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distribution is far from being achieved.
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Abstract

The Ansari-Bradley test is an alternative to the Siegel-Tukey test for the two sample problem for detecting
changes in scale between two populations having the same location parameter. The exact sampling distribution
of the test statistic for an experiment is compiled by the permutation approach. In the case of independent
groups, this test depends on compiling all possible permutations of the values that result from an experiment. An
algorithm for the exact permutation distribution of the Ansari-Bradley test statistic is presented and implemented.
Tables of exact p-values for the test statistic are created and the probability of a type | error is obtained to be
exactly a. The paper reveals that for sample size 15, convergence of the asymptotic distribution to the exact

Keywords: Permutation test, Monte Carlotest, p-value, Ansari-Bradley test.

1. Introduction

The p-value is the smallest level of significance at
which Hj would be rejected when a specified test
procedure is used on a given data set. The use of the
asymptotic test with small sample sizes may yield
an incorrect p-value and therefore lead to a false
acceptance or rejection of the null hypothesis.
Application of the asymptotic test when the sample
size is small can lead to a wrong decision, see
Mundry and Fischer (1998). Scheffe (1943) asserted
that for a general class of problems, the permutation
approach is the only possible method of constructing
exact tests of significance. The idea of a general
method of dealing with the fundamental problem of
statistical inference, that is, obtaining exact tests of
significance when the underlying probability
distribution is unknown is credited to R. A. Fisher,
see Wald and Wolfowitz (1944).

Fisher (1936) proposed that randomization should
be the basis for experimental design and statistical
inference. The premise behind experimental design
is that a sample of experimental units, however
acquired, is divided randomly into two or more
groups. inese are then exposed to different
treatments. The null hypothesis is that the treatments
have no difierential effects on the groups with respect
to a selected statistic. If there is no requirement that
the test statistic should conform to a mathematically
definable frequency distribution, then the exact
sampling distribution of the test statistic can be
compiled by permutation, see Ludbrook and Dudley
(1998). Computational advances involving the use
of permutations tests are well documented in Good
(2000) and Pesarin (2001)

There are two approaches to permutatlon test;

conditional and unconditional approaches. In the

unconditional approach, the row (levels of

treat-ment) and column (treatments) totals of the
tabulated experimental results are allowed to vary
along with the permutation of observations or ranks
of observations in an experiment while the
conditional approach is constrained to have fixed
row and column totals as obtained in the actual
arrangement of observations of the experiment.

According to Agresti (1992), Mehta (1992), Hall and
Tajvidi (2002) and Opdyke (2003), the unconditional
approach is computationally demanding. Several
approaches which are computationally less
demanding have been suggested as alternatives.
Efron (1979), Efron and Tibshirani (1993), Hall and
Tajvidi (2002), Opdyke (2003) presented Monte
Carlo approaches. Other approaches like the
Bayesnan and the likelihood have ‘also been found
useful in obtaining approximate exact permutatlon
distribution, see Bayarri and Berger (2004)

Spiegelhalter (2004).

The problem with permutation tests has been hlgh
computational demands. Computational time for a
permutation test is highly prohibitive. R.A. Fisher
compiled by hand 32,768 permutations of Charles
Darwin’s data on the height of cross-fertilized and
self-fertilized zea mays plants. It is believed that the
enormity of this task is what possibly discouraged
Fisher from further research into exact permutation
tests, see Bennett (1990) and Ludbrook and Dudley
(1998).

Available permutation procedures can sample from
the permutation sample space rather than carrying
out complete enumeration of all possible distinct
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permutations. These available procedures can

erform Monte Carlo sampling without replacement
ﬁvithin a sample, but none can avoid the possibility
of drawing the same sample more than once, thereby
reducing the power of the permutation test, see
Opdyke (2003). An algorithm for obtaining exact
permutation distribution is developed and
implemented for the Ansari-Bradley test statistic in
this work.

