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ABSTRACT 

 
A reciprocal transplant experiment was set up (n=128) to investigate the 
morphological plasticity of A. senegal seedlings to changes in available soil 
moisture in Yobe State, Nigeria. Half of the A. senegal seedlings from each of 
the Nguru and Gujba populations were planted in their 'home' locations while 
the remaining plants swapped with seedlings from the 'away' population. Stem 
diameter was measured approximately every 14 days for all plants and at the 
end of the experiment (430 days), 50 randomly selected seedlings from each 
treatment were harvested to determine total dry mass partitioned into the shoot 
and roots. For root extraction, a trench 0.5 m x 1 m was dug with a spade to 1 
m depth at about 80 cm away from the base of the seedling.  Soil was carefully 
removed using a sharp blade from the surface downward to search for the roots. 
A. senegal seedlings from each population showed distinct growth responses 
to their local environment, whether ‘home’ or ‘away’. Root: shoot ratios were 
related inversely to soil moisture availability. This was mainly attributed to 
increasing biomass allocation to roots rather than decreasing allocation to 
shoots. Seedlings that were transferred from a northern arid location to a more 
semi-arid site showed a greater plasticity than seedlings moved in the opposite 
direction. Results suggest that, in A. senegal seedlings, (a) growth and biomass 
allocations allowed acclimation to local soil moisture conditions, and (b) that 
there were differences in plasticity among seedlings from the northern and 
southern provenances. 
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INTRODUCTION 

 
There has been a discernible shift in climate affecting the Sahelian zone of northern 

Nigeria (Okpara et al., 2013; Ekpoh & Nsa 2011; Odjugo 2010; Olaniran 1991; 2002). 
During the last 30 years, at least, precipitation has both shifted southwards (60 km) and has 
become less intense (by 100150 mm year-1) (Nicholson 2013; Ekpoh & Nsa 2011). This is 
regarded by some to be part of a long-term, sustained climate change in the region (Olaniran 
2002; Odjugo 2010; Federal Republic of Nigeria 1999; Nicholson et al., 1998). Clearly, any 



Jibo and Barker 

98 
 

overall change in soil moisture availability may have potentially important implications for 
ecosystems in NE Nigeria (Enete & Amusa 2010, Ehrenfeld 2005, Scholes & Archer 1997). 

One species that is both ecologically and economically important in the sub-Sahel 
region is Acacia senegal, known locally as gum Arabic (Senegalia senegal (L) Britton) (Odee 
et al., 2012, Bouchenak, 2010). A. senegal has a wide distribution (Booth & Wickens, 1988) 
and is particularly adapted to the hot regions of Africa especially in areas along the southern 
frontiers of the Saharan desert including Nigeria (NAS, 1979; Chikamai et al., 1996). The 
gum Arabic belt is characterized by mean annual air temperature of 14–43 C and rainfall as 
low as 200 mm annual, with 8–11 dry months. Mean annual rainfall ranges from 300450 
mm annual (NAS, 1979). A. senegal trees can also grow in areas with mean annual rainfall 
as high as 800 mm. 

Plant species that successfully establish in dry environments often possess or develop 
drought adaptation. Drought adaptation properties of plants include drought avoidance or 
drought tolerance (Farooq et al., 2009; Lopes et al., 2011; Anjum et al., 2012). Drought 
adaptations are very important for the survival and growth of plants in drought-prone 
environments. In desert environments, soil water deficits can often be significant, restricting 
the ability of some species to establish successfully (Dias-filho and Dawson, 1995). 

Drought avoidance traits (Jones, 1993) are those mechanisms that minimise the 
occurrence of damaging water deficits, while drought tolerance properties are those 
physiological adaptations that enable plants to continue functioning in spite of plant water 
deficits (Jones, 1993). Drought avoiders possess deep root systems, leaf shedding before the 
onset of dry conditions, and fast growth rates in the wet season (Kramer & Boyer, 1995). 
Drought tolerance features of plants include having leaf properties that maintain a positive 
turgor by osmotic adjustment and a high bulk modulus of elasticity (Arabzadeh & Emadian, 
2010).  

A gradual change across the distributional range of a species with rainfall gradients 
supports the theoretical expectation that provenances from the drier parts of the sample region 
are better adapted to drought (Montes & Weber, 2009). The gradual shift of A. Senegal from 
the driest to the wettest zone may be related to climate change (Traoré et al., 2012). 

