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Abstract 
Many hydrological models for watershed management and planning require 
rainfall as an input in a continuous format. This study analyzed four different 
rainfall interpolation techniques in Nyando river basin, Kenya. Interpolation was 
done for a period of 30 days using 19 rainfall stations. Two geostatistical 
interpolation techniques (kriging and cokriging) were evaluated against inverse 
distance weighted (IDW) and global polynomial interpolation (GPI). Of the four 
spatial interpolators, kriging and cokriging produced results with the least root 
mean square error (RMSE). A digital elevation model (DEM) was introduced into 
the cokriging method and this improved the results considerably. The results 
demonstrate that for low-resolution rain gauge networks, geostatistical 
interpolation methods perform better than other techniques that ignore spatial 
dependence patterns. The use of secondary information improved the prediction 
results, as demonstrated by the inclusion of the DEM in this study. 
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1.0 Introduction  
Watershed models are powerful tools for water resources planning and 
management. Models may be used to predict how conditions are expected to 
change over time, to understand the nature and scope of a problem and to 
evaluate alternative management options. Precipitation is the primary input to 
hydrological models and is characterized by spatial variations. This is brought 
about by differences in the type and scale of development of precipitation 
producing processes, and strongly influenced by local or regional factors, such as 
topography and wind direction at the time of precipitation (Sumner, 1998). Rainfall 
data is traditionally presented as point data. However, hydrological modelling 
requires spatial representation of rainfall and thus the gauge measurements need 
to be transformed into areal coverages.  
 
Several methodologies exist for spatial interpolation of climate and weather 
parameters. These include; inverse distance weighting (Englund and Weber, 1994), 
Thiessen polygon method, isohyetal method, and more sophisticated statistical 
methods such as kriging , and it’s various extensions, also known as geostatistical 
methods (Symeonakis, 2008). Recent advances in the fields of geographic 
information systems (GIS) and remote sensing have made satellite-based rainfall 
estimates readily available in coverage forms. However, the scales, temporal and 
spatial resolutions are usually coarse for application at a basin scale. 
 
Several attempts have been made to compare these methods with most of the 
studies suggesting that geostatistical methods provide the most accurate 
estimates. Goovaerts (2000) used geostatistical algorithms to include elevation 
into the interpolation procedure at the South of Portugal. Johansson and Chen 
(2003) developed a regression model that included the wind variable for Sweden. 
Marquínez et al. (2003) used a regression model performed with topographic 
variables for Cantabria (Spain). Vicente-Serrano et al. (2003) concluded that the 
best results were achieved by geostatistical methods and a regression model 
formed by four geographic variables for the Ebro Valley (Spain). Subyani (2004) 
used geostatistical methods in the study of annual and seasonal rainfall patterns in 
south west Arabia; whilst Eulogio (1998) used geostatistical methods in estimating 
areal climatological rainfall mean using data and precipitation in southern Spain. 
 
Majority of these studies focused on interpolating precipitation for small to 
regional scale applications emphasizing the need for similar research over larger 
areas to support the respective work on hydrological processes, such as surface 
runoff and soil erosion (Symeonakis, 2008). This study attempts to evaluate four 
geostatistcial interpolation techniques and compare their performance in 
generating spatial distributions of rainfall in Nyando river basin. Section 2) provides 
a brief discussion of spatial interpolation methods, section 3) discusses methods, 
data, and tools while results are presented in section 4.  
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2.0 Interpolation methods  
2.1  Inverse Distance Weighting (IDW) 
Inverse Distance Weighting (IDW) is an interpolation technique in which 
interpolated estimates are made based on values at nearby locations, weighted 
only by distance from the interpolation location. IDW explicitly implements the 
assumption that things that are close to one another are more alike than those 
that are farther apart. In the IDW approach, the values to be interpolated  *

IDWZ  
are estimated as a linear combination of several surrounding observations, with 
the weights being inversely proportional to the distance between observations and 
location u to the power of p.  
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Where n(u) is the number of the points at location u considered for the estimation 
and )(u  is the weight.  

2.2 Global Polynomial Interpolation (GPI) 
Global Polynomial interpolation (GPI) is a quick and smooth deterministic 
interpolator. A first-order global polynomial (GP) fits a single plane through the 
data; a second-order fits a surface with a bend in it, allowing the calculation of 
surfaces representing valleys; a third-order allows for 2 bends; and so forth. 
However, when a surface has a different shape, as in a landscape that slopes, 
levels out, and then slopes again, a single GP will not fit well (Johnston et al., 
2001). 
 
