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ABSTRACT

Time series data encountered in practice depict properties that deviate from those of gaussian
processes. The gamma and exponentially distributed processes which are used as basic models for
positive time series fall in the class of non-gaussian processes. In this paper, we develop new and
simpler representations of the p" order autoregressive and the q order moving average processes in
gamma and exponential variables. The gamma autoregressive moving average (GARMA(p,q)) model
of order p and q and the exponential autoregressive moving average (EARMA(p,q)) model of order p
and g are consequently developed. The distributions of developed models, unlike those studied by
Lawrance and Lewis (1980), can be determined given either the distribution of the innovation
sequence {e,} or that of the process itself. The autocorrelation structure, which is a major identification

tool in time series, is discussed for each of the proposed models.
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1.0 INTRODUCTION

The main goal of the initial studies on processes with non-gaussian distributions was to generate
processes with simple properties. These were expected to yield analytically and computationally
tractable models for non-independent (markovian) and easily simulated sequences of marginally
exponentially distributed random variables.

Lawrance and Lewis (1977) introduced the exponentially moving average of order one process
(EMA (1)), while Gaver and Lewis (1980) discussed the exponential autoregressive (EAR(1)) of
order one. Jacobs and Lewis (1977) established various properties for the exponential autoregressive
moving average of order one (EARMA(1,1)) and Lawrence and Lewis (1980) extended the study to
establish conditions for the existence of the exponential autoregressive moving average process
(EARMA(p,q)). Sim (1990) proposed a first order Gamma (1/ 4 ,k) while Tong (1995) pointed out a
possible representation of exponential processes as special cases of threshold models.

Processes having gamma distribution form a generalization of the exponential distribution.

However, properties of gamma processes are much more complex than the corresponding exponential
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process. In fact the functional forms of general models with the generating mechanisms having gamma
distributions have so far not been studied. However, Gaver and Lewis, (1980) showed that if X, is a
gamma (A,k) in the linear additive first order autoregressive process of the form X=¢X, +e, for0 < ¢ <
1, then e, has the moment generating function of an infinitely divisible distribution. This enables the
autoregressive, moving average and mixed gamma processes to be constructed.

Lawrence (1982) discusses the innovation distribution of a gamma autoregressive process of order
one, denoted as GAR(1) process but he gives no functional form of the model. More recently Lewis,
Mackenzie and Hugus (1989) studied a non-linear random coefficient'model for gamma procésses with
the coefficients having beta distributions.

A missing link in these studies is the development of models that have simple properties and whose
functional forms facilitate generalization to higher orders. In this study, models of the GARMA (p,q)
processes with simple properties are developed. The results are then extended to the development of
simpler models for the EARMA(p,q) processes. Linear processes of the autoregressive type that have
gamma and exponential distributions are developed in Section 2.0. This is followed by a study of the
gamma and exponential moving average processes in Section 3.0 and finally in Section 4.0, the gamma
and exponential autoregressive moving average processes are discussed. The autocorrelation structures
for the developed models are also discussed. Some distinguishing features between these processes and

gaussian processes are also outlined.

2.0  GAMMA AND EXPONENTIAL AUTOREGRESSIVE PROCESSES
The first-order gamma autoregressive (GAR(1)) process is the simplest in the family of gamma
processes and its innovation distribution can be obtained by considering the AR(1) process X; which has
a gamma(1>0,k) distribution. Thus for the AR(1) model of the form X= ¢X,.,+e,, where 0< ¢<I and {e;}
is the innovation sequence, we suppose that the process X; has a gamma(A,k), distribution. The
distribution of e, is then derived by the moment generating function technique. That is, if X; is
gamma(A,k), then its moment generating function is
: k
My, (s)=[~4—]A implying that /., (s)=[¢+(1-¢)—L]
A (A-53)

which is the moment generating function of the a particular compound Poisson distribution (Lawrence,

1982) which, is also a finite mixture of gamma distributions. When k=1, the moment generating function
(m.g.f) of e corresponds to that of an exponential (A > 0) random variable. When k=m, m>1, the m.g.f

of e, is obtained as
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. B 1 m
M. ()=¢" tmg™ (1-¢)(1%)+...+(I~¢) (ﬂj

which is a mixture of a degenerate random variable with mass at zero, a gamma random variable with
parameter (A>0) and (k-1) gamma random variables with parameters (A>0,m), m = 2,3, ... The

difference equation for the series X, with the corresponding probabilities (w.p) takes the form

Yl wp ¢
" |lex., +E, wp 1—¢”
where
m~|
. wp 78 0=9)
1_¢m
E = 1
o wp 9"
1_'_ ¢Nl

which can easily be represented as a threshold models (Tong, 1995).

