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Abstract 
Convective heat transfer in a homogeneous fluid flow Reynolds number of order 
less than 2000 over an immersed axi-symmetrical body with curved surfaces has 
been investigated. The fluid flow in consideration was unsteady and of constant 
density .This study analysed the extent to which convective heat transfer has on 
drag and lift on bodies submerged in fluid. The different temperature profiles 
which were as a result of temperature gradients, caused the convective heat 
transfer. These different temperature profiles were brought about by frictional 
forces on and within the surface of the body when fluid flowed over it. Velocity 
variations were also determined and were used to evaluate these temperature 
profiles. To obtain these profiles, various flow parameters were varied in the 
equations governing the fluid flow. These equations were non-linear and there 
exists no analytical method of solving them, hence a suitable numerical method in 
this case finite difference method was used.  Results of the velocity variations and 
temperature variations were obtained followed by graphical representation of the 
results. It was however noted that when the Reynolds number was increased, the 
heat dissipation also increased, when the curvature of the surface was increased, 
the dissipation also increased. These results have major application in designing 
devices requiring high manoeuvrability and less resistance to the motion e.g. 
aerofoil, spray atomizers and cooling fans. 
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 Nomenclature 

Symbol  Meaning 

Cp Specific heat at constant pressure. Jkg-1 K-1 

L Reference length ,M 

m Real number 

P Pressure, Pa 

Ec Eckert number 

Pr Prandtl number 

Pe Peclet number 

Re Reynolds number 

Q Quantity of heat added to the system, Joules (J) 

푞̇ Heat generated in the boundary layer, Joules 

T Temperature, K 

Ts Temperature of the body’s surface, K 

T  Free stream temperature, K 

h heat transfer coefficient.  h=q (T -T ) ,W/m2K 

U Outer flow fluid velocity in the x-direction, ms-1 

V Reference fluid velocity in the y-direction, ms-1   

퐹 ,퐹     Body forces,Newtons along the x and y directions respectively 

x,y,z Cartesian co-ordinates 

i,j,k Unit vectors in the x,y and z directions respectively 

 Material derivative = + 푢 + 푣 + 푤  

∇⃗ Gradient operator 푖 + 푗 + 푘  

∇  Laplacian operator + +  
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휗 Kinematic viscosity, m2s-1 휗 =  

휇 Absolute viscosity (dynamic viscosity coefficient), kg/ms 

휌 Fluid density, kgm-3 

휑 Viscous dissipation function 

훿 Boundary layer thickness, m 

휎 ,  Normal stresses, Nm-2 

휏 ,  Shear stresses, Nm-2 

1.0 Introduction 
The theory of convective heat transfer strongly emerged in 20th century. By its 
nature, convective energy transfer is closely related to fluid particles motion and 
therefore is a fundamental part of fluid mechanics study. Advancement in research 
in fluid mechanics (particularly hydrodynamics of non-Newtonian, electric current-
conducting and magnetic media, supersonic and hypersonic gas dynamics, 
dynamics of plasma, fine molecular and heterogeneous flows, the hydro and gas 
dynamics effects during  heat transformation) have greatly affected the theory of 
heat and mass transfer in moving media e.g. air, water and oil. The relationship 
between the intensities of turbulent momentum and heat transfer process is one 
of the subtle problems of heat transfer theory 

A number of experimental and numerical studies of convective heat transfer over 
curved surfaces have been done. The measurement and prediction of the rate of 
heat transfer for a two dimensional boundary layer on a concave surface have 
been presented by Mayle et al. (1979). It was established that the heat transfer on 
the convex surface was less than that of a flat surface having the same free stream, 
Reynolds number and turbulence. Concave surface heat transfer was augmented 
when compared to the flat surface. In the turbo machinery applications; a 
variations in the rate of heat transfer due to a small flow disturbance can lead to 
an increase in the thermal stress and decrease the effective working life span of 
such a component. On a highly curved wall, the change in heat transfer rate is 
mainly due to an increase or decrease of the turbulent mixing by effect of 
streamline curvature. It has been indicated in Von Karman’s stability argument 
(1934) that the convex wall has a stabilizing effect on the fluid particles, while 
concave wall has a de-stabilizing effect with reference to a flat plate. 

