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ABSTRACT |

This paper investigates the sensitivities of the variance esﬁmators\ for the ratio
estimator. The model-based estimators Vp and Vi, are fond to be more sensitive to
outliers than the rest of the estimators while the jack-knife variance estimator is the best

on this criterion.
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1.0 INTRODUCTION

The problem of the estimation of the variance of the ratio estimator has recently
received a lot of attention. Within the past three decades avnumber of variance estimators
for the ratio estimator have been suggested in the literature. This has left a practitioner in
some sort of dilemma as to which estimator to use in practice. To help a practitioner
make a choice, a number of comparative studies have been. carried out. The criterion that
has been used in these studies is that of bias-robustness (Roy_ail and Cumberland 1978).
On this criterion the jack-knife variance estimator and the bias robust variance estimator,
vp of Royall and Cumberland (1978) have emerged winners. But an estimator of choice
between these two estimators has not been resolved in the literature.

Bias-robustness is not the only criterion to use to compare estimators. Another -
criterion, which has rarely been used in the literature, is the sensitivities of the estimators
to outliers (Hampel 1974). We use this criterion in this paper. On this criterion, the jack-

knife variance estimator is more robust than the bias-robust variance estimator Vp.

2.0 MEASURE OF INFLUENCE
There are two main ways of assessing the sensitivity of an estimator to outlying
values. One is based on some form of theoretical influence function and the other on case

deletion.
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The concept of an influence function is due to Hampel (1974). It measures the rate
of change of an estimator with variation in the specification of the data. Let F be the
distribution from which the data are generated. Then if T(F) is some form of functional of
interest the rate of change of T(F) to some perturbation in F say G=(1-¢ ) F +ed x at a
point x, is given by the function:

rG)-T(F )j

‘ lim
IF(F) =
e—>0 &

The case deletion method of assessing sensitivity is as follows. Let & be an estimator,

* calculated from'the’sample’(yl, Vpererronennnnn ,¥n), of some parameter 6. Let 8  be the
corresponding estimator calculated with the j-th case of the sample excluded. Then two

possible measures of influence of the j-th case of the estimator 8 are
SIF(&) = é G)-e
A ' p *
16y~ SIF(9)7100
@

A
where term SIF (&) the sample influence function.

Deriving theoretical influence functions of the variance estimators can be a
formidable task (Hampel 1974).

Because of this we shall be content with obtaining the sample influence functions in this

paper.

3.0 THE RATIO ESTIMATOR AND ITS VARIANCE ESTIMATORS

A population consisting of N identifiable units with values (yi, Xi), where x>0 (1=

1,2,....,N) was considered. Denote the population means of y and x by Y and X

respectively.

To estimate Y , it is customary to take a simple random| sample of size n and to use the

ratio estimator

Yr=y X/x,
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S,

Where 3; and x are, respectively, the sample means of y and x. The following variance
estimators for the ratio estimator have been suggested in the literature (Royall and

Cumberland 1978).

1 - f xr X 1 4 . 2
V., = p— _'_Z e /(1 - ki)
n X n 1
- . a2
VL=1—f x:2X__1___ €iX; e 1

v, =(1-f) X 2= 1ZD )

A

where: € ;=y;-1x;, r= -, k=x/nx ,

SRS

X represents the mean of x's in the non-sampled units and Dy is the difference between the ratio

(n; -y (n ; -X;) and-the average of these n ratios.

4.0 SAMPLE INFLUENCE FUNCTIONS
The sample influence functions of Vy, V,, Vp, Vj, and Vi was obtained. Since the

algebra involved is straight forward, it is not included. Simplification gives the results as

follows (Odhiambo 1991, Wafula 1988).
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One obvious observation from equations 2 - 6 is that the influence of a sample point on

the variance estimators depends on two main factors:

(1) The residual of the point and; (ii) The leverage of the point.

From equation 2 we note that a point with a large residual will have a large influence

on Vo. The first term in the curly bréékets in équation 2 is negative and for a large

residual this term is larger, in magnitude than the second. Hence in this case the change in
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Vo will be negative. The change will be much larger if the residual for the i-th point is
negative and
Zxje>0.

Noting that (I-ki)'l>1 it follows that a high leverage point will inflate both terms in the
curly brackets of equation 2 but this time the second term could as well be larger than the
first. Hence in this case the change in Vo can be negative or positive. A point which is
both an outlier and high leverage point will inflate both terms of equation k2. The second
term will be smaller than the first. Hence the change in Vo will be negative. [For detailed
proofs see Odhiambo (1991), Wafula (1988)]. |

From equation 3, if SIF (Vo) > 0 then SIF(V;) >0 iea positive change in Vo will
imply a positive change in V; . Further, if SIF (Vo) > 0 and X >x (1-k))* then Vy-will
be more sensitive than Vo . This result is confirmed in our empirical study in the next
section.

If f is negligible, and the sample is balanced then SIF(V3;)>SIF(V;). It is also clear
that both SIF (Vp) and SIF (V1) are directly proportional to X;s and are more influenced
by the leverage points than the rest of the estimators. The empirical results are in 4 sets

of data.
EMPIRICAL STUDY , v
Results on the sensitivities of the above variance estimators to influential points in

four populations are given in Table 1.