The autocorrelation function at lag h for the GAR(1) process is obtained as p, = ¢pn. forh=1, 2, .....
Thus py = ¢py = ¢, 1.6, ¢ = p; which is analogous to the case of the standard AR(1) and for k=1, the

autocorrelations are those for the EAR(1) processe.

The AR(2) process is given as X, = ¢1 X + $2X2 + e where 0 < ¢, ¢, < 1. Suppose that the process X,

has a gamma(A>0,k) distribution, then the moment generating function of ¢, is obtained as

A-¢ sN(A- ‘
ML,,(S):( /129][ fzsj

=2 (’;’Xl — (4 +8,)) (B +8)" (7’1:] + 8, bys A 5)

for m=1,2,...k and g(¢1, &2, A,s) is a function of ¢y, ¢», A and s which has a negligible probability. The
difference equation for the GAR(2) process X, takes the form
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PN, P X, L, w.p (¢, +¢,)"
¢, X, ¢2Xr—2 +e, w.p2 (¢x + @, Wi - {5’{’1 + ¢2 )
X, =
A\¢|X:-1 t,, +E, w.p 1-($ +¢,)"
where
p
e(l) w.p m(¢1 +¢2)m-](1"(¢1 +¢2))
' 1-(¢, +¢,)"
E =
m m-x X
x (¢1+¢’2) (1“(¢1+¢2))
e,""‘ , w.p - ,x=3,4,,.m=k.
1— (¢1 + ¢2 )
The corresponding autocorrelation function for the case when k=m, m>2 is obtained as py=¢;pn.1+d20n-2
for h=1,2, ... The autocorrelation functions at lags 1 and 2 are p, = ?1——%-} and
- Y2

p, = ¢,p, + @, respectively.

In general, for the p" order auioregressive gamma (GAR(p)) process, we consider the AR(p) process
X#=01 X1 H0r X+ + ¢pXip Where 0 < ¢y, ¢a, ... .0, < 1 and e is the innovation sequence. Suppose X is
gamma(A>0, k), then e, will be a mixture of gamma (A>0,k) random variables. The moment generating

function of e, is obtained as

b5V (a-d.5s) (2-¢ )
M, (s)-:(’l/1 f”;sj (’1 fzsj [__wfs]

-Sli-Se] (o) () retbinsio

for m=1, 2, ...k and g(¢1, ¢,..., P A,8) is a function of ¢i, ¢s,... ¢, , A and s which has a negligible

probability. This is the moment generating function of a convex mixture of a degenerate random
variable with mass at zero, and (k-1) gamma( >0,m) random variables where m=1,2,.. k. Thus the

difference equation generating the sequence X, is
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$X X ,+.+P X, w.pa” .
X+ X, +.+9,X,_ +e, w.p ma""b
X, =
$X X o +P, X, +e" D, wp b"

P Vi .
where g = Zgbi, b=1- Z¢i and {e is a sequence of i.i.d gamma(2>0,1) random variables, {¢} is
i=l

i=l
a sequence of i.i.d gamma(A>0, j+1) random variables for j= 1,2,....(m-2). The autocorrelation function
for the GAR(P) when m > 2, at lag his obtained as p, = ¢,p,, t...+ ¢ p, , whereh=L2, .., p.
It is to be noted these autocorrelation functions have a slower decay but similar to those of the normal
distribution. This is due to the distributional similarity of X; and e, in the above models which facilitates
a simpler derivation of model properties as is the case for the normal distribution. This behaviour
contrasts with the autocorrelation of processes studied by Lawrance and Lewis (1980) which decay at a

faster rate and make it difficult to distinguish the processes from the gaussian ones.