2. Statistical test procedure

Statistical test is based on calculating the test statistic
of interest, comparing the calculated test statistic
with a critical value and accepting or rejecting the
null hypothesis based on the outcome of the
comparison. The critical values are usually
determined by cutting o f the most extreme 100a%
of the theoretical frequency distribution of the test
statistic, where a is the level of significance, see
Siegel and Castellan (1988).

Theoretical frequency distribution of a test statistic
for many nonparametric tests is estimated by either
using the small sample test statistic or using the large
sample asymptotic distribution of the test statistic.
For small sample size, the exact probability of
obtaining the calculated value of the test statistic or
any less likely value has to be determined. The sum
of the probabilities of these less likely values is the
exact p-value of the test statistic. This procedure to
determine the exact probability of a specific value
of a test statistic can be obtained through a
permutation approach and it is computationally
intensive. With large sample size, the frequency
distribution of a test statistic is often asymptotically
a normal or a chi-square distribution.

The purpose of this paper is to provide a simple but
systematic way of obtaining unconditional exact
permutation distribution of the Ansari-Bradley test
by ensuring that a complete enumeration of all the
distinct permutations are generated. The Ansari-
Bradley test is an alternative to the Siegel-Tukey test
for the two sample problem for detecting changes in
scale between two populations having the same
location parameter. In order to compute the Ansari-
Bradley two-sample scale statistic ¥, the procedure
orders the combined sample (in increasing order) and
assigns the score 1 to both the smallest and largest
observations in the combined sample, assigns the
score 2 to the second smallest and second largest,
and so on, that is:

a(l)=1, aN)=1, a(Q)=2, a(N-1)=2,...
whereas, the Siegel-Tukey scores are computed as:
a(1)=1,a(N)=2,a(N-1)=3,a(2)=4,a(3)=5,a(N-2)=6,
a(N-3)=7,a(4)=8,...

where the score values continue to increase in this
pattern towards the middle ranks until all

observations have been assigned a score. Ansari-
Bradley scores are similar to Siegel-Tukey scores,
but Ansari-Bradley assigns the same scores to
corresponding extreme ranks.
Fahoome (2002) noted that when a = 0.05, the sample
size should exceed 15 for the large sample
approximation to be adopted for the Ansari-Bradley
test. The unconditional exact distribution of the
Ansari-Bradley test statistic is generated form =n
<15 through the unconditional exact permutation
algorithm provided in this paper, where m is the size
of the first sample and n is the size of the second
sample in a two-sample experiment.
In two independent samples scale tests, the
population distributions are usually assumed to have
the same location parameter with different spreads.
The nonparametric Ansari-Bradley test is a rank test
for spread when the population medians are the same
or are different but known. The null hypothesis is
that the two populations have the same spread, which
is tested against the alternative that the variability
of the two populations differs.
Combine the two samples and rank the observations
hs required for the Ansari-Bradley test, keeping track
of sample membership. The Ansari-Bradley test
statistic, W, is the sum of the ranks of the (rst sample
of size m. "

w=SR
2% 0

where R is the rank of the ith observation of the first
sample. For large sample sizes, the test statistic
becomes

W m(m+n + 2)
W= 4 )
mn(m+n+2)(m+n-2)
48(m+n-1)
if N = m+n is even and

_m(m+n +1)°
4(m+n)
\/mn(m +n+1)[3+(m+n)?]
48(m +n)*
if N = m+n is odd. W* is asymptotically normally

distributed and hence reject the two-sided nul
hypothesis if ’
W*2Z,,,

see Fahoome (2002).
3. Methodology

The p-value of a test statistic represents the
probability of obtaining values of the test statistic
that are equal to or more extreme than the observed
value of the test statistic. For the continuous case,
the p-value is obtained by finding the area under the
curve of the theoretical distribution of the test
statistic in the direction of the alternative hypothesis,