In A. senegal, large variations can occur both between and within populations, 
apparently in response to environmental conditions such as rainfall and soil types (Daffalla 
et al., 2011; Josiah et al., 2008; Elfeel &Warrag, 2004; Jibo et al., 2018a).This suggests that 
there is genetic variability among the populations of the species (Brenan, 1983; Jibo et al., 
2018a). Despite the ecological and economic importance of this species, little is known about 
its response to drought and ability to acclimate to water deficits. Tree populations may exhibit 
continuous variation in growth, phenology, survival and other adaptive traits in regions with 
pronounced environmental gradients in temperature and rainfall (Jibo et al., 2018b; Weber 
et al., 2008). Vegetation in arid regions such as Northern Nigeria is dependent on rainfall, 
and any alteration in seasonal water availability could cause shifts in plant community 
structure (Weltzin & McPherson, 2000). One way in which plant phenotypic plasticity can 
be tested in field conditions is with reciprocal transplant experiments (Ågren, & Schemske, 
2012). These can be used to evaluate the relative contributions of environmental and genetic 
variation to plant physiology and morphology (McGraw, 1987; Schoen et al., 1986; Price & 
Morgan, 2006). 

 In this study, the focus was on morphological and growth responses in plants on a 
naturally occurring 120-km-long gradient of soil moisture in NE Nigeria. In particular, the 
potential role of differential root growth under different moisture regimes was investigated. 
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Drought stress strongly influences root development and root growth (Franco, 2011). Species 
such as A. senegal that are native to arid environments often have high root: shoot ratios (Aref 
& El- Juhany, 1999). Root growth is usually more affected by drought stress than shoot 
growth; resulting in a decrease in root: shoot ratio under drought-stress (Franco et al., 2011), 
including in trees (Steinberg et al., 1990).  Root depth and distribution are vital components 
of a plant’s strategy for growth and survival in water-limited ecosystems (Collins & Bra, 
2007). In arid environments, or environments with a long dry season, some plant species can 
grow particularly deep roots (Canadell et al., 1996). The hypotheses being tested in this study 
were that: H1 root: shoot ratios will be related inversely to soil moisture availability and that, 
H2 there will be significant variation in growth and difference in plasticity among seedlings 
from the northern and southern provenances.  

 
MATERIALS AND METHODS 

 
Study Area 
 

Yobe State lies in the extreme corner of Northeast Nigeria. It is one of the states within 
the Sehelian zone. It is located between lat. 10.5° N to 13° N and long. 9.5°E to 13°E (YBSG, 
1994). The climate is largely influenced by the interactions between two air masses: the 
tropical maritime air mass from the Atlantic Ocean and the tropical continental air mass from 
Sahara Desert. The climate is characterised by rapid changes in temperature and humidity. 
Temperatures are generally high during March-May, with the highest recorded mean monthly 
temperature of about 40°C in April (Ayoade, 2004). The lowest temperatures occur of 
December - January due to the influence of harmattan. Seasonal rainfall predictions by 
NIMET (2013) shows that the northern Nigeria region will have a range of mean annual 
rainfall that is between 300mm -1200mm. Annual rainfall lasts between three to four months 
(Aregheore, 2002). The relative humidity is very high during the rainy season reaching about 
65 to 70%. 
 
Soil Water Content 
 

Soil water content at the sites was determined using a soil moisture probe Type PR2 
(Delta T Devices, Cambridge UK). Access tubes were installed at 1m soil depth, at a distance 
of 0.3 m from the nearest seedling in the centre of the plots. Measurements were taken at 10 
cm, 20 cm, 40 cm; 60 cm and 100 cm. Rainfall data obtained from Nigeria Meteorological 
Agency (NIMET) were used to construct mean annual rainfall isohyets for the sample region.  
 
Plant Material 
 

Acacia senegal (synonym Senegalia senegal (L.) Britton) germplasm was collected 
from two provenances in Yobe State, Nigeria, incorporating two principal ecological zones. 
Seedings from Nguru (sahelian) and Gujba the (sudanian) zones were obtained from the 
Rubber Research Institute of Nigeria, Gum Arabic Sub-station, Gashua, located at lat 
1246’N and Long 1100’E alt 360m.  Selection criteria were based on the provenance trial 
recommendations (Burley & Wood, 1978). 

