
on  REE concent ra t ion .  The de t r i t a l  
contaminations of  the studied limestones are 
further supported by negative and weak 
correlations between ΣREE content and 
diagenetic proxies. The weak negative correlations 
of ΣREE vs Sr (r = -0.13), Ce/Ce* vs Eu/Eu* (r = 
-0.20), Ce/Ce* vs Y/Ho (r = -0.20) suggest that 
the influence of  diagenetic process on REE 
concentration is limited. 

The La/Sc, La/Co, Th/Sc, Th/Co and Th/Cr 
ratios showed significant variations in felsic and 
mafic rocks and are widely used to investigate the 
source area composition (Wronkiewicz and 
Condie, 1990; Cox et al., 1995; Cullers, 1995; 
Armstrong-Altrin et al., 2004; Armstrong-Altrin, 
2009). La/Sc, La/Co, Th/Sc, Th/Co and Th/Cr 
ratios of  the limestones of  Ewekoro Formation 
compared with those of  sediments derived from 
felsic and mafic rocks (fine fractions) as well as to 
average values of  upper continental crust (UCC) 
and PAAS values (Table 4) suggested that the 
terrigenous inclusions in the these limestones 
were derived from intermediate to felsic source 
rocks.

Fig. 6: PAAS-normalized rare earth elements distribution of  limestone samples of  the Ewekoro 
Formation.
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Y/Ho Ratio
Yttrium is inserted between Ho and Dy in the 
REE pattern (REE+Y) due to its identical charge 
and similar radii with Ho (Bau, 1996). Y/Ho ratio 
has been considered as a proxy of  seawater 
composition. Seawater displays high Y/Ho ratio 
(~44 - 74), whereas terrigenous materials and 
volcanic ash have constant chondritic Y/Ho 
values of  ~28 (Bau et al., 1995; Nozaki et al., 1997). 
In this study, the limestone samples showed wide 
variation in Y/Ho ratio (27.2 – 45.0; 
average=35.1). Most samples show Y/Ho ratios 
greater than chondritic value (~28) but less than 
superchondritic Y/Ho value of  seawater. This 
observed variation in Y/Ho ratio suggested that 
the limestones of  Ewekoro Formation preserved 
the seawater signature, though contaminated by 
the influence of  terrigenous materials. 

Ce Anomaly and Paleo-oxygenation 
conditions
The Ce anomalies (Ce/Ce*) in marine carbonates 
have been considered useful as indicators for 
understanding paleo-redox conditions (Liu et al., 
1988; German and Elderfield, 1990). Negative Ce 
anomaly in marine sediments reveals inclusion of  
REE directly from seawater or pore water under 
oxic condition (German and Elderfield, 1990; 
Bellanca et al., 1997), whereas positive Ce anomaly 
could be attributed to enrichment of  Ce relative to 

3+other REE through remobilization of  Ce as Ce  
and release to water column in suboxic to reducing 

condition (De Baar, 1991). The Ce/Ce* values in 
the studied limestones ranged from 0.65 to 1.57 

(average 0.89±0.17, n = 33. Over 80% of  the 
analyzed samples had Ce/Ce* values <1. The 
values for marine waters range from <0.1 to 0.4 
(Elderfield and Greaves, 1982; Piepgras and 
Jacobsen, 1992) whereas the average shales 
Ce/Ce* is 1 (Murray et al., 1992). Therefore, it 
appears that the Ce/Ce* values in the studied 
limestones were influenced by the relative 
proportions of  precipitates from both seawater 
and clastic contaminations (Murray et al., 1992) in 
oxic to suboxic depositional condition. However, 
the interpretation of  Ce anomalies from Ce/Ce* 
values may be complicated due to variable La 
content and possible by tetrad effect. Sometimes 
negative Ce anomaly may be overestimated if  La is 
enriched (Bau and Dulski, 1996; Shields and Stille, 
2001). The 'true' Ce anomalies and the extent of  
La enrichment can be assessed using the Pr/Pr* vs 
Ce/Ce* discriminant diagram (Fig. 7) proposed by 
Bau and Dulski (1996) modified by Webb and 
Kamber (2000). Apparently, most of  the studied 
samples showed positive Ce and La anomalies. 
This indicated that the studied limestones did not 
have a 'true' negative Ce anomalies as expressed by 
the Ce/Ce* values. The existence of  a 'true' 

negative Ce anomaly should give Pr/Pr* ³ 1 
(Nagarajan et al., 2011). The Pr/Pr* values (mostly 
< 1) of  samples suggest that the anomalous La 
enrichment must be the main cause of  the 
negative Ce anomaly. 

Table 4: Range of  elemental ratios of  limestone samples in this study compared to the ratios in 
sediments derived from felsic rocks, mafic rocks, Upper Continental Crust (UCC) and Post-Archean 
Australian shale (PAAS).