2.3 Kriging  
Kriging is a moderately quick interpolator that can be exact or smoothed 
depending on the measurement error model. Kriging uses statistical models that 
allow a variety of map outputs including predictions, standard errors and 
probability. Kriging assigns weights according to a (moderately) data-driven 
weighting function, rather than an arbitrary function, but it is still an interpolation 
algorithm and will give very similar results to others in many cases (Isaaks and 
Srivastava, 1992). Kriging estimators are variants of the basic linear regression 
estimator:  
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Where n(u) is the number of the points at location u and   (u) is the weight 

assigned to the datum )( uz  interpreted as a realization of the random variable

)u(Z  . The values )(um and )( um  are the expected values of the random 

variables Z(u) and )u(Z  respectively.  
 
Kriging estimators are required to be unbiased and to minimize error variance, i.e.

 )u(Z)u(ZVar)u( *2
E   under the constraint that the expected error is 

zero:   .0)()(*  uZuZE Each random function is usually decomposed into a 

residual component and a trend component: ).()()( umuRuZ  The residual 
component is modeled as a stationary random function with zero mean and 
covariance function. 

)h(CR :   0)( uRE  
 
 

The expected value of the random variables Z at a certain location u is the value of 
the trend component at that location   ).()( umuZE  Three Kriging variants can 
be distinguished according to the model considered for the trend: Simple, ordinary 
and universal. Simple kriging (SK) considers the mean )(um to be known and 
constant through the study area. The SK estimator is expressed mathematically by 
equation 3. 
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The SK weights are determined such as to minimize the error variance, while 
ensuring the unbiasedness of the estimator. More detailed discussion on kriging 
methods can be found in Goovaerts (2000). 
 
2.4 Cokriging   
The addition of cross-related information reduces the variance of estimation error 
by using the cokriging method. In this case, the primary data 
 1111 n........2,1),u(z  is supplemented by secondary data related to 

)1( vN continuous attributes Zi,  vi Ninuz ,....,2,........2,1),( 111   at N 
possible different locations. The linear kriging estimator (equation 2) is extended 
to incorporate such additional information. 
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Where )u(
1

  is the weight assigned to the primary datum )u(z
11   and )u(

1
 , 

i>1 is the weight assigned to the secondary datum )u(z
ii  . The terms )u(m
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Cokriging estimators are required to be unbiased and to minimize error variance
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The residual component is modeled as a stationary random function with zero 
mean and covariance function )h(CR
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ij  . According to the trend model ),(umi  three 

cokriging models can be distinguished: Simple, ordinary and universal. The Simple 
cokriging (SCK) method considers each local mean, known and constant within the 
study area. The SCK estimator is expressed mathematically by equation 5. 
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3.0 Materials and Methods   
3.1  Study Area 
Nyando basin (Figure 1) is located on the western region of Kenya and is a part of 
the greater Lake Victoria Basin. It’s geographically located along the equator 
bounded by latitudes 007’N and 0024’S; longitudes 34025’E and 35043’E. It covers an 
area of about 3500 km2. 
 
 
 
 
 



JAGST Vol. 14(1) 2012                                                            Spatial rainfall estimation     

Jomo Kenyatta University of Agriculture and Technology                                          101 

 
Figure 1: Study Area 

 
Rainfall in the region is mainly influenced by the migration of the Inter tropical 
Convergence zone (ITCZ) and exhibits a bi-modal pattern with peaks in the long 
rains season March-April-May (MAM) and short rains October-November-
December (OND). The mean annual rainfall varies from 1,000 mm near Lake 
Victoria to approximately 1,600 mm in the highlands. Land use and property rights 
vary across the basin. The upper part of the basin is comprised of gazetted forests, 
commercial tea production, and small-scale agriculture on steep hillsides that were 
de-gazetted as forests during the last 40 years. Mid-altitude land uses are 
composed of a mixture of smallholder farms (with maize, beans and some coffee, 
bananas, sweet potatoes and dairy activities) and large-scale commercial farms 
(mostly sugar cane).  
 
3.2 Data 
Table 1 shows a summary of the datasets used in this study  

 
Table 1: Datasets 

Dataset Type Source  Specifications   

Rainfall 
data 

Rain gauge data, 
tabular  

Kenya Meteorological 
Department  

Primary 
data(mm/day) 

DEM Elevation(Raster) USGS Secondary data 
(90 m 
resolution) 
 

Nyando 
Basin 
boundary 

GIS File (shapefile) Department of Biomechanical 
and Engineering Department 
(BEED), Jomo Kenyatta 
University of Agriculture 
Technology (JKUAT) 

Secondary data 
(Shapefile) 
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Others: 
Roads, river 
network, 
boundaries 