Seeds were soaked in water at room temperature of 27 C for 24 h as a pre-treatment 
to overcome seed dormancy (Doran et al., 1983). Seeds were sown in plastic pots 18 cm high 
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and 14 cm in diameter, containing a 2:1 mixture of top soil and sand, and grown for 1 month, 
with regular watering in a nursery at the Rubber Research Institute of Nigeria, Gum Arabic 
Sub-station, Gashua. 
 
Site Preparation and Experimental Design 
 

Experimental sites were used to study growth rates of local compared with non-local 
provenances of A. senegal seedlings. Sites were first cleared and then deep-ploughed with a 
chisel plough, followed by a disc plough. At the establishment of the field trials, soil samples 
were taken from a pit at each site (Nguru and Gujba) at different depths (025 cm, 2550 
cm, 50-75 cm, 75100 cm, 100150 cm, 150200 cm). Undisturbed soil sample were 
collected by means of metal core sampler for complete soil analysis using the cylinder soil 
method (Blake & Hartge 1986).  

A reciprocal transplant experiment design was used, involving four equally-sized 
plots each at the Nguru and Gujba sites. Of these four plots, two were used for local and two 
for non-local populations of seedlings. A. senegal seedlings from Nguru and Gujba 
populations were planted in their ‘home’ locations and swapped with seedlings from the 
‘away’ populations. Seedlings were sown at a spacing of 3 x 3m on a plot size of 25 x 25 m 
and have 128 seedlings each.  
 
Growth and Biomass Measurements 
  

Stem diameter was measured approximately every 14 days for all plants, 30 days after 
transplantation. Stem diameter was measured at 3 cm above ground level by an electronic 
vernier calliper, CD-12 Mitutoyo Corporation, Kanagawa, Japan) with a sensitivity of ± 0.01 
mm. Where the stem was non-circular, two measurements were taken at right angles to one 
another and the average used. 

At the end of the experiment (430 days), 50 randomly selected seedlings from each 
treatment were harvested to determine total dry mass partitioned into the shoot and roots. For 
root extraction, a trench 0.5 m x 1 m was dug with a spade to 1 m depth at about 80 cm away 
from the base of the seedling Soil was carefully removed using a sharp blade from the surface 
downward to search for the roots. 

Once the root was spotted the soil around the root was carefully knocked loose. Root 
length was measured, the length was determined by laying out the washed roots on a flat 
surface and measurement was taken with a meter rule, before drying in 80 C oven to obtain 
root dry weight. Stem and shoot dry mass and root/shoot ratios were calculated from 
component dry weights.  

 
Data Analysis 
 

A normality test was performed on all the data. All shoot and root data collected were 
statistically analysed by one way ANOVA performed with the aid of MINITAB ® statistical 
package (Release 16.12.0) & Sigma Plot ® (Release 12.0), using each variable as the 
response and treatment as the factor to determine possible statistically significant differences 
between mean the significance level applied if not otherwise stated was P< 0.05. 
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RESULTS 
 
Soil Moisture Content  
 

(a)   Dry season (November–May 2012)  (b) Rainy season (June–October 2013) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Mean volumetric soil moisture content (+SE) at different soil depths in Nguru (, arid) and 

Gujba (, semi-arid) at two sites during the (a) dry season (November–May 2012) and (b) the 
rainy season (June–October 2013). 

 
A soil moisture probe (PR2 Delta T Devices, Cambridge UK) was used in soil water 

content (SMC) measurements at 10 cm, 20 cm, 40 cm; 60 cm and 100 cm. SMC was higher 
in the lower soil strata during the dry season at Gujba, compared with the Nguru site (Figure 
1a), the topsoil dried much faster than the subsoil layers. The influence of rainfall on SMC 
was greater in the upper soil strata in Gujba as compared to the subsoil layers during the rainy 
season (June –October 2013) especially at greater depths. (Figure 1b). significant differences 
were evident in soil moisture at different soil depths. Soil moisture was higher at the semi-
arid site, especially at greater depths.  
 
Root Length  
 

Analysis of variance of the root length (RL) and root: shoot ratio showed significant 
differences between the two provenances (Table 1). Nguru provenance had higher mean 
values for both variables at 220 days and at 430 days.   