There have been many previous investigation of flow and heat transfer on flat 
plate boundary layers with pressure gradients. Fukagata et al (2002) were 
concerned with transition to turbulent flow and the Reynolds stress distribution. 
Mei et al (1999) and Bouzidi et al (2001) proposed some other boundary treatment 
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methods. In all those methods, the boundary conditions were treated separately 
for some specific steps when some variations occurs in the specified steps while 
dealing with curved boundaries, an abrupt change in the single particle mass 
distribution was caused. Filippova and Hanel (1998) developed a curved boundary 
treatment using Taylor’s series expansion in both space and time for single particle 
distribution near the wall. This boundary condition satisfies the no-slip condition to 
the second order in a space step and preserves the geometrical integrity of the 
wall boundary. 

Barenblatt et al. (2002),in their study on the model of the turbulent boundary layer 
with non- zero pressure gradient observed that the turbulent boundary layer at 
large Reynolds number consist of two separate layers upon which the structure of 
the vortex fields is different, although both exhibit similar characteristics. In the 
first layer, vertical structure is common to all developed bounded shear flows and 
the mean flows .The influence of viscosity is transmitted to the main body of flow 
via streaks separating the viscous sub layer. The second layer occupies the 
remaining part of the intermediate region of the boundary layer. The upper 
boundary of the boundary layer is covered with statistical regularity by large scale 
“humps” and the upper layer is influenced by the external flow via the pressure 
drag of these humps as well as by the shear stress. In their earlier works it is shown 
that the mean velocity profile is affected by the intermittency of the turbulence 
and as the humps affects intermittency, the two seeking regions are visible. On the 
basis of these considerations, the effective Re, which determines the flow 
structure in the first layer (and is affected in turn by the viscous sub layer), was 
identified as one set of such parameters. The other parameters that influence the 
flow in the upper layer include pressure gradient, ; dynamic (friction) viscosity , 
휇; velocity ,u; fluid’s kinematic viscosity, 휗 and density,휌. Khoshevis et al (2007) 
investigated the effects of the concave curvature on turbulent flows using 
numerical solutions of boundary layer equations on concave surfaces. It was 
evident that turbulent intensities and turbulent shear stresses are increased on 
concave walls compared to flat plates under same conditions and they concluded 
that for the boundary layer on concave surfaces, the destabilizing effects lead to 
increased turbulent momentum exchange between the fluid particles similar to 
the way concave curvature causes flows to be destabilized. In this study, a body 
having both convex and concave surfaces was considered and the effects of these 
surfaces on the dissipation of heat investigated. 

2.0 Mathematical Formulation 
The fluid in consideration was Newtonian and had constant density whose 
Reynolds number was less than 2000. The equations governing the flow were 
reduced from the general ones through assumptions mentioned above and most 
of the analysis done was in the boundary layer region. . The equations governing 
the fluid flow in tensor form were given as; 
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휕푢
휕푥

= 0 … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … ..			(1) 

휕푢
휕푡

+ 푢
휕푢
휕푥

= −
1
휌
휕푃
휕푥

+ 퐹 + 휗∇ 푢 		… … … … … … … … … … … … … … … … … . . (2) 

휌푐
퐷푄
퐷푡

=
휕
휕푥

푘
휕푄
휕푥

+
1
2
휇

휕푢
휕푥

+
휕푢
휕푥

… … … … … … … … … … … … … … … … (3) 

Equations 1, 2 and 3 represent continuity, momentum and energy conservation 
equations respectively. These equations for a curved surface reduced to 

휕푢
휕푡

= 푃 + 휗
휕 푢
휕푦

+ 퐹 	 	… … … … … … … … … … … … … … … … … … … … … … … … . . (4) 

푐 휌
휕푇
휕푡

= 푘
휕 푇
휕푦

+ 휇
휕푢
휕푦

+ 푞̇… … … … … … … … … … … … … … … … … … … … … (5) 

