INTRODUCTION
Malaria and HIV infections are among the most important public health problems worldwide (UNAIDS, 2012). Malaria is prevalent in resource-poor settings, particularly occasioned by poverty, caused by inadequate sewage treatment, poor hygiene and substandard housing (Gallup and Sachs, 2001). Malaria remains one of the challenging infections affecting the lives of many HIV infected pregnant women in sub-Saharan Africa (WHO, 2004). It is estimated that about 24 million pregnant women are affected by Plasmodium falciparum yearly, majority of which are from sub-Saharan Africa and about 1 million are co-infection with HIV (Steketee et al., 2001; WHO, 2004). HIV infection constitutes the leading cause of death among women of reproductive age and as such is considered an important maternal problem worldwide (Tang and Nour, 2010). HIV infected pregnant women are at increased risk of maternal anaemia, adverse pregnancy outcomes including low birth weights, stillbirths, infant morbidity and high mortality (Braddick et al., 1990; Robbins et al., 2007; Nancie et al., 2009; Zaba et al., 2013). It has been reported that HIV infected pregnant women have an increased susceptibility to malaria (van Eijk et al., 2003). The co-infection of malaria and HIV infection have been reported to cause more than 4 million deaths annually (WHO, 2003). HIV and malaria epidemics overlap in sub-Saharan Africa (Meshnick et al., 2006) . Plasmodium falciparum and HIV diseases affect the poorest group of a population that are made vulnerable by the lack of access to quality education, information and health facilities, all of which are characteristics of sub-Saharan Africa (Kwenti, 2018). These two diseases interactions are particularly significant in pregnant women as they form one of the most vulnerable population groups in sub-Saharan Africa (Uneke and Ogbonna, 2009). The interactions between the two diseases are bidirectional.

Co-infection of Plasmodium falciparum and HIV among pregnant women in Edo State, Nigeria

F.O. Akinbo¹, T.A. Olowookere¹, M.O. Oriakhi²
¹Department of Medical Laboratory Science, University of Benin, Benin City, Nigeria and ²Department of Obstetrics and Gynaecology, Central Hospital, Benin City, Nigeria

ABSTRACT
Background: P. falciparum and HIV diseases affect the poorest group of a population that are made vulnerable by the lack of access to quality education, information and health facilities, all of which are characteristic of sub-Saharan Africa. This study was conducted to determine the co-infection of P. falciparum and HIV among pregnant women in Edo State, Nigeria. Methods: A total of 459 HIV infected pregnant women attending antenatal clinics at the Central Hospital Benin City, were enrolled. The age of participants ranged from 20 – 48 years. Blood specimens were collected from participants and analysed for HIV and P. falciparum detection, full blood count and CD4⁺ T cells count estimation. Chi squared (X^2) was used for frequency data whereas odd ratio (OR) was analysed for each potential risk factor. Results: An overall prevalence of 27.2% of P. falciparum infection among HIV infected pregnant women in Edo State, Nigeria was observed. HIV infected pregnant women that are 20-29 years age group, those single, primary school leavers, traders, first trimester, primiparous, use of insecticide-treated bed nets, rainy season and anaemia significantly affected the prevalence of P. falciparum infection (P<0.0001). Conclusion: The administration of intermittent preventive treatment (IPT) as early as possible during pregnancy, use of insecticide-treated bed nets and effective and prompt malaria management are advocated.

© Copyright 2019 African Association of Physiological Sciences -ISSN: 2315-9987. All rights reserved

Keywords: Edo State, HIV, Co-infection, P. falciparum, pregnancy

*Address for correspondence:
Email: fredrick.akinbo@uniben.edu
Tel: +2348033796874
with each disease exacerbating the other (Gonzalez et al., 2012; Gonzalez and Naniche, 2015).
In Nigeria, both diseases are still serious life-threatening problems among pregnant women. *P. falciparum* and HIV are among the leading causes of morbidity in pregnancy where modest effects of one infection on the other could lead to a substantial negative impact on the health of pregnant women and the neonates (Corbett et al., 2002). Without a timely intervention, it is estimated that approximately 25 – 45 % of the HIV infected women will transmit infection to their children (Dabis and Ekpini, 2002). Information is lacking on the co-infection of *P. falciparum* and HIV among pregnant women in Edo State, Nigeria. As such pregnant women and their foetuses are exposed to the risk of malaria and HIV infections as both diseases overlap in Edo State. Against this background, this study was conducted to determine the co-infection of *P. falciparum* and HIV among pregnant women in Edo State, Nigeria.