GIS files(Shapefile) Department of Geomatic 
Engineering and Geospatial 
Information Systems (GEGIS),  
Jomo Kenyatta University of 
Agriculture Technology 
 

Auxiliary data 
(Shapefile) 

 
Data preparation and analysis was carried out using Ms Office Excel® and ArcGIS 
9.3®. ArcGIS 9.3 provided the GIS platform for visualization, manipulation of data 
production of maps. The ArcGIS Geostatistical Analyst® tool was used for 
interpolation, production of maps and error plots. The tool provides advanced 
statistical tools for surface generation, analysis and mapping of continuous 
datasets. It includes exploratory spatial data analysis tools providing insights about 
data distribution, global and local outliers, global trends, levels of spatial 
autocorrelation, and variation among multiple datasets (ESRI, 2007). 
 
Rainfall data was obtained from the Kenya meteorological department. There are 
25 rainfall stations near the Nyando river basin and only 19 stations are within the 
basin. This data was characterized by gaps (~40%) and a period of 30 days was 
chosen partly because of this challenge. 
 
Table 2: Rainfall Stations in Nyando Basin 

Station 
ID 

Station Name 
(stn) 

Latitude 
(N/S) 

Longitude 
(E) 

Year 
Opened 

Height 
(M) 

9035002 
Londiani Forest 
Station -0.150 35.600 1908 2316 

9035020 
Kipkelion Railway 
Station -0.200 35.467 1904 1931 

9035042 
Equator Barguat 
Estate -0.017 35.400 1932 2012 

9035068 
Kipkelion Morau  
Company  Ltd. -0.133 35.450 1938 1920 

9035075 
Kaisugu House,  
Kericho -0.317 35.367 1939 2134 

9035102 
S.Kalya's  Farm,  
Kedowa -0.267 35.517 1946 2286 

9035148 Koru  Bible School  -0.200 35.267 1960 1707 
9035150 Tinderet  Estate -0.133 35.383 1959 2134 

9035199 
Ainamoi Chiefs 
Camp,  Kericho -0.300 35.267 1960 1981 

9035240 
Keresoi  Forest  
Station,  Londiani -0.283 35.533 1961 2682 
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9035256 
Maragat Forest 
Station -0.050 35.467 1965 2134 

8935001 
Kabagendui Kibet 
Farm 0.033 35.300 1920 1890 

8935013 
Nandi,Koisagat 
Tea Estate 0.083 35.267 1921 2073 

8935033 
Nandi Hills, Savani 
Estate 0.050 35.100 1929 1829 

8935148 
Kipkurere Forest 
Station 0.083 35.417 1959 2256 

8935159 
Cerengoni Forest 
Station 0.117 35.367 1964 2438 

8935161 
Nandi Hills,Kibweri 
Tea Estate 0.083 35.150 1958 2103 

9035046 
Chemelil 
Plantation -0.067 35.150 1932 1229 

The 30 days were selected randomly across the years considering days when 
rainfall was recorded at all the stations. This eliminated the skewedness that 
would be introduced by stations with no rainfall.  
 
3.3 IDW and GPI Interpolation 
In these two methods, few decisions were made with regards to interpolation 
parameters. In both cases, the power p (equation 1) for the weighting function was 
varied whilst for IDW; the neighborhood search was also specified. Some tests 
were made and three different models for each interpolation procedure chosen as 
below: 
IDW with p=1 ; GPI with p=1 
IDW with p=2 ; GPI with p=2 
IDW with p=3 ; GPI with p=3 
 
3.4 Kriging and Cokriging Interpolation 
Kriging methods involve many decisions and specification of several parameters. 
The flow of activities is summarized below: 
 
3.4.1 Model Fitting  
Kriging, like most interpolation techniques, is built on the basis that things that are 
close to one another are more alike than those farther away (quantified here as 
spatial autocorrelation). The empirical semivariogram is a means to explore this 
relationship. Pairs that are close in distance should have a smaller difference than 
those farther away from one another. The extent that this assumption is true can 
be examined in the empirical semivariogram. Empirical Semivariograms were 
computed for each of the 30 days. Depending on the shape of the variograms, 
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appropriate models were selected. Fitting a model was done by defining a line that 
provided the best fit through the points. 
 
3.4.2 Neighborhood Search   
Kriging equations are defined by matrices and vectors that depend on the spatial 
autocorrelation among the measured sample locations and prediction location. 
The autocorrelation values come from the semivariogram model. The matrices and 
vectors determine the kriging weights that are assigned to each measured value in 
the neighborhood search. All stations were included in the neighborhood search 
for interpolation at any point in the basin. 
 
