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Abstract

Estimations of the conditional mean and the marginal effects for particular small
changes in the covariates have been of interest in financial, economics and even
educational sectors. The standard approach has been to specify a parametric model
such as probit or logit and then estimating the coefficients by maximum likelihood
method. This is only applicable when the distribution form from which the data has
been drawn is known. Non parametric methods have been proposed when the
functional form assumptions cannot be ascertained. This research sought to
establish if non parametric modeling achieves a higher correct classification ratio
than a parametric model. The local likelihood technique was used to model fit the
data sets. The same sets of data were modeled using parametric logit and the
abilities of the two models to correctly predict the binary outcome compared. The
results obtained showed that non-parametric estimation gives a better prediction
rate (classification ratio) for a binary data than parametric estimation. This was
achieved both empirically and through simulation. For empirical results two
different data sets were used. The first set consisted of loan applications of
customers and the second set consisted of approved loans. In both data sets the
classification ratio for non-parametric method was found to be 1 while that for
parametric was found to be 0.87 (only 87 out of the 100 observations were correctly
classified) and 0.83 respectively. Simulation was done based on sample sizes of 25,
50, 75, 100,150,200,250,300 and 500. The simulated results further showed that the
accuracy of both models decrease as sample size increases.

Key words: Parametric, non-parametric, local likelihood, logit, confusion matrix and
classification ratio
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1.0 Introduction

Regression analysis is one of the most useful and the most frequently used statistical
methods (Efron and Tibshirani, 1993). The aim of the regression methods is to
describe the relationship between a response variable and one or more explanatory
variables. Among the different regression models, logistic regression plays a
particular role. The basic concept, however, is universal. The linear regression
model is, under certain conditions, in many circumstances a valuable tool for
guantifying the effects of several explanatory variables on one dependent
continuous variable. For situations where the dependent variable is qualitative,
however, other methods have been developed. One of these is the logistic
regression model, which specifically covers the case of a binary (dichotomous)
response. Cramer (2003) discussed an overview of the development of the logistic
regression model. He identified three sources that had a profound impact on the
model: applied mathematics, experimental statistics, and economic theory. Agresti
(2002) also provided details of the development on logistic regression in different
areas. However, logistic regression is widely used as a popular model for the analysis
of binary data with the areas of applications including physical, biomedical, and
behavioral sciences. For example, Cornfield (1962) presented the preliminary
results from the Framingham Study. The purpose of the study was to find the roles
of risk factors of cholesterol levels (low versus high values) and blood pressure (low
versus high values) in the development of coronary heart disease (yes or no) in the
population of the town. The logistic regression model can be easily modified to
handle the case in which the outcome variable is nominal with more than two levels
(Hosmer and Lameshow, 2000).

An extension of the logistic regression model is called the multinomial logistic
regression model, when the categorical dependent outcome variable has more than
two levels (Chan, 2004). For example, Zocchi and Atkinson (1999) noted that in their
multinomial logistic regression model on the dose level experiment to measure the
influence of gamma radiation on the emergence of house flies, three disjoint
outcomes occurred: death before the pupae opened, death during emergence, and
life after emergence. A modification of the logistic regression model, known as the
discrete choice model, was first proposed by McFadden (1974). The model is also
known as multinomial or polychotomous logistic regression in the health sciences
and as the discrete choice model in econometrics (Breslow and Powers, 1978).