METHODS

Study area
The study was conducted at the Central Hospital, Benin City, Edo State, a secondary referral health institution and a centre for HIV/AIDS management.

Study population
This study was conducted between November 2018 and June 2019 at the Central Hospital, Benin City, Edo State. A total of 459 HIV infected pregnant women attending antenatal clinics at the Central Hospital, Benin City were enrolled in this study. HIV infected pregnant women on HAART attending antenatal care clinics, those that were 20 years and above and those that consented to participate in the study were enrolled. Pregnant women that were less than 20 years and those with life-threatening medical and obstetrical conditions and those not on HAART were excluded from this study. The agents used in the HAART regimen for HIV infected patients consist of zidovudine, lamivudine and nevirapine. A well-structured questionnaire bothering on biodata and sociodemographic characteristics was administered to each participant. Informed consent was obtained from study participants prior to specimen collection. The protocol for this study was approved by the Ethics and Research Committee of the Ministry of Health, Benin City, Edo State.

Collection of specimens
About 5 ml of venous blood was obtained from each participant and dispensed into ethylene diamine tetraacetic acid containers.

About 5 ml of venous blood was obtained from each participant and dispensed into ethylene diamine tetraacetic acid containers.

Processing of specimens
Pregnant women were screened for HIV using the Determine HIV 1/2 rapid immunoassay test strip. Positive cases were confirmed using the trinity Unigold HIV 1/2 kit (CDC, 2014).

Thick and thin blood films were made from each blood specimen, allowed to air-dry and stained in 1:10 dilution of Giemsa stain for 30 min. The stained blood films were rinsed in buffer solution and allowed to air dry. The stained thick films were examined for malaria parasites detection whereas the thin blood film was used for speciation by light microscopy. A total of 200 high power fields per blood film were examined (Cheesbrough, 2000).

The blood samples were analysed for full blood count using an auto-analyser Sysmex Kx-21 (Sysmex Corporation, Kobe, Japan). Anaemia was determined using haemoglobin concentration <11g/dl for pregnant women (Beutler and Waalen, 2006).

CD4+ T cells counts were determined using the flow cytometry (Partec, Gmbh, Germany). Briefly, 20µl of monoclonal antibodies were added and incubated in the dark for 15 min at room temperature after which 800µL of buffer was added. The tube containing the mixture was plugged to the flow cytometer for counting and the value of CD4+ T cells obtained from a programmed monitor connected to the flow cytometer.

Data analysis
The data obtained were analysed using Chi squared (X²) test in comparing the frequency data while the odd ratios (OR) were calculated for potential risk factors at 0.05 significance level. The statistical package used in the data analyses was INSTAT® (GraphPad software Inc, La Jolla, CA, USA).

RESULTS
Out of the 459 HIV infected pregnant women attending antenatal clinics at the Central Hospital, Benin City, 125 (27.2%) had *P. falciparum* infection. Age significantly affected the prevalence of *P. falciparum* infection among HIV infected pregnant women (P=0.0183) with the 20-29 years age group having the highest prevalence (31.1%). Marital status strongly affected *P. falciparum* infection among HIV infected pregnant women (P=0.0050) where single HIV infected pregnant women had the highest prevalence (44.3%). HIV infected pregnant women who are primary school leavers presented with the highest prevalence of *P. falciparum* (49.3%) followed by those with tertiary education.
Co-infection of *Plasmodium falciparum* and HIV in pregnancy

Akinbo et al.

There was a strong association between anaemia and *P. falciparum* infection among HIV infected pregnant women (OR=4.738; 95% CI= 2.851, 7.875; P<0.0001).

DISCUSSION

Human immunodeficiency virus and malaria infections represent the most important health problems in sub-Saharan Africa, where these infections overlap and co-infection is rampant (Abu-Raddad et al.., 2006). Co-infection with malaria and HIV presents specific complications for pregnant women and foetal development. The interactions between these two diseases during pregnancy are complex (Guyatt and Snow, 2004) thus, putting the life of the pregnant women and their unborn babies at risk of medical and poor obstetrical conditions and threatening antiretroviral and antimalarial treatments effectiveness. To our knowledge, this is the first study on the co-infection of *P. falciparum* and HIV among pregnant women in Edo State, Nigeria.

