
1 

J. Afr. Ass. Physiol. Sci. 3 (2): 61 – 66, December, 2015 

Journal of African Association of Physiological Sciences 
Official Publication of the African Association of Physiological Sciences 

http://www.jaaps.aapsnet.org 

Review Article 

Role of MAP Kinase Phosphatase-1 in health and disease 

 Ahmed Lawan 
Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA 

Keywords: 
Dual-specificity 

phosphatase (DUSP), 

MAP kinase phosphatases 

(MKPs), Knock-out mice, 

mitogen-activated protein 

kinase (MAPK), immunity, 

metabolism 

ABSTRACT 

Mitogen-activated signaling pathways (MAPK) are one of the major and evolutionary 

conserved signaling pathways involved in protein phosphorylation. Inactivation of MAPK activity 

is attained by dephosphorylation of either the tyrosine or threonine residues, or both by the actions of 

MAP kinase phosphatase (MKPs). The prototype member of MKP family, MKP-1 is the most 

extensively studied MKP compared to ten other members in the group. Several mouse genetic and 

in vitro studies have established a key role for MKP-1 in the immune and metabolic systems. 

However, more recently there is growing body of literature suggesting important functions in the 

cardiovascular, nervous and musculoskeletal systems. With the development of tissue-specific knock-

out models most of these studies suggest MKP- 1 as potential therapeutic target in many disease 

conditions. 

Abbreviations: MAPK, mitogen-activated protein kinase; DUSP, dual-specificity 

phosphatase; MKP, MAP kinase phosphatase; ERK, extracellular-signal-regulated kinase; JNK, c-

jun N-terminal kinase; hVH, human vaccinia H1 phosphatase; PAC-1, phosphatase of activated cell 
1:MKB,MAPK-bindingF .-  ISSN: 

INTRODUCTION 

In Mammals, one of the major mechanisms used to 

transfer extracellular stimuli from the surface of the cell 

membrane to the nucleus is protein phosphorylation 

(Peti and Page 2013). One of the key and evolutionary 

conserved signaling pathways involved in protein 

phosphorylation is the mitogen-activated protein kinase 

(MAPK) signaling pathways.  Many MAPK signaling 

pathways exist in mammals in order to regulate an 

integrated response to a wide range of stimuli (Kyriakis 

and Avruch 2001, Tomida 2015). The classic three-

tiered cascade encompasses a MAPK, a MAPK kinase 

(MKK) and MAPK kinase kinase (MKKK). MAPK 

consists of three main groups; extracellular signal-

regulated kinases (ERK1/2), c-Jun N terminal kinases 

(JNK1/2/3), and p38 MAPK. Each of these groups of 

MAPK is activated by dual phosphorylation on Thr and 

Tyr residues within the activation motif (Thr-Xaa-Tyr) 

of the MAPK (Kyriakis and Avruch 2012). Once 

activated, a MAPK can phosphorylate a number of 

enzymes, transcription factors and other cytoskeleton 

proteins (Ebisuya, Kondoh et al. 2005).  

The inactivation of MAPK activity is achieved by 

dephosphorylation of either the tyrosine or threonine 

residues, or both by the actions of dual-specificity 

phosphatases (DUSPs) or MAP kinase phosphatases 

(MKPs).  

There are ten family members of MKPs that 

dephosphorylate MAPK on the Thr and Tyr residues 

with variable level of specificity (Keyse 2000, Farooq 

and Zhou 2004). DUSPs have a common structure that 

comprises of the MAPK-binding (MKB) domain in the 

N-terminal half and the dual-specificity phosphatase 

domain in the C-terminal half (Camps, Nichols et al. 

1998, Camps, Nichols et al. 2000). Classification of the 

MKPs has been established on substrate specificity, 

sequence similarity and subcellular distribution as 

shown in table 1 (Keyse 2008). There are three groups; 

type I which comprise of MKP-1/DUSP1, MKP-

2/DUSP4, PAC1/DUSP2 and hVH3/DUSP5 are 

located in the nucleus (Owens and Keyse 2007). Type 

II encompasses MKP-3/DUSP6, MKP-X/DUSP7 and 

MKP-4/DUSP9 that selectively dephosphorylate ERK 

and they are localized in the cytosol. And type III 

include MKP-5/DUSP10, MKP-7/DUSP16, and 

hVH5/DUSP8, they dephosphorylate JNK and p38 but  
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Table 1: Classification and Features of dual-specificity phosphatases 
 

Gene name  Alternative names           Subcellular localization  Substrate specificity Physiological roles References 

DUSP1 MKP-1, CL100, hVH-

1, erp 

Nuclear p38 MAPK, 

JNK>>ERK  

Regulator of immune function, 

cytokine secretion and  
Metabolic homeostasis 

(Chi, Barry et 

al. 2006, Wu, 
Roth et al. 