The study of the analogy between buoyancy and curvature effects to the boundary 
layer flow were first studied by Prandtl(1904). From Khosevis et al (2007), convex 
curvature boundary layer exert a stabilizing effect while concave exhibit 
unstabilizing effect. Prandtl proposed that to account for the curvature effect, the 
length of the body’s surface is multiplied by a dimensionless factor 

푓 = 1 −
1
4
푘 푢
휕푢
휕푦

	… … … … … … … … … … … … … … … … … … … … … … … … … … . (6) 

This was supported by experiments by Wilken and Schmidbauer (1966). From their 
experiments they deduced boundary layer equations for curved surface as 

푘 푢
ℎ

=
1
휌
휕푃
휕푦

																																																																																																																						(7)	 

Where kr and h1 are curvature parameters which are defined as; 

푘 (푥) = −
1

푟(푥) 		… … … … … … … … … … … … … … … … … … … … … … … … … … … . . (8) 

ℎ = 1 + 푘 푦																																																																																																																							(9) 

Where, r(x) is the radius of the curved surface. Equations 1, 2 and 3 yielded 

휕푢
휕푡

= 푃 + 휗
휕 푢
휕푦

+ 	푘 푢 … … … … … … … … … … … … … … … … … … … … … … (10) 
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푐 휌
휕푇
휕푡

= 푘
휕 푇
휕푦

+ 휇
휕푢
휕푦

+ 푘 1 −
1
4
푘 푢
휕푢
휕푦

퐴(푇 − 푇 ) … … … … … … … … … (11) 

The boundary conditions for the fluid flow over an axi-symmetrical body with 
curved surfaces, taking into consideration the no-slip condition and negligibility of 
the effects of viscous forces in the free stream region. The initial conditions were 
obtained by assuming the fluids velocity was zero at the leading edge. Equations 
10 and 11 were solved subject to the following initial and boundary conditions 
respectively; 

푢(푡, 0) = 0 

푢(푡,∞) = 푢  

푢(0,푦) = 0 

and 

 

푇(푡, 0) = 푇  

푇(푡,∞) = 푇  

푇(0,푦) = 0 

On non-dimensionalising equation 10 and 11 and the initial and boundary 
conditions using the transformations: 

푥 = 푥∗퐿			,푦 = 푦∗퐿		, 푢 = 푢∗푉		, 푣 = 푣∗푉	, 푃 = 푃∗푃	,			푇∗ =
푇 − 푇
푇 − 푇

,

푡∗ =
푡푉
퐿
		표푟	푡 =

푡∗퐿
푉

 

Equations 10 and 11 together with dimensionless numbers yielded 

휕푢∗

휕푡∗
=
푃퐿
푉

푃∗ +
1
푅푒

휕 푢∗

휕푦∗
+ 푘 퐿푈∗ … … … … … … … … … … … … … … … … … … (12) 

Subject to                                                     푢∗(푡∗, 0) = 0 

푢∗(푡∗,∞) = 1 

푢∗(0,푦∗) = 0 

and 
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휕푇∗

휕푡∗
=

1
푃푒

휕 푇∗

휕푦∗
+
퐸푐
푅푒

휕푢∗

휕푦∗
+
퐿 퐴
푃푒

1−
푘 푢∗퐿

4 휕푢∗
휕푦∗

… … … … … … … … … … . . (13)				 

Subject to; 

푇∗(푡∗, 0) = 0 

푇∗(푡∗,∞) = 1 

푇∗(0,푦∗) = 0 

2.1 Method of Solution 
Equations 12 and 13 were non-linear time dependent equations and to solve them 
an appropriate numerical method was required, in this case finite difference 
method was used. The finite difference grid was used to calculate the values at the 
mesh point and each nodal point was identified by a double index (푖, 푗). i was set 
to start at 0 to 40 in the computational forward difference grid while j was also 
set to start from 0 to 40 in the grid. Equation 12 and 13 were rewritten in forward 
difference and in conjunction with Crank Nicolson approximation as; 