An overall prevalence of 27.2% of *P. falciparum* infection was observed among HIV infected pregnant women in Edo State. The prevalence of 27.2% reported in our study is lower than the 33.4% observed by Houmsou et al. (2014) in Benue State, Central Nigeria, the 47.7% reported by Sanyaolu et al. (2013) in Lagos, South West Nigeria and 49.83% recorded by Johnbull et al. (2014) in Enugu, South East Nigeria. In areas with stable malaria transmission such as our study area, HIV has been reported to increase the risk of malaria infection and clinical malaria in adults, especially those with advanced immunosuppression (Berg et al., 2014). The difference in our work and that of other studies may be attributed to geographical locations and the efforts of the MTCT unit at caring for HIV-infected pregnant women and ensuring compliance in taking their medications.

Age has been reported as a co-factor in disease progression, and the immunity to malaria and HIV infection has been observed to be age-dependent (Schwartz et al., 2001). In this study, age significantly affected the prevalence of *P. falciparum* infection

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. Tested</th>
<th>No. infected</th>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-29</td>
<td>305</td>
<td>95(31.1)</td>
<td>3.0183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td>124</td>
<td>22(17.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 & Above</td>
<td>30</td>
<td>8(26.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>70</td>
<td>31(44.3)</td>
<td>0.0165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>351</td>
<td>83(23.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>23</td>
<td>6(26.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>15</td>
<td>5(33.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>146</td>
<td>69(47.3)</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>284</td>
<td>50(17.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>29</td>
<td>6(20.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupational status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trader</td>
<td>84</td>
<td>40(47.6)</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil servant</td>
<td>91</td>
<td>9(9.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artisan</td>
<td>192</td>
<td>50(30.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business woman</td>
<td>92</td>
<td>17(18.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestational age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First trimester</td>
<td>138</td>
<td>56(40.6)</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second trimester</td>
<td>192</td>
<td>49(25.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third trimester</td>
<td>129</td>
<td>20(15.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primiparous</td>
<td>204</td>
<td>79(38.7)</td>
<td><0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiparous</td>
<td>255</td>
<td>46(18.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventive measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecticide</td>
<td>67</td>
<td>23(34.3)</td>
<td>0.0021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecticide treated net.</td>
<td>189</td>
<td>53(28.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window netting</td>
<td>203</td>
<td>67(33.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal variation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainy season</td>
<td>189</td>
<td>86(45.5)</td>
<td>4.945</td>
<td>3.172, 7.710</td>
<td><0.0001</td>
</tr>
<tr>
<td>Dry season</td>
<td>270</td>
<td>39(14.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OR=Odd ratio; CI=Confidence interval; *P<0.05

There was a strong association between anaemia and *P. falciparum* infection among HIV infected pregnant women (OR=4.738; 95% CI= 2.851, 7.875; P<0.0001).
among HIV infected pregnant women (P=0.0183) with the 20-29 years age group having the highest prevalence (31.1%). This finding is in contrast to that observed by Houmsou et al. (2014) that did not find an association between malarial infection in HIV infected pregnant women in Benue State, Nigeria.

Being single strongly associated with *P. falciparum* infection among HIV infected pregnant women (P=0.0050). This finding is at variance with the report of Houmsou et al. (2014) that observed increased malaria infection among divorcees. The reason for the difference may be due to the fact that singles are more likely to engage in several occupations that may expose them to mosquito bites.

In this study, educational status significantly impacted on the prevalence of *P. falciparum* infection (P<0.0001) where those with primary school education presented with the highest prevalence (47.3%).

Traders were observed to be more likely to acquire *P. falciparum* infection among HIV infected pregnant women (P<0.0001). This is because they are exposed to the bite of mosquitoes as they carry out their activities mostly around breeding mosquito sites. This may explain the reason for this finding.

HIV infected pregnant women who are in their first trimesters were found to be at risk in acquiring *P. falciparum* (P<0.0001) when compared with other trimesters which imply that most of the women enrolled in our study are at risk of adverse pregnancy outcomes. This finding is in tandem with the previous study of Houmsou et al. (2014) that observed that HIV infected pregnant women in their first trimester are more likely to be infected with *P. falciparum*. It has been observed that pregnant women in their first trimester are unlikely yet to be administered sulphadoxine-pyrimethamine used as the intermittent preventive treatment (IPT) that are usually given only to women at their second and third trimesters (Houmsou et al., 2014).