Table 1. Study populations

Population  Source _ X Y ‘
1. "Cochran (1977) p- 152 Size of city in U.S in 1920 Size of city in U.S in 1930
2. Olkin (1958)  Size of city in U.S in 1940 Size of city in U.S in 1950
3. Olkin (1958) ~ Size of city in U.S in 1930 Size of city in U.S in 1940
4 Ministry of Finance and Number of beople employed  Number of people in town
Economic Planning (Kenya) in town in 1963 in 1966.
and Earnings (1971)

When a simple regression model is fitted in these populations the following points are
flagged as unusual: 5, 10, 18, 26 and 35 in population 1; 1, 4, 12, 23, 33 and 38 in
population 2; 1, 4, 5, 12, 23, 33 and 38 in population 3 and 1, 2 in population 4. Some
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characteristics of these points are given in Table 2. The characteristics include their
standardised residuals, their leverages, and whether the influence is due to its residual, x

value or both.

Table 2. Some characteristics of the influential points

Population Point Standardised K; * Influence due to*
residual
i 5 ' 0.25 10.09 X
10 0.29 0.09 X
18 1.14 0.12 X
26 2.29 0.01 R
35 2.99 0.01 R
-2 1 0.40 0.096 X
4 3.93 0.055 R
12 0.14 0.125 X
23 2.46 0.029 R
33 434 0.11 RX
38 0.6 0.084 X
3 1 -0.20 0.098 X
4,73 0.043 R
5 2.16 0.019 R
12 -1.79 0.132 X
23 2.78 0.022 R
33 -0.96 0.115 X
38 0.23 0.085 X
4 1 4.60 0.527 RX
2 -5.03 0.207 RX

X indicates influence due to X value; Y indicates influence due to residual; RX indicates influence due to
both x value and residual.

The samples obtained in these populations as follows. v_In population 1, 2 and 3
samples of size 40 were used which were obtained by dropping the last nine points of
population { and the last ten points of populations 2and 3. In population' 4, a sample of
size 30 ‘obtained by dropping the last 4 points of the populationv,was used. When the
simple regression model was fitted in the four samples th_e,‘same points as those for the

populations were flagged vas being inﬂuential.
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In each sample we calculation of the variance esu.nates was done using the complete
data and when each of the influential points is removed, followed by calculation of the

sensitivities using I (.). The results are given in Table 3.

Table 3. Sensitivities of the estimators

'POPULATION 1
SENSITIVITIES _
POINT ESTIMATOR _ 5 10 18 76 35
Vo 172 163 163 17 123
Vs 414 40.7 499 009  -110
Vo 79.5 79.4 1108 -169 208
\2 348 33.8 430  -138  -15.1
v, 67.0 630 911 71.1 5.3
POPULATION 2 ‘
POINT ESTIMATOR 1 4 i) 73 33 38
Vo 150 265 158 33 430 160
Vs 407~ -178 513 36 . 281 381
Vo ' 803 39 1133~ 18 6.1 %93
v; 36.7 200 477 13 338 334
Vi 63.2 36 871 50 202 577
POPULATION 3
POINT ESTIMATOR 1 7 5 12 33 335 38
Vo 157 478 029 15 91 111 165
Vs 424 431 36 348 50 417 391
Vp 833  -407 22 906 92 920 629
\2 376 -461 15 272 95 365 376
Vi 668 -175 -52 853 -133 761 58.1
POPULATION 4
“POINT ESTIMATOR 1 7}
/ Vo 275 831
V, 1343 732
Vb 35653.8  1166.0
v, 137.7 -84.0
Vi 37047.1  5694.1
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The results are summarised as follows:
1. For points that are influential due to their leverage, Vo is the least sensitive while Vp

is the most sensitive. The theoretical comparison between Vo and V, that were

made in the last section hold well for these points. It was noted that if X >x (1-
ki)? and SIF (Vo) > 0 then V; is more sensitive to the high leverage point than Vo
is. Indeed this is the case for all the high l'ever’age‘points in our empirical study.

2. ' No single estimator is a clear winner when a point is influential due to its large
residual. The same is true for points that are both outliers and high levéragé points,
However, in this case the poor, performances of Vp and Vi in population 4 are
evident.

3. On average the randomisation estimator Vy, V, and the Gechurufe variance estimator
and V; were more robust to all types of outlying points than the model based

estimators Vp and Vy, in our empirical study.

3.0 CONCLUSION ‘

From bias-robustness point of view, previous comparative studies of the variance
estimators of the Tatio estimator have favoured the estimators Vy and Vp (Odhiambo
1991, Wafula 1988). These studies have also shown that Vi is non robust and hence
~ recommended that Vy_ should be used in practice with care.

On the othe‘r hand our limited empirical study points to a tentative conclusion that
the model based estimators Vp and Vi may hot be robust in the sense that they are
sensitive to certain types of influential points. On the whole, V;, was more robust than
Vp. However, no firm conclusion can be drawn from a single empirical study and so
more empirical ‘studies are needed especially careful theoretical study of the influence

‘functions of these variance estimators.

'REFERENCES
CochrankW(.')G. (11977) Sampling Techniques (3rd Edition). Wiley New York.
Hampel F R (1974) The influence é_urve and its role in robust estimators. J4S4 69,
383-393.

73



Otieno and Wafula | Outlier robustness in finite population

Olkin I. (1958) Multivariate ratio estimation for finite populations. Biometrika 45, 145-
165. |
Odhiambo R.O (1991) Unpublished MSc Dissertation, Kenyatta University.
Royall R M. and W. G. Cumberland (1978) Variance Estimation in Finite population
sampling. JASA 73, 351-358.
Wafula C. (1988) Some contributions to variance estimation in Sample Surveys.

Unpublished Ph.D thesis, University of Kent at Cantebury, U.K.

74