The two main approaches that have been fronted to estimate the coefficients of the
explanatory variables are parametric and non-parametric. The maximum likelihood
estimation (MLE) is the most widely-used general method of parametric estimation
procedures and is treated as a standard approach to parameter estimation and
inference in statistics (van der Vaart, 1998). Under very general conditions,
maximum likelihood estimates are consistent, asymptotically efficient, and
asymptotically-normally distributed. Notice that this normality allows one to
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compute the confidence interval and perform statistical tests in a manner analogous
to the analysis of linear multiple regression models, provided the sample size is
large. A lot of research has been done in maximum likelihood estimation method.
Starting with the fundamental work of Gourieroux et al. (1981) and Gallant and
Tauchen (1996), a variety of simulation-based methods have been recently
introduced to consistently estimate parametric models for discussions. For example,
Brandtand Santa-Clara (2002), Durham and Gallant (2002), Elerian et al. (2001) and
Eraker (2001) among others, suggested simulation-based procedures for maximum
likelihood estimation. Somewhat discrete is the approach in Ait-Sahalia (2002) who
recommends approximations to the true, generally unknown, transition density of
the discretely sampled process for the purpose of consistent likelihood estimation.
Carrasco et al. (2002), Chacko and Viceira (2003), Jiang and Knight (2002), and
Singleton (2001) suggested characteristic function based generalized method of
moment (GMM) estimation. GMM-based estimation is also discussed in Conley et
al. (1997), Duffie and Glynn (2004) and Hansen and Scheinkman (1995).

Adem, Gichuhi and Odhiambo (2012) applied the parametric approach to estimate
the probability of loan default in Kenya’s Commercial banks.

Scholars have proposed the non parametric approach to cases where the parametric
approach has shown limitations. Tibshirani and Hastie (1987) introduced the
concept of local likelihood estimation. Properties of local likelihood have been
analyzed in Fan et al. (1995), Fan and Gijbels (1996) and Fan et al. (1998). Staniswalis
(1989) considered kernel smoothers maximizing a kernel weighted likelihood
function. Cessie and Houweingen (1991) proposed a test for a logistic model by
kernel smoothing with an adhoc bandwidth. Royston (1992) proposed a test based
on cumulative sums of residuals to be aware of lack of linearity in the logit of
probability function, where large cumulative sums in absolute value at any point
support the evidence of lack of fit. Fan, Heckman and Wand (1995) introduced local
polynomial estimators in one-parameter exponential family and quasi-likelihood
models. Recently, many other applications have been introduced and studied. For
relevant references on this subject we refer to the books of Wand and Jones (1995)
and Fan and Gijbels (1996). Hart (1997) provided a goodness of fit test from the
variance ratio point of view.

Gozalo and Linton (2000) illustrated non parametric regression with a binary
dependent variable Y and unrestricted interactions among regressors X. Pulustein
and Robinson (2002) developed a test analogous to Pearson Chi squared and
deviance statistics with a modification of continuous covariates. Racine and Li (2004)
suggested hybrid product kernel that coalesces continuous and discrete regressors.

FrOlich (2006) applied non-parametric regression for binary dependent variables. In
this paper the local logit regression is used to analyze heterogeneity effects of
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children on female labor supply. A comparison is made on parametric, semi
parametric and non-parametric modeling and it is found that, the parametric logit
and semi parametric Klein-Spady estimators do not detect heterogeneity. Kuo-Chin
and Yi-Ju (2005) chose test statistics based on non-parametric local linear regression
technique with optimal bandwidth chosen by a cross validation method to
logistically fit with continuous and categorical covariates. Gourieroux and Jasiak
(2010) introduced a local likelihood method of value at risk computation for
univariate or multivariate data on portfolio returns. The approach relies on a local
approximation of the unknown density of returns by means of a mis-specified
model. The method allows one to estimate locally the conditional density of returns
and to find the local conditional moments, such as a tail mean and tail variance.
The purpose of this paper is to investigate the classification rate of non-parametric
methods using a binary data as compared to parametric method.

2.0 The Model

In this study we used the logistic model that caters for categorical variables in a way
roughly analogous to that in which the linear regression model is used for
continuous variables. Logistic regression has proven to be one of the most versatile
techniques in the class of generalized linear models as we see in the next sections.