2.1 GAMMA AND EXPONENTIAL MOVING AVERAGE GAMMA PROCESSES
Consider the backward MA(1) process represented by the relation X=6e,,+¢, where 0<0<1. Suppose

that e, is distributed as a gamma(A>0,1) random variable, then

A4 AY 4 Y
MX,CS'):m,;‘Z_‘;:(94"(1-‘9)/1_‘9][1—_—5;}

- ) o Y
"(04‘(1-0)/14][”,1-@ J

N 205(A-6s)+6°§°
(A=s)(A-&)

This implies that the random variable X, is realized as a degenerate random variable with mass at zero, a

A
=0+(1-0
( )/l-s

gamma ( A >0,1) random variable and a random variable g, of negligible probability. The differences

equation for the first order moving average gamma is obtained as

X = Ge, , w.p @
t 6e,., te, , wp 1-0

which is corresponds to the EMA(1) proposed by Lawrence and Lewis (1982). For the case when k =2,

we define a foreword first-order moving average gamma process by the relation
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Ge, , , w.p 0’
: - _J6e w.p i/
w.p 20(1-0) or X, —{96:_: e Wp i -’

G, +e wp (1-60)°

where

. w 20

" .p1+0

= 1-6
() -

e’ , wp ——

! 1+60

with {e;} being a sequence of i.i.d gamma(A>0,1) {¢'"t} is a sequence of i.i.d gamma(A>0,2) and

< 1. In general, when k = m, we define a first-order moving average by the relation
0@ L, Wp m
He:_: +e, , w.p mO" " (1-0)
X, =1 .
e, +e"™", wp (1-0)"
where {e} is a sequence of ii.d gamma(l >0,1) random variable and {e¥} j = 1,2, ..,(m-2), is a

sequence of i.i.d gamma (A>0, j+|) random variables.

The lag one autocorrelation function for GMA(1) defined above are obtained as

P, = o1-9) —, p,=0forh>1.
(¢ + (1-0))

Consider now the stationary MA(2) process given by the relation X, = 0,e..; +6,e., + &. Suppose that

the innovation sequence is distributed as gamma( ,k), then the moment generating function of X, is

k k k
ey A )
MX’(S)_[E-Q,J [i-azsj [l-s]

When k=1, this simplifies to the form

obtained as

+g

A
MX,291+92+[(1“91)(1'92)/1_S

where g has probability 6,6,. This is the m.g.f of an EMA(1) process. When k=2, the above equation

simplifies to
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2
M=(0,+6,) +(1—e,)2(1-ez)2(1i] .

+2(0,+0:X1-9)(1-6:

where gl is a function of 6, 8, A and s that has negligible probability. The difference equation for the

process when k=2 takes the form

Oe,_, +0,e_,, wpb +8,
2
X, =46, +0,e,,, wp {zr](l—Hi)or

g w.p 0,0,.

This represents the EMA(2) process where 0<m(1-6,)<1 for i=1,2, implies 6, <!, 6,<l or 6, <1,
8,<1/2. For this model, if e is assumed to be exponential(}X), then X, is also an exponential random
variable. The serial dependency of this model also stops at the second lag and the autocorrelation

functions are obtained as

01[02 +f[<1—9,.>] 92[121(1—03]

P = - and p, =

O +6; + [H(I—G)JZ 0} +0] + [H(l 9)]

Similarly the q™ order moving average gamma process is defined by the relation

Oe,_ +...+0.e._,, - w.pa’

Be._ +..+0e_, +e, w.p 2a’"'b
X, =x«.