푢 ,
∗

=
푢 ,
∗ + ∆푡푃퐿

푉 푃∗ + ∆푡
푅푒

푢 ,
∗ + 푢 ,

∗ + 푢 ,
∗ − 2푢 ,

∗ + 푢 ,
∗

2(∆푦) + ∆푡푘 퐿푢 ,
∗

1 + ∆푡
푅푒(∆푦)

(14) 

Subject to; 
푢∗(40,0) = 0 

푢∗(40,40) = 1 

푢∗(0,40) = 0 

and 
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푇 ,
∗ =

⎝

⎜
⎛
푇 ,
∗ +

∆푡
푃푒

푇 ,
∗ + 푇 ,

∗ + 푇 ,
∗ − 2푇 ,

∗ + 푇 ,
∗

2(∆y)

+
∆푡퐸푐
푅푒

푢 ,
∗ − 푢 ,

∗ + 푢 ,
∗ − 푢 ,

∗

2∆푦
+
∆푡퐿 퐴
푃푒

−
∆푡퐴퐿 푘 푢 ,

∗

4푃푒
푢 ,
∗ − 푢 ,

∗ + 푢 ,
∗ − 푢 ,

∗

2∆푦 ⎠

⎟
⎞

÷ 1 +
∆푡

푃푒(∆푦) … … … … … … … … … … … … … … … … … … . . (15) 

 Subject to; 
푇∗(40,0) = 0 

푇∗(40,40) = 1 

푇∗(0,40) = 0 

3.0 Results and Discussion 
On using a computer program so developed for this specific research problem, the 
results were obtained by varying Reynolds number Re, Eckert number Ec ,Peclet 
number and  surface curvature, Kr. 

From Figure 1, we noted that: 

(i) When Reynolds number was increased from 5 to 10, we noted that from curve-
ii, the free stream velocity of the fluid particles reduced from 2.50423866 m/s to 
0.937234433 m/s.  

This was because when Re was increased, inertia forces increased and these forces 
tend to oppose bodies from accelerating hence reduced velocities.  

(ii)When the radius of curvature, Kr was increased from 0.5 to 1, we obtained 
curve-iii where the free stream velocity of the fluid particles increased from 
2.50423866m/s to 3.904712m/s. 

This was because when the curvature was increased, this led to increase in the 
velocity gradient hence increased velocities. If the curvature of a particular body is 
increased the velocity gradient also increased and when the curvature was 
reduced the velocity gradient reduced. 
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From Figure 2 we note that:  

(i)When Re was increased from 5 to 10, from curve-ii we noted that the heat 
dissipated in the boundary layer reduced from 0.579673 K to 0.0559 K. 

This was because when the value of Re was small the viscous forces dominated 
over the inertia forces and if this was the case, large viscous forces resulted to 
increased friction between the surface of the body and fluid which also brought 
about increased dissipation of heat within the boundary layer. When Re was large, 
viscous forces were minimal and hence the friction between the surface and the 
fluid was minimal which resulted to minimal dissipation of heat within the 
boundary layer. 

(ii)When Kr was increased from 0.5 to 1, from curve-iii we noted that the heat 
dissipated in the boundary layer increased from 0.579673 K to 1.109492 K. 

This was because when the curvature was increased, there was increased velocity 
gradient, the increased velocity gradient led to increased shear stresses. These 
shear stresses brought about friction between the fluid and the surface and in turn 
this friction force led to dissipation of heat within the boundary layer region 
represented by the formula 

 휏 = 휇 , which implies that when the velocity gradient increases it leads 

to an increase in the shear stress and in turn increased dissipation of heat. 

From figure 3 we note that;- 

(i)When Ec was increased from 1 to 10, from curve-iii we noted that the free 
stream velocity increased from 2.504238662 m/s to 2.504238663 m/s. 

This was because when Ec was large; it implied that the kinetic energy dominated 
the boundary layer enthalpy which meant that the particles or molecules of the 
fluid had high velocities. When the Ec number was small, it implied that the kinetic 
energy was small and hence the particles had low velocities, hence when Ec was 
increased, the velocity also increased. 