2.1 The Logistic Model

The logistic model is one of the regression models for dichotomous data. It is
appropriate when the response variable takes one of the only two possible
outcomes representing success and failure, or more generally the presence or
absence of an attribute of interest. Consider a set of data consisting of successful
loan applicants whose applications were done in vintage. The behavior of these
applicants can only take two forms; either they pay or default in payment. The
concept of the logistic model is based on the Bernoulli and binomial distributions.
To get more information in the stochastic structure of the data in terms of the
Bernoulli and binomial distributions, and the systematic structure interms of the
logit transformation see Adem, Gichuhi and Odhiambo (2012).

< th
Suppose that we have k independent observations Yir YooY and that the !
observation can be treated as a realization of a random variableYi . We assume that

Yi has a binomial distribution

Y, ~B(n;, 7,)

Where N and 7 are the binomial denominator and the probability respectively.

Suppose further that the logit of the underlying probability 7i is a linear function
of the predictors
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I—Ogit(ﬂ-i)= XiIIB (2)

Where X‘ is a vector of covariates and B is a vector of regression coefficients. This
defines the systematic structure of the model. The model defined in equations (1)
and (2) is a generalized model with binomial response and link logit. More often we

consider the distribution of the response Yi than the distribution of the implied

error term Yi T Hi . The regression coefficients ﬂcan be interpreted along the same
lines as in linear models, bearing in mind that the left hand side is a logit rather than

B

I represents the change in the logit of the probability associated
s th

with a unit change in the J predictor holding all other predictors constant. The

logit of a function can also be defined as the log of odds ratio which can be expressed

as

a mean. Thus,

Logit(z, ) = Iog(li] =X,'p
— T

This expression defines a multiplicative model for the odds. Solving for the

probability d in the logit model in equation (4) gives the logistic model

o EXp(xilﬂ)
LD B e (5)
Equation (5) can simplified as
eZ
f =
) L B e eee oo e eeeeeesee s (6)

Where Z the logit of Y is defined as

Z=a+ BX + BoX, +.t B X, (7)
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In summary, the logistic regression model relates the log of the odds to the
explanatory variables. The logistic regression model further describes the

relationship between a dichotomous response variable Y coded to take the values

0 or 1 for success and failure respectively and k explanatory variables X Xae Xy

The explanatory variables can be quantitative or indicator variables referring to the
levels of categorical variables. The logit model is preferred for binary data due to the
following strengths

It is easy to estimate due to the functional form of the logistic distribution.

It can be motivated as a model of choice between alternatives with random utilities
where the randomness comes from independent data drawn from a Weibull
distribution, Mc Fadden, 1974.

It gives rise to a linear log-odds ratio which leads to a simple interpretation of the
parameters

Once a model has been selected, there is a need to estimate parameters. Assume
that we are interested in estimating the conditional mean and the marginal effects
for particular small changes in the covariates. The standard approach proceeds by
specifying a parametric model for example, a probit or logit model, estimating the
coefficients by maximum likelihood and then computing the conditional mean and
marginal effects. The disadvantage of parametric estimation is its reliance on
functional form assumptions which lead to inconsistent estimators if the model is

not correctly specified, FrOlich (2006). Therefore when the particular family of
distributions is unknown, parametric estimation becomes limited. In such a case a
non-parametric approach becomes more appealing.

To relax some of the parametric assumptions, several semi parametric estimators
have been suggested. A single index restriction is often invoked which assumes

some unknown function and 0 as a co efficient vector. A number of\/ﬁ consistent

estimators of 0 have been developed including iterative methods such as Han
(1987), Ichimura(1993), Klein and Spady (1993) and non-iterative methods such as
the average derivative estimators of Hardle and Stocker (1989), Powell et al (1989),
Stocker (1991) and Horowitz and Hardle (1996). Although less restrictive than the
parametric models, a semi-parametric model restricts interactions between the
regressors which is less appealing for many applications where heterogeneity in
responses is often considered important, Heckman et al, (1997). Non parametric
estimation is the most flexible among the three. Although it is subjective to the curse

of dimensionality and does not achieve \/ﬁ convergence, it may still perform well in
finite samples, FrOlich (2006).
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In non-parametric estimation we use a maximum kernel local weighted likelihood
estimator to eliminate the restrictive assumptions of the parametric estimation. The
most popular class of non-parametric estimators is the polynomial regression which
however is not particularly suited for binary models as it doesn't incorporate the

restriction E(Y /X ) € [0’1], Fan and Gijbels (1996). An immediate solution is to cap

the estimates at 0 and 1, which however makes the objective function non-
differentiable and also implies that the estimated marginal effects may be exactly

zero at some X values.