2006, Lawan, 

Zhang et al. 
2015) 

DUSP2      PAC-1                                                      Nuclear      ERK>>p38 MAPK, 

JNK  

Regulates immune effector cells 

 

(Jeffrey, 

Brummer et 
al. 2006, 

Keyse 2008) 
DUSP4      MKP-2, TYP2, hVH2, 

STY8  

Nuclear ERK, JNK>p38 

MAPK         

Play key role in sepsis, regulates 

G2/M cell-cycle progression 

(Cornell, 

Rodenhouse 

et al. 2010, 
Lawan, Al-

Harthi et al. 

2011) 
DUSP5 hVH-3, B23                                            Nuclear ERK>>JNK, p38 

MAPK  

Regulates T-cell growth and 

function 

(Kucharska, 

Rushworth et 

al. 2009) 
DUSP6 MKP-3, Pst1, rVH-6                  Cytosolic ERK>>JNK, p38 

MAPK  

Essential for embryo 

development, regulates hepatic 

gluconeogenesis 

(Owens and 

Keyse 2007, 

Jiao, Feng et 
al. 2012) 

DUSP7 MKP-x, Pyst2, B59                          Cytosolic                              ERK>p38 

MAPK>>JNK  

Plays a role in proliferation (Huang and 

Tan 2012) 
DUSP9 MKP-4, Pyst3                                  Nuclear and cytosolic  ERK>>p38 

MAPK>JNK  

Role in insulin signaling and 

placental growth 

(Bazuine, 

Carlotti et al. 

2004, 
Emanuelli, 

Eberle et al. 

2008) 
DUSP10 MKP-5                                                    Nuclear and cytosolic  p38 

MAPK>JNK>>ERK      

Play key role in immunity and 

muscle stem function and 

insulin resistance 

(Shi, Verma 

et al. 2013, 

Zhang, 
Nguyen et al. 

2015) 

DUSP8 hVH-5, M3/6, HB5                              Nuclear and cytosolic  JNK=p38 

MAPK>>ERK   

Unknown  

DUSP16 MKP-7, MKP-M                                 Cytosolic JNK=p38 

MAPK>>ERK      

Regulates differentiation and 

cytokine production of myloid 
cells 

(Patterson, 

Brummer et 
al. 2009, 

Rios, Nunes-

Xavier et al. 
2014) 

      

not ERK1/2 and shuttle between the cytoplasm and 

nucleus (Tonks 2013).       

The expression, activity and function of the MKPs are 

subject to various levels of regulation. For example, 

transcriptional activation and protein stability is 

mediated by MAPKs themselves in addition to reactive 

oxygen species that directly inactivate the catalytic site 

within the MKPs (Caunt and Keyse 2012). Although, 

there is reasonable amount of information on the 

biochemical properties of MKPs, the body of literature 

regarding their physiological function is still 

developing. This review will focus on the prototype 

family member of the MKPs, MKP-1. The current 

works on MKP-1 physiological functions and some of 

the pathophysiological implications of dysregulated 

MKP-1 signaling will be discussed. 

MKP-1/DUSP1 in vitro and in vivo studies 

MKP-1 similarly termed DUSP1, the prototype 

member of MKP family was identified as an 

immediate-early response gene (Keyse and Emslie 

1992, Keyse and Ginsburg 1993). MKP-1, a type I 

member, is widely expressed in many tissues and cells 

and is selective for JNK and p38 MAPK over ERK in 

vitro and in vivo (Wu and Bennett 2005, Lawan, Shi et 

al. 2012). MKP-1 is the most studied MKP family 

member and important physiological function has been 

demonstrated both in cell type specific context and 

various tissue systems. Many studies have established 

MKP-1 as major regulator of numerous physiological 

and pathophysiological roles in the immune system, 

metabolic and cardiovascular systems. More recently 
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there are some studies suggesting a role for MKP-1 in 

the nervous and musculoskeletal systems. 

  Studies have established that MKP-1 is a negative 

regulator of MAPK-mediated inflammatory responses 

(Chi, Barry et al. 2006). MKP-1 plays a major role in 

the regulation of macrophage function and cytokine 

production and innate immune responses (Salojin, 

Owusu et al. 2006, Murray and Wynn 2011) in addition 

to protecting mice from lethal endotoxic shock 

(Hammer, Mages et al. 2006). Furthermore, some other 

studies suggest that MKP-1 is involved in exercise 

training mediated immune remodeling that could be 

beneficial for athletes (Rastogi, Du et al. 2011). There 

is a large body of evidence that implicates MAPKs in 

regulating metabolic signaling and contributing to 

metabolic syndrome (Sabio, Cavanagh-Kyros et al. 