(ii)When Pe was increased from the 2 to 20, from curve-ii we noted that, the free 
stream velocity increased from 2.504200941 m/s to 2.504201 m/s.  

This was because for large Pe it meant that rate of advection of the fluid 
dominated the flow rate of diffusion of the same quantity driven by an appropriate 
gradient, hence the fluid particles had high velocities which led to higher velocities. 
 
From figure 4 we note that:  
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(i)When Ec was increased from 1 to 10, from curve-ii we noted that, the heat 
dissipated increased from 0.576463 K to 5.757413 K. 

This was because for large Ec, it implied that the kinetic energy was large and 
hence the velocities were higher also when these particles increased in velocities, 
the vibrations also increased and this led to increased collision of the particles. 
These increased collisions of particles brought about dissipation of heat in the 
boundary layer region. 

(ii)When Pe was increased from 2 to 20, from curve-iii we noted that, the heat 
dissipated in the boundary layer increased from 0.576463 K to 0.995561 K. 

This was because large Pe led to increased velocities, this increased velocities of 
the fluid particles led to increased collision which in turn led to increased 
dissipation of heat. 

3.1 Data Representation 
The following data representation was obtained after the solving the equations 
governing the fluid flow. 

 

Figure 1: Velocity profiles for-Ec=1  Pe=2  V=0.5  A=1  L=0.1 Pt=1 
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Figure 2: Temperature profiles for-Ec=1  Pe=2  V=0.5  A=1  L=0.1 Pt=1 
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Figure 3: Velocity profiles for- Re=5 Kr=0.5 Pt=1 L=0.1 A=1 V=0.5 
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Figure 4: Temperature profiles for- Re=5 Kr=0.5 Pt=1 L=0.1 A=1 V=0.5 
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4.0 Conclusion 
For a fluid flow over an axi-symmetrical body with curved surfaces ,it was observed 
that when Reynolds number, Re was varied, that is the ratio of the inertia forces to 
the viscous forces say when Re was increased, the boundary layer thickness 
decreased and inertia forces dominated the viscous forces. When Re was 
decreased, the boundary layer thickness increased and inertia forces decreased. 
This matched the theoretical explanation since for increased Re, the viscous forces 
reduce and the boundary layer thickness reduces and this in turn reduces the 
dissipation of heat within the boundary layer. Hence when Re was increased, the 
boundary layer thickness reduced, velocity reduced and the temperature also 
reduced and when Re was reduced, the boundary layer thickness increased and 
the temperature also increased. Hence for a fluid flow over an axi-symmetrical 
surface with curved surfaces Reynolds number, Re is inversely proportional to the 
boundary layer thickness and both the velocity and the temperature. 

When curvature of the surface was varied, this led to change in the velocity and 
also the temperature. When the curvature of the surface was increased, this led to 
increased velocity and increased temperature. When the curvature of the surface 
was decreased, this led to decreased velocity and temperature. Hence for a fluid 
flowing over an axi-symmetrical body with curved surfaces, the curvature was 
directly proportional to the temperature and the velocity. 

When Eckert number was varied this also led  to variation in both the temperature 
and the velocity. When Eckert number was increased, this led to increased velocity 
and also increased temperature. When Eckert number was decreased, this led to 
decreased velocity and also decreased temperature. Hence for a fluid flow over an 
axi-symmetrical surface with curved surfaces, Eckert number was directly 
proportional to both the velocity and the temperature. 

When Peclet number, Pe was varied this also led to variation in both the 
temperature and the velocity. When Pe number was increased, this led to 
increased velocity and also increased temperature. When Pe number was 
decreased, this led to decreased velocity and also decreased temperature. Hence 
for a fluid flow over an axi-symmetrical surface with curved surfaces, Pe number is 
directly proportional to both the velocity and the temperature. 

Reynolds number Re, affects both lift and drag in that when Re was increased, it 
led to decreased drag and when Re was decreased, it led to increased drag hence 
inverse proportionality. When Re is increased, this leads to increased lift and when 
Re is decreased, it leads to decreased lift hence direct proportionality. 
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