To handle binary data when the distributional form is unknown, we use local
Maximum likelihood estimation which is based on the idea of local fitting, Tibshirani
and Hastie (1987).

2.2 Local Likelihood

Consider a response variable Y, having a probability density function

F(y;6,(x),0,(%),....6,(X))

involving V parameters depending on an explanatory

variable X= (Xl’ XarniXg ) In this generalized regression setting, the form of f is
assumed to be known and the V parameters are unknown real valued functions of

the covariate-vector X . In parametric maximum likelihood estimation, the
. X . _ .
functlonsgf( ) are modeled globally in terms of a finite number of regression

coefficients. Instead of assuming a specific functional form for each 9” (X), one can
allow the data to describe this relationship non-parametrically, only requiring some
weak smoothness assumptions. The basic idea of local likelihood is a simple
extension of the local fitting technique where smoothing ideas is applied to data in
which the relationship can be expressed through a likelihood function. Consider N

Y, ~ £(Y,0),

independent realizations Y Yo ¥ of the random variable Y with i

for! = 12,..,n . The function likelihood is given by

L(8,.0,...6, =TT 1(y,.6)

A standard modeling procedure would assume a simple parametric form for the 6

0, = B, + Bix

i, then the parsimonious covariates form can be

o(X;) ;ai =o(X)

. If we assume that
replaced with an unspecified smooth function
P(%), p(X2),- 0(X;)

Can be estimated by maximizing

L(gD(Xl), gD(XZ)""’(p(X")). However this would result in an unsatisfactory estimate
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th
due to over fitting. Alternatively suppose that the function (%) has a (p +1)

continuous derivative at the point X'. For data point ~!in a neighborhood of X',

(D(Xj ) can be approximated via a Taylor series expansion by a polynomial of degree

p
® (x.
o(x;) = p(x) + 9 (%)%, —xi>+....‘”T‘,')(xj —x)p=1'B
L] (9)
_ _ _ T _
Where 7 =X =X (X x)") andB_(ﬂo’ﬂl""”gp)pthecontributionto

(Xj’yj) insf(yj':XT,B)

the log likelihood for data points in the neighborhood of

W.
weighted by !. This leads to the local likelihood or local kernel-weighted by log —
likelihood as proposed by Fan et al, 1998;

LBV =2, B

Maximizing the local log likelihood with respect to Bgives the vector of the

A ~ ~ T

B-(5-4,)
estimates 0 ﬂp .One of the components of the local likelihood is the
smoothing technique. Several smoothing methods exists, in this paper we chose the
kernel based method.

23 Kernel

Kernel regression is an estimation technique used to fit data when estimating a
regression function or a probability density function where the underlying
assumptions about the distribution function are unknown. The idea of kernel
regression is putting a set of identical weighted functions called kernel (kind of a
bump function) to each observational data point. The kernel basis function depends
only on the radius or width (variance) from local data point X to a set of
neighboring locations X. Kernel regression is a superset of a local weighted
regression and closely related to moving average and K nearest neighborhood, radial
basis function, neural network and support vector machine. Given a random sample
X Xgseen X , with a continuous univariate density f ,

f= |imiPr(x—h< X <x+h)
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For any given h, we can estimate P(x—h <X <x+h) by the proportion of the

sample falling in the interval (x=h,x+h) . Thus a natural estimator of f is given
by choosing a small h and setting,
;o 1

201 [No of X0 X2 X galling in X=X+ N) (12)

This is called the naive estimator. To express the estimator more compactly, we
define the weight function W by