Oe,  +..+0e,, +el M, w.p b?

q q
where b=]](1-6,),a=)_0:,{e} is sequence of i.i.d gamma() >0,1) and { e} is a sequence of

i=] i=l

i.i.d gamma(A >0,q) random variables.
2.2 GAMMA AND EXPONENTIAL ARMA PROCESSES

The GARMAC(1,1) process is a generalization of the GAR(1) and GMA(1) processes discussed in

sections two and three above. The probabilistic linear model when k =1 is defined as
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é( e, w.p 0
o e, +4;, wp (1-6)

where

t ¢AI—] + € w.p (1 - ¢)
fort=0, 1, 2,... When k = 2, we define a GARMA(I, 1) by the relation

4 _{¢Az~l s w.p ¢

Ge,, , w.p 6?
=6, +4, , w.p 20(1-6)
e, , +AY wp (1-60)°

X

H

where

¢4, . w.p ¢2
A! = ¢A1—l +e, ] w.p 2¢(1 - ¢)
¢A1—l + ez(l). » w.p (1 - ¢)2

fort=0,1,2, ...and e,(” isa gamma(k>ﬁ,2) random variable.

in general, in the case when k = m, we define a GARMAC(1,1) by the relation

r

G, , w.p 8"
Ge, , + A, , wp m@" ' (1-0)

Ge,_, +4"",  wp (1-0)"

~ where

P4, » w.p ¢" 5

¢, +e, , wp me""(1- @)
Az —_d. ‘ .

gA_ +e", wp (1-¢™)

“i‘or 0, 1,2,...and { A,(m_n }is a sequence of i.i.d gamma(A >0,2) random variables.

The EARMAC(1,1) process is a generalization of the EAR(1) and EMA(1) processes and has the
correlation ;structure of an autoregressive moving average process of order one and provides an
alternative to the poisson process. The probabilistic linear model of the EARMA(1,1) model is
defined by
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Ge,;, w.p 6 R w.
X,={ et P for t=0,1,2,..., A,={ b Ar P9
Oeit A, wp (1-0) PA.ite, wp (I-9¢)

The av  :orrelation function for this model is obtained as

_U-e)4
P 0w i1+ g))

for h=0,1,2,...

Using ¢ EAR(2) and the EMA(2) models, a backward EARMA(2,2) process is developed as

¥ Oe,_, +0e,_,, w.p 6, +6,

! 2
Q] €.t gzetuz +4,, w.p 7_2; (- Q’)
where 0<(1-0)),(1-62)<1, A is an GAR(2) process and 0<@,¢,, for t=0,1,2,...... The autocorrelation

functicn at lag h for the above model is obtained as

— (0192+(1‘-(91'192)(1'¢1'¢2)[91¢1+@2¢2])W+R
_[05+05+(1‘91'92)(1’¢1"¢z)(1+91¢1+92¢2)]W+RI

!

where R;=(1-0,-0,)[($,+$2)ry +28,0,7" ], o=var(e), ¥’ are autocovariance functions at
lagh, R=(1-0,-0.)[(4]+¢5)y,+ 2¢,9,7}"] and

b (1-0,-0:)(1-$,-$,)[0,4,+6:8,]w+(1-0,-0,)7,
YO0+ (1-0,-6.)(1-,-$,[16,8,%60,0,])w+ R

for h=2,3,....

The fact that the EMA and EAR models can be expressed in the terms of independent exponential

variables makes the two models appealing and tractable.

The GARMA(p,q) process is a generalisation of the GAR(p) and GMA(q) processes and takes the
form

(Hle,_, +..+0 e w.p a"

q =g
¥ Oe., +..+0,e_,+4, w.p 2a"'b

4

O, +..+0,e_, +A4" . wp b
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9 g
where b = H( 1-6;),a= 29; and A*is a GAR(m) process for m=1,2,..q-1<p. The case when k=1 in
=1 il

(1) leads to the EARMA(p,q) process with A, being a GAR(p) process.

3.0 CoNCLUSION

In this paper, the moment generating function technique forms the basis on which the said models
are developed starting with the corresponding gaussian models. In fact this approach enables one io
determine the distribution of either the innovation sequence or the observed values of such models

like the ones given in the literature. The developed AR(p) and MA(q) processes in gamma and
exvonential variables are generalized into the GARMA (p,q) and EARMA(p,q) models.

A major distinction to the application of the processes developed here and the Gaussian ARMA
models is the fact that the serial correlations are all positive. The models developed in this study also
show . ~ave representations of GARMA(p,q) and EARMA(p,q) models lead to simpler
assessment of properties for these models. Such models forms a basis for alternative modeling of

positively correlated time series.
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