First pregnancy is believed to be the most critical as women develop pregnancy-specific immunity against placental parasites over successive pregnancies resulting from repeated exposure (Flateau et al., 2011). Albeit, available information suggest that women who are infected with HIV have the same low level of immunity to malaria in subsequent pregnancies as they do in their first pregnancy and are twice as susceptible to clinical malaria, which increases the risk of adverse outcomes (Brenthinger et al., 2006; Flateau et al., 2011). In our study, primiparous HIV infected pregnant women are at 1 to 4-fold increased risk of acquiring *P. falciparum* infection when compared with their multiparous counterparts (OR=2.871; 95% CI= 1.876, 4.396; P<0.0001).

Generally, the use of insecticide treated bed net is a recognized effective way of preventing malaria infection (Akinbo et al., 2014). HIV infected pregnant women that used insecticide treated bed nets had significantly the least prevalence of *P. falciparum* infection (18.5%; P=0.0021) compared with other preventive measures. The World Health Organization recommends a three-pronged approach for malaria control during pregnancy in sub-Saharan Africa: intermittent preventive treatment (IPT), insecticide treated bed nets and effective case management of malaria illness (WHO, 2012). Thus, HIV infected pregnant women be issued and encouraged to use insecticide treated bed nets in order to reduce the adverse pregnancy outcomes occasioned by *P. falciparum* infection.

Parasite transmission and development are regarded to be influenced by climatic conditions particularly within the temperature range of 25-30°C (Egbendewa-Mondzozo et al., 2011). There is a direct influence of temperature and rainfall on the number and productivity of breeding sites, ultimately the vector density (Afrane et al., 2012). This study observed *P. falciparum* infection peaked during rainy season among HIV infected pregnant women (P<0.0001). Rainy season has been reported to provide ecological changes favouring the breeding of the mosquito vectors which enhance the transmission of malaria (Erhabor et al., 2014).

HIV infected pregnant women with malaria had a 2 to 7-fold higher risk of developing anaemia (OR= 4.738; 95% CI= 2.851, 7.875; P<0.0001). This observation agrees with previous reports of Johnbull et al. (2014) and Houmsou et al. (2014). The cause of anaemia in pregnancy is multifactorial and may include haemodilution infections particularly HIV and malaria, inadequate erythropoiesis (Agan et al., 2010). Both HIV and malaria are known causes of maternal anaemia (Moses et al., 1998; Guyatt and Snow, 2001). In addition, the presence of zidovudine among the HAART regimen used by our subjects and antibodies to HAART agents have been reported to be associated with anaemia (Moyle, 2002). The risk of anaemia secondary to malaria and HIV infection could be reduced through prompt, effective treatment and follow up during pregnancy in order to increase the chances of delivering a healthy infant. Adequate information about nutritional diet could also play a big role in reducing adverse pregnancy outcomes necessitated by anaemia.

It has been reported that independently, HIV and malaria interact with the host immune system to bring about complex activation of immune cells, which causes dysfunctional levels of cytokine and antibody production (Hochman and Kim, 2009). Furthermore, CD4+ T cells play a major part in the development and
maintenance of antimalaria immunity, but HIV interferes with immunity (Troye-Blomberg and Berzins, 2008) by widespread lymphoid necrosis throughout the lymph nodes, spleen, and gut mucosa. Hyperactivation of CD4+ and CD8+ effector cells to secrete cytokines, HIV induced downregulation of CD4+ T cells, decreases in CD8+ T-cells counts, and upregulation of parasitemia, consequently leading to fatal malaria and a rapid progression to AIDS (Ryan-Paysen et al., 2011). Surprisingly, CD4+ T-cells count did not strongly associate with co-infection of malaria and HIV among pregnant women in this study (OR = 0.9641; 95% CI = 0.6106, 1.522; P = 0.9081). The low malarial infection observed in those with CD4+ T cell counts greater than 200 cells/μL could be the reconstitution of their immune system due to highly active antiretroviral therapy (HAART) or recently infected pregnant women that still have strong immune system. This may explain the reason for our finding.

CONCLUSION
This study reveals a prevalence of 27.2% of P. falciparum infection among HIV infected pregnant women in Edo State, Nigeria. HIV infected pregnant women that are 20-29 years age group, those single, primary school leavers, traders, first trimester, primiparous, those that use insecticide treated bed nets and rainy season significantly affected the prevalence of P. falciparum infection in this study (P < 0.0001). In addition, anaemia strongly associated with P. falciparum infection among HIV infected pregnant women (P < 0.0001). The administration of intermittent preventive treatment as early as possible during pregnancy, use of insecticide-treated bed nets and effective and prompt malaria management are advocated.

ACKNOWLEDGEMENTS
Authors acknowledge the participants used in this study for their cooperation and the Hospital Management Board for allowing us to use their laboratories.

REFERENCES