3.4.3 Making a Prediction 
From the kriging weights and the measured values, predictions were computed for 
locations with unknown values. Maps were produced and cross validation 
parameters used to assess the accuracy of the predicted values.  
 
3.5 Interpolator Evaluation  
For IDW and GPI, only two measures were possible i.e. Mean and RMSE. For the 
kriging methods, additional measures were used and a brief discussion of these is 
provided below:  
 
Standardized mean (MS): is a measure of biasness, the mean prediction error 
should be near zero. 
Prediction error = measured – predicted  
Root-mean-squared prediction error(RMSE)  
 
Average standard error (ASE): measure of variability in the predictions. If ASE 
>RMSE, then the system is overestimating variability and vice versa 
 
Standardized root-mean-squared prediction (RMSS): If the root-mean-squared 
standardised errors are greater than 1, then there’s underestimating of variability 
in the predictions; if the root-mean-squared standardized errors are less than 1, 
then the system is overestimating variability in the predictions. 

4.0 Results  
Due to lack of adequate data, cross validation was used in which each of the 
stations was omitted from the interpolation, new values for the same station were 
derived and then compared to the true (observed) value. This was done for all the 
stations iteratively. Results presented as map and charts are for 30th April 1968 
(day 30) while tables are used to present the remaining days. 
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4.1 IDW and GPI Interpolations  
The IDW method required two levels of decision to implement, the power (p) and 
neighborhood search.  Figure 2 shows the IDW (A) and GPI (B) interpolated 
surfaces with (p=1, 2, 3) respectively. The south west section of the basin has only 
one station and this explains the uniform gradual decrease in rainfall around this 
region for all the interpolators. In contrast to the p=1 interpolation, IDW 
interpolation with p=2 produces smoother surfaces with gradual transition of 
rainfall. A “hull effect” (circle around the data) forms in the interpolated surfaces 
for the IDW. It was clearly demonstrated that the larger the value of p the larger 
the RMSE. Interpolation for the rest of the study period was implemented with p=1 
for IDW. 
 

A) IDW interpolation  

 

B) GPI interpolation  
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Figure 2:  IDW (A) and GPI (B) interpolation surfaces generated using different 
values of power p. From top to bottom, p = 1, 2, 3 

 
The GPI method required the least of decisions to implement; only power (p). 
The interpolation method produced surfaces characterized by stripping and 
devoid of the hull effect. However, the transition from one value to the other is 
drastic and quite unrealistic. Unlike when p=1, the GPI interpolator with p=2 
tends to smoothen the surface and captures the trend in the rainfall 
observations, with the low amounts recorded to the south west location of the 
basin. Transition is extremely uniform and quite unrealistic. GPI with p=3 
produced the poorest results with the largest error (RMSE=11.37). The method 
over-estimates rainfall over the southern parts of the basin where the stations 
recorded the least amounts of rainfall. For the remaining interpolations, GPI 
was implemented using p=2. 
 
4.2 Kriging   
Figure 3 shows a scatter plot (prediction versus observations) for the kriging 
method on day 30.  
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Figure 3: Kriging interpolation: predicted versus observed for 30th April 1968 

 
The RMSE for the selected day 30 is 7.016, ASE=6.856 and Mean=0.009. A 
comparison was also done between the Gaussian and Spherical models (figure 4).  

 
A) Kriging interpolation: (Gaussian 
model) 

 

B) Kriging interpolation: (Spherical 
Model) 

  

 

Figure 4: Kriging interpolation (A) using Gaussian model and (B) using spherical 
model  

The difference between the two is minimal and in both cases the RMSE was the 
same. The Gaussian model was then used for the rest of the interpolations. 
 
4.4 Cokriging   
Cokriging works by coupling primary data and secondary data.  

Kriging Interpolation 
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Figure 5: Cokriging interpolation (Day 30) 
 
Figure 5 shows the output from the cokriging interpolator using gauge data 
coupled with 90m elevation data (DEM). The method produces similar results to 
kriging though it has a rugged spatial representation and gives the interpolation a 
more natural appearance. The interpolator does not reproduce high rainfall 
amounts but produces moderately averaged estimates.  
 
4.5 Comparison between the Interpolation Techniques  
Generally, the best model is the one that has the standardized mean nearest to 
zero, the smallest root-mean-squared prediction error, the average standard error 
nearest the root-mean-squared prediction error, and the standardized root-mean-
squared prediction error nearest to one.  
 
4.5.1 IDW versus GPI 
The results produced by GPI are simple, and somehow unrealistic. The method 
does not reproduce the natural pattern that a rainfall event would exhibit. IDW on 
the other hand produces slightly better results but is highly affected by the hull 
effect around the stations. This is because more weight is given to the closest 
station. Comparatively, IDW produced better results than the GPI interpolator.  
 