W= 3)
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robabilities of events occurring in the direction of
the alternative hypothesis that occur at and after the
lobserved value of the test statistic.
In this paper, consideration is given to the
unconditional permutation distribution where the
row and column totals of the tabulated data of an
experiment are allowed to vary with each
permutation, see Agresti (1992). In Good (2000), a
consideration was given to the tails of permutation
distribution in order to arrive at p-values without
actually carrying out complete enumeration required
lfor a permutation test. This approach has no precise
model for the tail of the distribution from which data
are drawn, see Hall and Weissman (1997),
The diffikulty in permutation test lies in obtaining
all the distinct arrangements of the values obtained
in a given experiment. For example, a two-sample
experiment with 16 variates in each sample requires
(16 +16)!
(16)!(16)!
A frequency distribution is subsequently arrived at
for all the distinct occurrences of the test statistic
from which the probability distribution of the test
statistic is computed. Permutation test requires few
assumptions as a nonparametric procedure. The
sufficient condition for a permutation test to be exact
and unbiased against shifts in the direction of higher
values is the exchangeability of the observations in
the combined sample, see Good (2000) and Opdyke
(2003).
Suppose two random samples X= {x, x,, ..., x, } and
Y={y, ¥, ... y,} with independent distribution
functions F and F, are simultaneously tested in an
experiment with W as the test statistic. Let
Hy:F,=F againstH :F,=F,orH :F <F,
orH :F,>F,
Each of the ((m+n)/m) distinct permutations occurs
with the probability

L'vhile the discrete case involves adding up the

=601,080,390 permutations.

min!
(m + n)!
For k distinct values of the test statistic W, the
probability distribution of the test statistic W= W, j
= 1(1)k under the null hypothesis H, : F,= F is

given by bl
¢ (minl)

"m+n)!’
where f is the number of occurrences of w.. For
. . )

specified values of m,n and the level of significance
a, the critical value ¢ corresponds to a level o closest
to o.in the cumulative distribution of the test statistic.
Ordering all the distinct occurrences of W in
ascending order of magnitude, if g is the position of
the observed value of W, we have the following
significance level for the left tail of the distribution
of the test statistic as,

P(w; =w,[H,)=

m'n! &
=P(w, <c[H,)= f 4
a=P(w, <c[H,)= (mn),lzj (4)
And for the right tail as,
min! &
a=P(w, <clH,)= f. 5
( g ‘ O) (m+n)'l’| ()

For a two-tailed test, the left and right tails are
summed up. Clearly, when the distribution of the
test statistic is symmetric,

ZJ_ —ZJ =k-g+1 f

In formulating the computer algorithm for
unconditional exact permutation distribution, a
consideration is given to rank order statistics. First,
rank the observed values as required by the Ansari-
Bradley test, such that any of the arrangements of
the ranks can be used for a full enumeration. For an
illustration, take a simple balanced case as the
original arrangement of ranks for the observed values
of the experiment, that is,

/l_\n
12
2
33
P2
N.1
2

:where N =m+ n.

A discussion of a systematic way of obtaining all
the possible permutations of the N variates now
follows. Assuming the observed balanced two-
sample layout with m = n is represented by,

X N

X,y
T ,wherex,-andyj

xnyS

are ranks of the two samples in an experiment and
constructed as required by the Ansari-Bradley test.
All the possible permutations are obtained for i, j =
1(1)n now follow.

The original arrangement of ranks

XN

X n
: Z:yz ,yields[o][gJ=1 permutation.

xn y3
The exchange of one sample rank, that is,

- n . .
X, « y,,yields | permutations, see algorithm |,
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IThe number of ways two sample ranks from one
sample can replace two sample ranks from the second
sample can be represented as

x\' J)l . . I‘l 11 . -
" e s#1.0# j,and yields rintarions, seealgorithm 2,
X y.i 202

Continuing, the number of ways three sample ranks
from one sample can replace three sample ranks from
the second sample is represented thus:

Xe Vi

C . . nyn ,
X, ||y, [s#E#EUI# j £k, yields e permutation.