1.
w(X) = {—, if|x <1
2 (Otherwise zero elSEWhEere).......cceveceeeceieriseeeeee e e (13)
We can then rewrite the naive estimator as

~ 1&1 | X=X
f) =231 }
L= R L (14)

It follows that, the estimate is constructed by placing a ‘box’ of width 2h and height

-1
(Znh) on each observation and then summing to obtain the estimate. The
estimator (naive) is not wholly satisfactory from the point of view of using density

estimates for presentation. It follows from the definition that f is not a continuous

function but has jumps at the points and has zero derivatives everywhere
else. This gives the estimates a somewhat ragged character, which is undesirable
and could also provide a misleading impression. We generalize the naive estimator

and replace the weight function W by a kernel functionk, which satisfies the
condition,

.................................................................................................................. (15)

Usually (but not always), kwiII be a symmetric probability density function. The
kernel estimator is therefore defined by

f(x):n—iék[x;x}

Where h is the window width also known as the smoothing /span parameter or
bandwidth. The kernel estimator can be considered as a sum of bumps placed at the

observations. The kernel function K determines the shape of the bumps while the

window width h determines their width. If the kernel k is everywhere non-negative

and is a probability density function, then it follows that f will be a density function
and inherits all the continuity and differentiability properties of the kernel k. Under

mild conditions (hmust decrease with), the kernel estimate converges in
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probability to the true density. There are two basic problems to consider in

obtaining F(x) ; the choice of the kernel function and the smoothing parameter h,

The Choice of kernel function will depend on practical and theoretical
considerations. The performance of a kernel is measured by the mean integrated
square error (MISE) or asymptotic mean integrated square error. The performance

f f

is evaluated by the distance between the true density = and the estimator

MISE(h) = E[I(fh (x) - f(X))2 dx} (17)

The Epanechnikov kernel minimizes asymptotic mean integrated error the most and
is therefore considered optimal. The efficiency of other kernels is measured relative
to the Epanechnikov kernel. Though the Gaussian kernel is not as efficient as the
Epanechnikov, we have used it in this research as it is symmetrical and assumes a
probability density function.

[keodx =1

Since we have seen that and that k is everywhere non negative,

then f will inherit all the continuity and differentiability properties of k , the choice
of the kernel function should be based on the degree of differentiability and or the

computational efforts involved. Assumption about the kernel Kis that, it is a
symmetric function satisfying the conditions;

[k(u)du =1
................................................................................................................ (18)
juk(u)du T i (19)
2 _
ju K o D 2 0 e (20)

And that, the unknown density f has continuous derivatives of all orders required.

Usually the kernel Kwill be a symmetric probability density function such as the

normal density and the constant P will be the variance of the distribution with this
density.

Alongside the kernel, the other tool in the smoothing technique is the bandwidth
which controls the size of the local neighborhood and whose choice is more
important than that of the kernel. This choice should be made such that, there is

neither over smoothing nor under smoothing. Small choice of hleads to an
estimator with small bias and large variance making the estimate look ‘wiggly’ and

show spurious features. Large choice of h leads to small variance at the expense of
large bias and the resultant estimate will be too smooth thus at times not revealing

structural features like bimodality of the underlying density f . The appropriate
choice of the smoothing parameter will be influenced by the purpose for which the
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density estimated is to be used. If the purpose of the density estimation is to explore
the data in order to suggest possible models and hypotheses, then it will probably
be quite sufficient and indeed desirable to choose the smoothing parameter
subjectively.

However, many applications require an automatic choice of smoothing parameter
especially if the density estimation is to be used routinely on a large data set or as
part of a larger procedure. The choice of the optimal bandwidth is still a big dispute.
The main argument is on whether one should use the integrated squared error or
the mean integrated squared error to define optimal band width. A lot of research
has been done to develop bandwidth selection methods which try to estimate the
optimal bandwidth obtained by either of these criteria, Wand et al, 1995.