4.5.2 Kriging versus Cokriging   
Comparison between the two kriging methods was done using error statistics. This 
is because the spatial surfaces produced were similar and visual interpretation 
would be insufficient. Figure 6 summarizes error parameters. 
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A) 

 

B) 

 

C)  
Figure 6: Comparison of RMSS (A) and RMSE (B) for kriging and cokriging; and (C) 

predicted versus measured rainfall for day 30 
Cokriging produced better RMSE (cRMSE) (figure 6A) compared to kriging (kRMSE) 
for most of the days under investigation. This improvement is attributed to the 
inclusion of elevation data as secondary source of information. Kriging 
interpolation represents rainfall well with most of the standardized mean (Figure 
6(B)) values close to 0 compared to cokriging whose values are above 0.1. In terms 
of variability, cokriging scores better than kriging because all its RMSS values are 
close to 1 as shown in figure 6(A).  Figures 6 (C) shows a scatter plot for the two 
geostatistical interpolators for day 30. 

4.5.3 Overall Evaluation  
Evaluation for all the interpolation techniques was only possible by comparing the 
common measures of reliability. Table 3 summarizes the RMSE for all the 
interpolators. 

Table 1: RMSE values for all the Interpolators 

Date IDW Kriging  Cokriging GPI 
5-Jan-88 6.88 7.31 6.00 45.00 
14-Jun-91 10.71 9.62 8.70 51.24 
13-Jun-91 12.88 13.20 11.13 53.09 
1-Mar-62 5.82 5.23 5.23 53.14 
18-Apr-73 7.44 5.82 5.24 25.08 

Standardized root-mean-squared prediction(RMSS) 
(Kriging Versus Cokriging)
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25-Jun-91 3.42 3.77 2.58 50.23 
21-Aug-70 5.60 5.18 4.86 25.13 
19-Feb-62 5.18 4.34 5.43 44.46 
24-Jun-91 6.69 5.71 5.07 50.08 
17-Aug-70 8.15 7.84 7.77 26.13 
13-Apr-73 1.23 1.14 1.09 23.69 
6-Jan-88 5.39 5.14 4.57 44.25 
26-Jan-62 0.95 0.99 0.84 52.84 
9-May-73 9.76 9.21 8.64 37.56 
14-Aug-70 6.33 7.69 6.75 27.49 
15-Dec-81 9.75 9.72 8.11 35.48 
21-Apr-73 8.45 6.41 5.83 25.16 
23-Aug-70 5.36 5.00 5.26 26.08 
22-Apr-73 8.59 7.51 7.22 25.85 
28-Feb-62 2.28 2.05 1.80 43.91 
19-Aug-70 10.54 9.71 8.10 27.51 
25-Aug-70 8.58 7.60 7.06 26.09 
4-Jan-88 2.31 2.06 1.93 43.54 
24-Aug-70 7.31 6.53 6.66 26.28 
Average 6.65 6.19 5.66 37.05 

GPI produced the largest values of RMSE for all the days under investigation. IDW, 
Kriging and cokriging produced comparable results with cokriging producing the 
best results (least RMSE). 
 
4.6 Discussion and Conclusions  
This study aimed at interpolating rain gauge observations into spatial surfaces 
using IDW, GPI, Kriging, and cokriging interpolators. Thirty days of study were 
selected and spatial surfaces generated. The performance of the interpolators was 
evaluated by visual inspection of the generated surfaces as well as analysis of 
reliability measures. GPI produced the poorest results with surfaces characterized 
by massive stripping and large values of RMSE. IDW on the other hand produced 
better results compared to GPI but was limited due to the “hull effect”. For this 
purpose, they are quite unsuitable for rainfall interpolation especially if the gauge 
stations are sparsely located. Though IDW produced better results than GPI, it 
placed more weight to the nearest stations. The cokriging interpolator was used by 
combining observations with a 90m DEM as secondary information. While it was 
impossible to differentiate between kriging and cokriging from the interpolated 
surfaces visually, evaluation of measures of reliability showed that cokriging 
produced the best results. It produced the least values of RMSE and the best 
values of the standardized root-mean-squared prediction error nearest to one, 
implying that cokriging represented variability well in the interpolation. 
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While these findings suggest better performance of co-kriging using elevation, 
further research is recommended to incorporate more days in the study and 
investigate the inherent relationship between rainfall and elevation. Research on 
the incorporation of other sources of secondary spatial data into cokriging (e.g 
radar) to improve the interpolations would be useful. 
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