Xy %

(see Odiase and Ogbonmwan (2005) for details).
3.1 Presentation of permutation algorithms

Let the sample size of the jth sample be k. Also, let
x, for i = 1(1)k, j = 1, 2, represent the ranks of
observations in an experiment as required by the
Ansari-Bradley test.

The algorithms presented in this paper can be
extended until the desired sample size is attained.
The number of permutations grows rapidly as the
sample size increases, this translates to increased
computer time required to implement the algorithms.
Observe that for unequal sample sizes, the number
of permutations is

min(m, n) mY n a
> ||, [since|  |=0 forb>a.
= i \i b

The test statistic is computed for each permutation
in the complete enumeration of the distinct
permutations. The distribution of the statistic is
obtained by tabulating the distinct values of the
statistic against their probabilities of occurrence in
the complete enumeration, bearing in mind that all
the permutations are equally likely.

3.2 Tables of critical values

The algorithms were implemented in Intel Visual
FORTRAN. The results for the lower and upper
critical values #_for the Ansari-Bradley test statistic
are given respectively in Tables 1-2 and Tables 3-4
for 7 <m=n <15, while the exact p-values for2<m
=n<6 are in the Appendix.

Observe that for a two-sample experiment with less
than four variates in each sample, the null hypothesis
of no difference between the samples involved
cannot be rejected at 5% level of significance
because the least p-value for the test statistic is
greater than 0.05.

The unconditional permutation algorithm described
so far can work for equal and unequal sample sizes
but it was implemented for a two-sample problem
with equal sample sizes.

The results obtained from the implementation of the
permutation algorithms presented in this paper gave
rise to the lower and upper critical values (W) for
the Ansari-Bradley test statistic presented in Tables
1-4.

4. Conclusion

[The p-value obtained through the unconditional
permutation approach is exact, see Agresti (1992)
and Good (2000). Obtaining exact p-values through
unconditional permutation has remained difficult
because it is computationally intensive. For small
sample sizes (m,n < 16), the unconditional
permutation distribution of the Ansari-Bradley test
statistic is reasonably different from its asymptotic
lequivalence. In small samples, the use of asymptotic
Ansari-Bradley test of significance leads to higher
p-values and thus to an increase in the probability of
a type Il error, that is, false acceptance of the null
hypothesis. For a balanced two-sample problem with
a sample size of 15, the exact distribution is far from
converging to the asymptotic distribution. A sample
size much higher than 15 is proposed for the
application of the asymptotic version of the test.
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Algorithm 1 Exchange of one sample rank

l:fora <« |, kdo

2 swap €— x,

3 forb < 1, kdo
4 Xq1 € Xp
5: Xp € Swap
6 Compute W
7 end for
8: end for

Algorithm 2 Exchange of two sample ranks

l:fora < 1.(k1)do

2 swapl € x,

3 for b < |, kdo

4 swap <— x,

5: forc ¢~ (b+ 1) kdo
6: 14 (c+1)

7 ford <— ¢ kdo
8 Xal < Xea

9. X €= swapl
10: Xpy €= Xp
11: Xy €— swap2
12: Compute W
13: end for

14; end for

15:  end for

16: end for

Algorithm 3 Exchange of three sample ranks
l:fora < 1,(k-2)do
2: swapl € x,
32 forb < (a+1), (k- de

4: SWap2 €—Xxp
5: for ¢ < (b+1), k do =
6: swap3 €~ x|

7: ford <1, kdo

8: t < (d+1)