2009, Sabio, Kennedy et al. 2010, Manieri and Sabio 

2015). Similarly, reports have indicated that MKP-1 

plays an important role in metabolism. Findings from 

our lab have shown that MKP-1 deletion mice had 

increased ERK, JNK and p38 MAPK activities in 

insulin-responsive tissues in comparison to wild-type 

littermates (Wu, Roth et al. 2006, Roth, Le et al. 2009). 

Most importantly, this study established that MKP-1 

whole-body knock-out (KO) mice are resistant to diet-

induced obesity because of increased energy 

expenditure and are protected from the development of 

hepatic steatosis (Wu, Roth et al. 2006). In order to 

further investigate the mechanism by which MKP-1 

regulate lipid homeostasis we utilized MKP-1 KO that 

were intercrossed with leptin receptor deficient mice. 

These studies demonstrated that db/db;mkp-1-/- 

hepatocytes were less steatotic in comparison with  

db/db;mkp-1+/+     and also had a significant increase in  

hepatic triglyceride content (Flach, Qin et al. 2011). 

The resistance to the development of hepatic steatosis 

could be partly due to enhanced hepatic triglyceride 

and -oxidation observed in the db/db;mkp-1-/- 

hepatocytes. Although these studies are milestone in 

defining the role of MKP-1 in metabolism, however, 

none of these previous approaches have been effective 

in clarifying the exact tissue contribution of MKP-1 to 

whole-body metabolism. More recently using tissue-

specific deletion strategies we have used the Cre-loxP 

strategy to assess the contribution of MKP-1 in liver in 

the control of metabolism and glucose homeostasis. 

Our current work have demonstrated that liver-specific 

deletion of MKP-1 enhances gluconeogenesis and 

causes hepatic insulin resistance while selectively 

conferring protection from hepatosteatosis upon high 

fat feeding (Lawan, Zhang et al. 2015). These studies 

established that MKP-1 is a major regulator of 

metabolic homeostasis. 

 

The physiological role of this phosphatase has been 

investigated in other tissues systems. MKP-1 has been 

implicated in regulating processes such as glial cell 

function, neuronal cell development and apoptosis 

(Ndong, Landry et al. 2012). Similarly, decreased 

MKP-1 levels have been reported in some neurological 

disorders such as multiple sclerosis, Huntington’s 

disease, cerebral hypoxia and ischemia (Taylor, Moser 

et al. 2013), in addition to playing a role in major 

depressive disorder (Duric, Banasr et al. 2010). 

Another area that MAPK have been involved is 

artherosclerosis, which is one of the leading causes of 

cardiovascular related diseases (Ricci, Sumara et al. 

2004). Equally, some studies have demonstrated a role 

for MKP-1 in the pathogenesis of artherosclerosis 

(Imaizumi, Grijalva et al. 2010). Other reports have 

shown that MKP-1 plays a key role in the development 

of dystrophic muscle diseases (Shi, Boadu et al. 2010) 

and regulation of bone homeostasis (Carlson, Zhang et 

al. 2009). The role of MKP-1 in cancer has also been 

explored, a review of the literature shows that MKP-1 

expression is generally enhanced in a number of human 

tumors such as gastric adenocarcinoma, breast cancer, 

non-small cell carcinoma, prostate carcinoma and 

pancreatic carcinoma (Wang, Cheng et al. 2003, 

Arnoldussen and Saatcioglu 2009, Bai, Xu et al. 2012) 

while in some other type of cancers such as pancreatic 

cancer and oral squamous cell carcinoma the 

expression of MKP-1 is decreased (Liao, Guo et al. 

2003). 

 

 

CONCLUSIONS 

Taken together, although MKP-1 is the most studied 

MKP family member there is extensive possibility for 

further research to elucidate the physiological and 

pathophysiological roles of MKP-1. Since phenotype of 

global knockouts are difficult to interpret and 

considering the development of tissue-specific 

knockouts, it will be interesting to examine tissue-

specific contribution of MKP-1 especially in the 

immune and metabolic systems where MKP-1 has been 

established to play major role. Future works should 

explore the precise role of MKP-1 in other tissue 

systems including the cardiovascular and 

musculoskeletal systems, brain and cancer. These 

studies could unravel novel therapeutic approaches to 

target MKP-1 in many disease conditions. 
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