Biomass allocation and root morphology of A. senegal within the two provenances 
differed significantly (Table 1). Root lengths were greater in Nguru (Figure 2) and were 
significantly different between treatments (F3, 195=132.19, P<0.001) and sites (F1, 197=166.46 
P<0.001). Similarly, there were significant differences in root: shoot ratio both between 
treatments (F3, 196=35.80, P<0.001) and sites (F1, 198=82.96, P<0.001). The root: shoot ratio 
was also higher in Nguru provenance at 220 days and 430 days. 
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Table 1: Analysis of variance using two-way analysis of variance 
Source     DF               F value  P value Prov. Average 
 (a)Variable = root length          
Treatments 1 132.399  < 0.001 Nguru 198.95 
Site 

 
1 117.405  <0.001 Gujba 99.91 

Treatments X site 1 15.705  <0.001 
 

Residual 
 

76 
 

 
   

  
79 

 
 

   

(b) Variable = root/shoot 
 

 
   

Treatments 1 27.918  < 0.001                            Nguru 2.528 
Site 

 
1 7.889   0.006 Gujba 1.587 

Treatments X site 1 2.681   0.106 
  

Residual 
 

76 
 

 
   

Total   79          
(a) Variable = tap root length, (b) Variable = root/shoot. Post hoc analyses were performed using Tukey 95% 
simultaneous confidence intervals all pair wise comparisons among levels of provenance. DF =degrees of freedom, 
Prov =provenance.  
 

 
 

Figure 2: Mean (±SE) root length of A. senegal in Nguru and Gujba 
 
Stem Diameter 
 

The mean stem diameter in each treatment  at 220 days and 430 days,  are presented 
in Figure 3. The meanshoot diameter of A. senegal for the two provenances (Gujba and 
Nguru), shows a significant difference (F3, 508= 34.80, P<0.001) between the treatments at 
220 days and at 430 days(F1, 306= 16.33, P<0.001). There was also a statistical difference in 
mean shoot diameter between the two sites at 220 days (F1, 306= 16.33, P<0.001) and 430 days 
(F3, 304= 16.33, P< 0.001).  
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Figure 3: Mean (±SE) stem diameter of A. senegal in Nguru and Gujba 

 
Stem Length 
 

The mean shoot lengths of all plants in each treatment  are presented in Figure 4, at 
220 days and 430 days, The meanshoot lengths of A. senegal for the two provenances (Gujba 
and Nguru), shows a significant difference (F3, 508= 34.80, P<0.001) between the treatments 
at 220 days, there was also a significant difference in mean shoot lengths between the two 
sites (F1, 510= 42.23, P<0.001).  However, there was no statistically significant differences 
among treatments at 430 days (F3, 304= 1.01, P= 0.390).  

 
Figure 4: Mean (±SE) stem length of A. senegal in Nguru and Gujba 
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Root: Shoot Ratio 
 

The mean root: shoot ratios in each treatment are presented in Figure 5, at 220 days 
and 430 days.The mean root: shoot ratio of A. senegal for the two provenances (Gujba and 
Nguru), showed a significant difference (F1, 79= 7.889, P=0.006) between the treatments at 
220 days, there was also a significant difference in mean root: shoot ratio between the two 
sites (F1, 79= 42.23, P<0.001).  Similarly, there were significant differences at 430 days in the 
root shoot ratio both between treatments (F3, 196=35.80, P<0.001) and sites (F1, 198=82.96, 
P<0.001). 

 
 