9: fore ¢— ¢ kdo

10: fl ¢~(e+1)

l1: for f<— ¢1, kdo

12: Xq1 € Xp2

13: X € swapl

14: Xp) €= Xe

I5: Xey €— swap2

16: X € Xp

17: Xr2 4— swap3

18: Compute W

19: ‘ end for

20: end for

21: end for

22: end for

23: end for
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Table 1: Lower critical values W, for the Ansari-Bradley test statistic (¢ = 0.001, 0.0025, 0.005, 0.01)
o' =PWS W)T1<m=n<15

o 0.001 0.0025 0.005 0.0l
m | on | I, a' W, a’ w.| a' W, a'
717116 0.0006 17 0.0017 18 | 00052 | 19 0.0122
(0.0144) (0.0226) (0.0343) (0.0506)
8 | 8 | 22 0.0011 23 0.6026 24 | 00059 | 19 0.0115
(0.0182) (0.0261) (0.0365) (0.0501)
9 19 28 0.0009 29 0.0019 30 | 0.0037 | 32 0.0118
(0.0165) (0.0224) (0.0299) (0.0514)
10 [ 10} 35 0.0008 37 0.0029 38 | 0.0049 | 39 0.0081
(0.0159) (0.0267) (0.0341) (0.0430)
43 0.0009 45 0.0025 | 46 | 0.0040 | 48 0.0094
(0.0161) (0.0252) (0.0312) (0.0468)
12 12} 52 0.0010 54 0.0024 56 | 00054 | 58 0.0109
(0.0167) (0.0247) (0.0359) (0.0508)
13113 | 62 0.0011 64 0.0025 | 66 | 0.0050 | 68 0.0094
(0.0175) (0.0249) (0.0346) (0.0473)
14 ] 14| 72 0.0009 75 00026 | 77 | o.0048 | 80 0.0112
(0.0158) (0.0254) (0.0342) (0.0518)
15015 ) 84 | o001 87 | 00028 | 8 | 00040 | 2 | o0.0103
0.0172) (0.0263) (0.0343) (0.0500)

The asymptotic p-values of W are in parentheses

Table 2: Lower critical values W, for the Ansari-Bradley test statistic (& = 0.025, 0.05, 0.1)
a' =P(WS W)1Sm=n< 15

o 0.025 0.05 0.1
m fn w, o' W, a' W, o'
7 1 7 | 20 0.0256 2] 0.0466 22 0.0804
~(0.0726) (0.1012) (0.1373)
8 | 8126 0.0211 28 0.0572 29 0.0867
(0.0676) (0.1160) (0.1478)
9 19 | XM 0.0305 35 0.0460 37 0.0938
(0.0838) (0.1048) (0.1578)
10| 10} &2 0.0282 44 0.0560 46 0.1007
(0.0815) (0.1189) (0.1671)
Hopug st 0.0274 53 0.0501 56 0.1076
(0.0812) (0.1129) (0.1758)
12 112 1 6l 0.0274 63 0.0467 66 0.0932
(0.0820) (0.1097) (0.1630)
31BN 0.0281 74 0.0450 78 0.1012
(0.0836) (0.1083) (0.1724)
14 ) 14 ) 83 0.0232 87 0.0539 90 0.0924
(0.0760) (0.1206) (0.1644)
B 19 1 o000 | 100 1 posp9 | 104 [ 4 00s
(0.0792) (0.1200) (0.1736)

The asymptotic p-values of W are in parentheses




Odiase and Ogbonmwan: Exact distribution of ansari-bradley test statistic: permutation approach

Table 3: Upper critical values W, for the Ansari-Bradley test statistic (& = 0.001, 0.0025, 0.005, 0.01)