3.0 Local Logit Estimation

For binary choice models, the local logit estimator
E[V/X =x]= ;
R (21)
is convenient, since it imposes the range restriction and is differentiable. For a
further discussion see Fan, Heckman, and Wand (1995).If the logit form is closer to
the true regression curve than a constant or linear specification, the local logit
estimator will be less biased than kernel or local linear regression. Local logit

encompasses the global logit model (where 2 does not vary with x) and if the global
logit model were indeed correct, local logit would be unbiased, see Gozalo and
Linton (2000).

With g(x, 0") as the local model, the conditional mean is estimated as

E[Y /X =x]=g(x,6,)

~

Several approaches to estimate 2 have been suggested, including local least
squares
(Gozalo and Linton (2000)), local likelihood, (Tibshirani and Hastie (1987)) and local

estimating equations (Carroll, Ruppert, and Welsh (1998)). Local least squares
A . n
estimates 2 from a sample of N id opservations {(Yi X )}i=1are given by
2

6, =argmin_(% - 9(x,.8,)) K, (X, -x)
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Where KH (Xi B X)is a kernel function and H a vector of bandwidth values. Local

likelihood estimates 2 are given by

6, =argmax . InL(v,,g(X,,6,))K, (X, -x)
0y s (24)

Where In L(YI ’ g(XI ! ex ))
(Xi Vi )For H converging to infinity, the local neighborhood widens and the local
estimator would converge to the global parametric estimator, Froelich (2006).
Exciting rich literatures exist on the consistency and asymptotic normality of the
local likelihood estimator for binary data notable by Marc Aerts and GerdaClaeskens
(1997)

is the log-Likelihood contribution of observation

3.1 Confusion Matrix

This is a contingency table used in predictive analytics to allow visualization of the
performance of an algorithm or a system. It contains information about actual and
predicted classifications done by a predictive system. Performance of such a system
is commonly evaluated using the data in the matrix. Classification matrix is used
mainly to assess the accuracy of a classification system. The table below has been
used to demonstrate how to obtain the classification matrix for a two class classifier.
A lot of literature on this exists on Kohavi and provost (1998) and Landis and Koch
(1977) . Consider a finite set of binary data where the dependent variable has been
coded as 0 and 1.

Table 1

Predicted

0 1

Actual 0 W X

1 1Y z

From the table above, the accuracy of the system can be computed as the
proportion of the predictions that were correctly given as

W+7

Accuracy =
W+X+Y+Z (25)

The proportions of zeros and ones that were correctly classified are given by
equations (26) and (27) respectively
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T(0) = MVt e ses s ses s ees e (26)
W + X
Z
T =—"—
@ R Ao (27)

Equations (28) and (29) give the proportions of zeros and ones that were incorrectly
classified respectively

FO) =2
LA SN (28)
Y

Fl)=——

@ R (29)

The performance of a confusion matrix is measured by its precision. The precision
of a confusion matrix is the proportion of the predicted 1’s (where one denotes the
success cases) cases that were correctly classified and is computed by the equation,
Kohavi and John (1997).

3.2 Simulation Results

To investigate the classification rate of parametric and non-parametric estimation
methods for binary data, we conducted a simulation study using a parametric
logistic regression model. In our simulation study, we considered five explanatory

variables X5 X ""'X5, which are fixed and the binary response variable y, which is

treated as a random variable in the logistic model. For fixed values of the intercept

parameterﬂoand five other parameters PBri B Ps we wish to compare the
prediction rate of the parametric estimation method and the non-parametric
estimation method using simulated data of sizes 25,50,75,100,150,200,250,300 and
500. For parametric method, ordinary logistic regression model was used and the
estimates obtained through maximum likelihood method for a sample size of 100 is
given in tablel below.
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Table 2

Coefficients: Estimate Std. Error | zvalue Pr(>|z|)
Intercept 0.6097 0.2894 2.107 0.0351
X, 1.1068 0.3586 3.087 0.002024
X, 0.3836 0.3087 1.252 0.2107
X3 1.2761 0.3409 3.7409 0.000182
X, 0.4701 0.2496 1.884 0.0596
Xs 1.2652 0.3262 3.878 0.000105