Elemental ratio
 Range for limestones of  Ewekoro   

Formation1         
Range of  sediments2

  
UCC3  

PAAS3

  Min Max   Felsic rocks  
Mafic 
rocks        

Eu/Eu*  1.00 1.37  0.40-0.94  0.71-0.95   0.63  0.66

La/Sc  4.93 40.40  2.50-16.30  0.43-0.86   2.21  2.40

La/Co  1.75 69.67  1.80-13.80  0.14-0.38   1.76  1.65

Th/Sc  0.47 2.30  0.84-20.50  0.25-0.22   0.79  0.90

Th/Co  0.14 5.33  0.67-19.40  0.04-1.40   0.63  0.63

Th/Cr
  

0.01
 

0.09
  

0.13-2.70
 

0.02-0.05
  

0.13
 
0.13

Cr/Th 11.4 69.85 4.00-15.00 25-500 7.76 7.53

1 2 3
Present study, n = 33. Cullers (1994, 2000); Cullers and Podkovyrov (2000); Cullers et al. (1988); Taylor 
and McLennan (1985)
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Positive Ce anomaly may occur due to detrital and 
diagenesis inputs (Nath et al., 1997; Madhavaraju 
and Ramasamy, 1999; Armstrong-Altrin et al., 
2003), scavenging process (Masuzawa and 
Koyama, 1989) and anoxic condition (Liu et al., 
1988; German and Elderfield, 1990). Settling 
particles of  deep marine environments will have 
distinct positive Ce anomaly due to scavenging of  
Ce over remaining REE. In the studied 
limestones, Ce/Ce* values did not correlate with 
scavenging-type particle reactive elements (e.g. 
Ce/Ce* vs Mn: r=0.09, Ce/Ce* vs Fe: r=0.43, 
Ce/Ce* vs Pb: r=0.34), but in agreement with 
shallow marine depositional environments, where 
scavenging processes were negligible when 
compared to deep marine environments.   

The observed positive Ce anomaly whether 
influenced by paleo-redox changes can be tested 
by using other redox sensitive geochemical 
parameters. Machhour et al. (1994) and Bellanca et 
al. (1997) proposed the relation: Mn* = log 
{(Mn /Mn )/(Fe /Fe )} to find out sample shale sample shale

redox condition of  the depositional environment 
of  ancient sediments. The mean values for Mn  shale

and Fe  to calculate Mn* are 600 and 46,150 ppm shale

respectively (Wedepohl, 1978). Mn* values of  the 
studied limestones range from -0.36 to 1.06. These 
suggest that the limestones were deposited under 
reducing to oxidizing conditions. 

The V/Ni ratio and the proportionality of  
vanadium to nickel expressed as V/(V+Ni) have 
commonly been used to find out information on 
redox conditions in depositional environments 
(Lewan and Maynard, 1982; Breit and Wanty, 
1991; Galarraga et al., 2008). Galarraga et al. (2008) 
suggested that V/Ni ratio of  sediment greater 
than 3 indicates reducing condition, while V/Ni 
ratios of  1.9 to 3 and below 1.9 indicate deposition 
under suboxic and oxic conditions respectively. 
The V/Ni ratios of  the studied samples vary from 
1.4 to 36.0 (average = 5.2) implying that these 
limestones were deposited under variable redox 
conditions of  oxic to anoxic. The V/(V+Ni) 
values of  the studied limestones (0.6 to 1.0) were 

higher than those for normal marine systems (£ 
0.05; Lewan, 1984). This strongly supported 
suboxic/anoxic conditions for the limestones. 
The V/(V+Ni) values greater than 0.8 of  many 
samples (n=23), implied presence of  significantly 
dissolved H S in highly reducing bottom water of  2

marine environment in Dahomey Basin during the 
deposition of  Ewekoro Formation. 

The Th/U ratio could also be used as a redox 
indicator with Th/U ratios below 2 indicating 
anoxic marine conditions, whereas 2-7 and above 
7 suggesting oxic and intensely oxic terrestrial 
environments respectively (Wignall and Twitcher, 

 

Fig. 7: Plot of  PAAS-normalized Pr/Pr* vs Ce/Ce* (modified after Bau and Dulksi, 1996)
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1996). In the present study, the Th/U ratios of  the 
analyzed samples varied from 0.1 to 2.6 (average 
=0.8) implying precipitation of  the limestones in 
suboxic to anoxic conditions. In addition, values 
of  authigenic uranium (authigenic U=Total U-
Th/3) is also considered as index of  paleo-redox 
conditions of  marine environments (Wignall and 
Myers, 1988). Values of  authigenic U below 2 is 
considered as to represent oxic depositional 
conditions, whereas values above 2 are indicative 
of  suboxic and anoxic conditions. Authigenic U 
content of  the studied limestone ranges from 0.4 
to 10.7 ppm (average = 2.6), which suggest that 
these limestones were deposited under oxic to 
anoxic conditions 

CONCLUSION
The Paleocene limestones of  the Ewekoro 
Formation showed significant variations in major, 
trace and rare elements concentrations. The 
PAAS-normalized REE+Y patterns of  the 
limestones exhibit non-seawater like REE+Y 
pattern with enriched LREE, positive Gd /Gd* SN

anomaly  Er/Nd and high Y/Ho ratios, 
suggesting that the REE concentration was 
mainly influenced by detrital contamination. 
Geochemical ratios such as La/Sc, La/Co, Th/Sc, 
Th/Co and Th/Cr suggested that these detrital 
inclusions were derived mainly from intermediate 
to felsic source rocks. The strong positive 
correlations of  Eu with Zr, Y, Th and Hf  as well as 
negative correlation of  Mn with Sr suggested that 
the positive Eu anomalies in the limestones may 
be due to diagenetic processes. The geochemical 
parameters like Ce anomalies, Mn*, authigenic U, 
V(V+Ni), V/Ni and Th/U ratios strongly implied 
that these limestones were deposited in restricted 
to open shallow marine environments in 
fluctuating oxic to anoxic conditions.
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