a'=PW< W)7<m=n<15

o 0.001 0.0025 0.005 0.01
m | n | W o W, a' W, a' W, a'
717 | 4 0.0006 39 0.0017 38 0.0052 37 0.0122
(0.0144) (0.0226) (0.0343) (0.0506)
8| 81 5 0.0011 49 0.0026 48 0.0059 47 0.0115
(0.0182) (0.0261) (0.0365) {0.0501)
9 | 9 [ 62 0.0009 6l 0.0019 60 0,0037 58 0.0118
(0.0165) (0.0224) (0.0299) (0.0514)
10 10] 75 0.0008 73 0.0029 72 0.0049 7 0.0081
(0.0159) (0.0267) (0.0341) (0.0430)
| 89 0.0009 87 0.0025 86 0.0040 84 0.0094
(0.0161) (0.0252) (0.0312) (0.0468)
122|104 0.0010 102 | 0.0024 100 | 00054 98 0.0109
(0.0167) (0.0247) (0.0359) (0.0508)
3113|120 0.0011 118 0.0025 116 0.0050 4 0.0094
{0.0175) (0.0249) (0.0346) (0.0473)
[4 114 | 138 | 0009 135 1 qo0026 | 133 | o0.0048 130 1 g0112
(0.0158) (0.0254) (0.0342) (0.0518)
151 15[ 156 1 001 153 | 00028 | !5' | o0049 | M8 | 00103
(0.0172) (0.0263) (0.0343) (0.0500)

The asymptotic p-values of W are in parentheses

Table 4: Upper critical values I, for the Ansari-Bradley test statistic (& = 0.025, 0.05, 0.1)

a'=PW<S W)17Sm=n< 15

o 0.025 0.05 0.1
m n w, o W, o W, a'
77| 36 0.0256 35 0.0466 34 0.0804
(0.0726) (0.1012) (0.1373)
8 | 8 | 46 0.0211 44 0.0572 43 0.0867
(0.0676) (0.1160) (0.1478)
9 1 9| 36 0.0305 35 0.0460 33 0.0938
(0.0838) (0.1048) (0.1578)
10| 10 68 0.0282 66 0.0560 64 0.1007
(0.0815) (0.1189) (0.1671)
1| 8l 0.0274 79 0.0501 76 0.1076
(0.0812) (0.1129) (0.1758)
12 112 | 95 0.0274 93 0.0467 90 0.0932
(0.0820) (0.1097) (0.1630)
13113 ] 110 0.0281 118 0.0450 114 0.1012
(0.0836) (0.1083) (0.1724)
141141127 | 40232 123 | 0.0539 120 | 0.0924
(0.0760) (0.1206) (0.1644)
5115 | 1440 50000 | M0 | g0s20 | 36| 41004
(0.0792) (0.1200) (0.1736)

The asymptotic p-values of W are in parentheses

97




98 Odiase and Ogbonmwan: Exact distribution of ansari-bradley test statistic: permutation approach

Appendix

Unconditional Permutation (& ) and Asymptotic (') p-values for Ansari-Bradley test
W 2x2 2x3 2x4 2x5 2x6

o a' o o' o o' 194 o' o o'

2 | 0.1667 | 0.1103
3 | 0.8333 | 0.5000
4 | 1.0000 | 0.8897 | 0.1000 0.0984
5 0.3000 0.2593
6 0.7000 0.5000 0.0143 0.0471
7 0.9000 0.7407 0.0714 0.1047
8 1.0000 0.9016 0.2000 0.2014
9 0.3714 0.3379 0.0079 0.0359
10 0.6286 0.5000 0.0238 0.0668
11 0.8000 0.6621 0.0714 0.1151
12 0.9286 0.7986 0.1508 0.1841 0.0011 0.0197
13 0.9857 0.8953 0.2698 0.2743 0.0054 0.0336
14 1.0000 0.9529 0.4127 0.3821 0.0152 0.0546
15 0.5873 0.5000 0.0368 0.0848
16 . 0.7302 0.6179 0.0736 0.1262
17 0.8492 0.7257 0.1342 0.1800
18 0.9286 0.8159 0.2154 0.2462
19 0.9762 0.8849 0.3193 0.3236
20 0.9921 0.9332 0.4351 0.4095
21 1.0000 0.9641 0.5649 0.5000
22 0.6807 0.5905
23 0.7846 0.6764
24 0.8658 0.7538
25 0.9264 0.8200
26 0.9632 0.8738
27 0.9848 0.9152
28 0.9946 0.9454
29 0.9989 0.9664
30 1.0000 0.9803