Figure 5: Mean (±SE) root/shoot ratio of A. senegal in Nguru and Gujba 
 

The responses of A. senegal to drought acrossa moisture gradient demonstrated that 
there were differences in the pattern of growth between Nguru and Gujba provenances for 
this species. This is consistent with results in the study of A. senegal, the gum Arabic belt in 
central Sudan, and the study of Zizipusrotundi folia in Zimbabwe (Raddad & Luukkanen 
2006; Arnt et al., 2001).  There was a decrement in stem diameter in the Gujba provenances 
in the away treatment when compared to its counterpart in Nguru provenances. This may be 
indicating a response to lower soil water availability. When transferred ‘away’, seedlings 
from both provenances did not fully acquire the stem diameter characteristics of the ‘home’ 
provenance. Reductions in diameter growth of acacias due to water deficit have been 
observed in many studies (Phillips & Riha, 1993; Barros & Barbosa, 1995; Aref & El-Juhany, 
1999; Lieurance, 2007; Tomlinson et al., 2013: Jibo et al 2018b). Plants exposed to drought 
stress showed different responses, according to species and severity of the drought stress. 
Seedlings under the limited watering regime developed deep roots (Jibo & Barker 2019), 
which presumably allowed seedlings to access the limited water available at greater depths 
in the soil.  
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Species of both provenances apparently adjusted their pattern of root: shoot 
partitioning in response to soil moisture. Root:shoot ratios were higher at the arid site. When 
transferred ‘away’, seedlings from both provenances only partially acquired root:shoot 
characteristics of the ‘home’ provenance. This suggests that change in root: shoot partitioning 
was required to take advantage of low-soil moisture and also to mitigate the effect of 
decreasing soil moisture availability (Kurpius et al., 2003). However, increases in root: shoot 
ratios, while improving plant water status may limit carbon gain due to decreased allocation 
to leaf area (Munns & Sharp, 1993; Blum, 2005; Schwinning &   Ehleringer, 2001).  

A. senegal seeding in the clay semi-arid site seemed to utilise the water in the topsoil 
rather than that below, the clay soil may have retained enough water to support the plant 
growth in the upper soil stratum. When drought stress develops, root: shoot ratios increase. 
Results indicated that Nguru (arid) may establish easily in the wetter Gujba (semi- arid) 
without developing deeper roots because soil moisture remains above the critical threshold 
within the soil profile. In other words, rooting depth in A. senegal was positively related soil 
exploration and greater acquisition of water from deep soil strata (Lynch & Wojciechowski, 
2015; Jibo & Barker, 2019). 

Water uptake can be maximised by the allocation pattern namely increasing 
investment in the roots (Chaves et al., 2003). The allocation of biomass to different plant 
organs also depends on species, ontogeny and on the environment experienced by plants 
(Poorter & Nagel 2000). In environments where resources are abundant, plants have little 
need for the plasticity of root: shoot ratio (Aikio & Markkola, 2002). However, root length 
may increase in a drying soil even at the expense of a reduced total shoot mass (Blum 2005, 
Dias-filho, 1995). 

Plants in this study were considered to be locally adapted if 'home' plants perform 
better than 'away' plants of the same provenance in reciprocal transplantation experiments 
(Bowman et al., 2008; Kawecki & Ebert, 2004). However, the degree to which such home-
away differences are to be expected when studying pairs of populations depend on the actual 
environments. 

Plants growing in arid and semi-arid environments appear to specialize in taking up 
water from specific soil layers at certain times of the year (Schwinning & Ehleringer, 
2001).Species exploiting water in deeper soil layers, such as A. senegal, can access a more 
stable, longer lasting water resource that is replenished by the larger, more infrequent pulses 
(Dodd et al., 1998). These plants take a more "slow but steady" approach to water uptake, 
and the characteristics of this group reflect this strategy (Weltzin & Tissue, 2003). Deep-
rooted plants rely on stored inter-pulse moisture, and they must increase allocation to roots 
(Schwinning & Ehleringer, 2001).  

 
CONCLUSION 

 
The results support hypothesis tested in this study that: H1 root: shoot ratios will be 

related inversely to soil moisture availability. Rooting depth may have been the major factor 
that influenced the physiological response of A. Senegal to the soil moisture; seedlings 
showed a growth response to soil moisture gradients within both sites. 

The study also supported H2, that there will be significant variation in growth and 
survival between the seedling from the northern and the southern provenances. The 
significant variation in morphological traits between the home and away suggests that there 
is variation to facilitate change to drying conditions. More biomass was allocated to the root 
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(higher root: shoot ratio) at the more arid site. This may confer drought avoidance while 
reducing overall growth.  

Results also supported H2 that there will be a difference in plasticity among seedlings 
from the northern and southern provenances. Seedling from different provenances adjusted 
their biomass allocation differently when shifted within the moisture gradient. This shows 
that variation in soil water availability determines patterns of growth. There may be 
implications in the performance of A. senegal if there are further shifts in rainfall. A. senegal 
species may cope with changing climatic characteristics through phenotypic plasticity 
responses. Species with distinct adaptations may be restricted in their ability to change and 
evolve under a rapidly changing climate.  

Species from the northern provenance should be grow in the southern provenance, as 
they may cope better with changing climatic characteristics and drought through phenotypic 
plasticity responses. 
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