Using Gaussian method with a data driven bandwidth selection, we non-
parametrically fitted our data. Cross validation method was used to select the
bandwidths. The table shows the bandwidth for each of the variable (for sample size
100)

Table 3

Variables X, X, X, X, Xs

Fixed Bandwidth | 0.8213 | 0.1072 | 0.1237 | 0.2398 | 0.4123

3.3 The Confusion Matrix
A ‘confusion matrix’ is a tabulation of the actual outcomes versus those predicted
by a model.

The diagonal elements contain correctly predicted outcomes while the off-diagonal
ones contain incorrectly predicted (confused) outcomes. The confusion matrices
obtained through parametric and non-parametric methods are given below:

Confusion matrix (Parametric)

0 1
0 |25 11
1 4 60

This implies that the overall classification rate for a sample of size 100 is 85%.i.e.
out of a 100 simulated values, only 85 were correctly classified as 0’s and 1’s.
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Confusion matrix (non-parametric)

0 1
0 32 0
1 0 68

The overall classification rate is 100%. All the 0’s and all the 1’s were correctly
classified. The correct classification ratio by outcome for non-parametric method
will be 1 for either case (both 0 and 1). A summary of the overall classification rate
for various sample sizes is given in the table 4 below

Table 4 (overall classification rate)

Sample size | Parametric | Non parametric
model model

25 0.88

50 0.88 1

75 0.87 1

100 0.85 1

150 0.84 1

200 0.84 0.96

250 0.83 0.89

300 0.833 0.87

500 0.826 0.866

From the simulated data it has been shown that non parametric estimation method
gives a better prediction rate than the parametric estimation method.

4.0 Empirical Results

Under empirical results, we considered two sets of data. The first set of data
consisted of 37,609 loan applicants out of whom 31,805 were approved and 5,804
were declined. The explanatory variables were age, gender (coded as 1 for female,
0 for male), occupation, amount of loan, salary, marital status (coded as 1 for
married, 0 for singles) and term of loans. The variable occupation was further
classified into several sectors. The response variable was loan application status
coded as 1 for approved loan application and 0 for declined loan applications. Out
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of this data a random sample of size 100 was selected consisting of 86 loan
applications which were approved and 14 loan applications which were declined.

The second set of data consisted of 15,000 applicants whose loans were approved
within the year 2007 in one of the Kenya's commercial Banks. The data contained
1558 defaulters and 13442 non defaulters. The explanatory variables were age,
gender (coded as 1 for female, 0 for male), occupation, amount of loan, salary,
marital status (coded as 1 for married, O for singles) and term of loans. The variable
occupation was further classified into several sectors. The response variable was
loan status coded as 1 for defaulters and O for non-defaulters. Out of this data a
random sample of size 100 was selected consisting of 15 defaulters and 85 non
defaulters. Using ordinary logistic regression model (equation 4) the estimates of
the variables for both cases are given in table 3 and table 4 respectively.

Table 6: (loan application approvals)

Coefficients: Estimate Std. Error | zvalue Pr(>|z|)
Intercept -7.311e-01 | 1.151e-01 | -6.350 2.15e-10
Age 4.748e-02 2.085e-03 | 22.775 <2e-16
Gender(1) 6.213e-01 3.790e-02 | 16.394 <-2e-16
Business -1.310e01 1.970e+02 | -0.066 0.9469
CIVIL SERVANT -2.735e-01 | 8.116e-02 | -3.370 0.000751
CLERGY -1.246 2.605e-01 | -4.7831 1.73e-06
Education 3.738e-01 7.228e-02 | 5.172 2.32e-07
FARMER 9.571 8.492e+01 | 0.113 0.910262
FINANCE -3.321e-01 | 9.155e-02 | -3.628 0.000286
Management -1.102 8.738e-02 | -12.612 <2e-16
Amount of loan -3.96e-07 7.97e-08 -4.969 6.73e-07
Salary 5.229e-0.06 | 6.614e-07 | 7.906 2.66e-15
Marital status (1) 1.999e-01 5.338e-02 | 3.745 0.000181
Term of loan 1.366e-02 1.633e-03 | 8.366 2e-16
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Table 7 (default and non-default cases)

Coefficients: Estimate Std. Error | zvalue Pr(>|z|)
Intercept -5.663e-01 | 2.626e-01 | -2.156 0.03105
Age -2.401e-02 | 4.028e-03 | -5.959 2.53e-09
Gender(1) -6.452e-01 | 7.776e-02 | -8.297 <2e-16

Business 1.990e-01 1.881e-01 | 1.058 0.29019
CIVIL SERVANT -2.090e-01 | 2.317e-01 | -0.902 0.36708
CLERGY 2.236e-01 3.932e-01 | 0.569 0.56969
Education -4.997e-05 | 1.916e-01 | -0.000261 | 0.99979
FARMER 1.342e-01 2.076e-01 | 0.647 0.51791
FINANCE 4.309e-01 2.173e-01 | 1.983 0.04739
SUPPORT STAFF 5.006e-01 1.898e-01 | 2.637 0.00837
Amount of loan 8.727e-08 1.188e-07 | 0.734 0.46270
Salary 1.417e-06 9.790e-07 | 1.447 0.14790
Marital status (1) 3.904e-01 1.266e-01 | 3.084 0.00204
Term of loan -2.103e-02 | 2.661e-03 | -7.901 2.76e-15

The classification matrix for parametric estimation method for the two sets are
given below

Confusion matrix (approved loan applications verses declined applications)

0 1
0 3 11
1 2 84
The overall classification ratio is 0.87.

Confusion matrix (default and non-defaults)

0 1
0 82 3
1 14 1

The overall classification ratio is 0.83.
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To fit our model non-parametrically we used the Gaussian kernel and our bandwidth
selection was data-driven. Using cross-validation bandwidth selection, we obtained
the following bandwidths for each of the variables for both sets of data;

Table 9: (showing bandwidth; approved and declined loans applications)

Variables | Statu | Age Amou | Gende | Marit | Occupati | Salar | Ter

S nt r al on y m
Fixed 0.10 | 0.2707 | 6938 0.0234 | 0.46 0.8571 1688 | 5.26
Bandwid | O 9 8 2

th

Table 10 (showing bandwidth; defaults and non defaults)

Variabl | Status Age Amou | Gende | Mari | Occupa | Salary | Term
es nt r tal tion

Fixed 0.07794 | 6.595 | 40182 | 0.3287 | 0.5 0.1482 | 10397 | 4.141
Bandwi | 929 547 .51 189 192 .49 859
dth

The confusion matrix for both sets of data are given below
Confusion matrix (approved/declined loan application)

0 1
0 15 0
1 0 85
Confusion matrix (defaults/non defaults)

0 1
0 86 O
1 0 14
The overall classification ratio for both models is 1

5.0 Summary and Conclusion

The aim of this research was to establish whether non-parametric methods give a
higher classification ratio (correct prediction rate) for binary data than parametric
methods. This has been achieved through simulation and empirical results as the
confusion matrices obtained in sections 4.2 and 4.3 show that non-parametric
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estimation gives a better prediction rate (classification ratio) for binary data than
parametric estimation. For simulated data, the classification ratio tends to decrease
as sample size increases. For the empirical cases, non-parametric method achieved
100% classification rate for both data sets while parametric method classification
rate was 0.87 and 0.83 respectively for both data sets. This implies that only 87 of
the 100 observations, and 83 of the 100 observations were correctly classified.
Non-parametric methods may not necessarily give a classification ratio of 1. A
number of factors may influence this, notably the bandwidth selection process.
Examining the influence of bandwidth selection process on non-parametric
classification rate may yield ground for further research.
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