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ABSTRACT

Sinha and Singh (1971 a, b; 1973) have studied recurreni Finsler spaces of
second order and discussed the properties of recurrent curvature tensor and recurrence
tensof fields in therﬁ. Singh h(l981) ha‘s‘ defined generalised recurrent Finsler spacé of
second order and denoted it by G(2-F;). This paper defines G-2 recurrent projective
tensor fields and the. properties of associated recurrence vector and tensor fields in

G(2-F,). The notations of Rund (1971 a) have been followed in this paper.

1.0 INTRODUCTION .
In a Finsler space Fy, the projective curvature tensor field, the projective tensor

field and the deviation tensor field are defined by

1 . j

8 L
Wi = Hiy, + = (Hy, ~Hy )+ —~(3H,, - GH,)

+1
+ nfk_T(nI{jh +th + XI&JHM)m n?.él__l(nHJk +ij + Xrﬁth) ............. (11)
Wi = Hy +—— (M, - Hy) + 2 (nH o+ H ) - f‘j_l(nﬁj-ﬂcﬂj,) (12)
and
1 yi i 1 5yrk : L ' S - .
W} = Hi - H - ——(4H} - dH)x R (1.3)

respectively. Rund (1971 a)

The projective curvature tensor field satisfies the following identities.

wk,,x —w,;h, Wik =W S (1.4)
Wikl =W/, Wix* =0, J,Wix* =-W} s (1.5)
and

Wi + W, +We, =0 (1.6)

Here W, is homogeneous of the second degree in its directional arguments.

The tensor fields satisfy the following commutation formulae

i ¥
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Tow —Tom =-8THL, s (1.7
Tiow =~ Tow = -0 THL -TH, +THL, s (1.8)
(5’@)@\—- (BTw)=0 (1.9)
and

('&kT;)(h) —Thy = TG -TiIGY e (1.10)

where H,, and Hj, are the Berwald’s curvature tensor fields. The Connection
coefficient G;k is positively homogeneous of degree zero in X'  We also have
G;,,k = @GL,, where Gim. is symmetric with respect to its lower indices. Rund(1971

a)

In the recurrent Finsler space F,, the projective tensor field and the deviation

tensor field satisfy the recurrence relations:

Whiom =8V, s (1.11)
and
Wioen =3mWes (1.12)

where a,, #0 is recurrence tensor field (Sinha and Singh, 1973).

It is observed that the projective curvature tensor field W;"h is birecurrent projective

curvature tensor field under the condition G, =0.

Singh (1981) has defined generalised Finsler space of second order as follows:
A Finsler space F,, in which the Berwald curvature tensor field H, satisfies the
relation
Hivom = HinoKa +Higam Hiy 20, (1.13)
where K, and a,, are non zero associated recurrence vector and tensor fields, is called

generalised recurrent Finsler space of second order. It is denoted by G(2-F,). Also the
curvature tensor field is called G-2 recurrent tensor field.
Transvecting (1.13) successively by x’ and x*, we have

Hiom =HioKa +Kbdm (1.14)
and
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H;;(i)(m) = H;J(e)Km + Hll,agm ....................... (1.15)

Contracting with respect to the indices i and nin (1.13), (1.14) and (1.15), we get

Hynm =HpnKa+Hza,, (1.16)
Hynm = Wy Kn+Hea,, 0 (1.17)
and

Hyw =HpK,+Ha, (1.18)
respectively.

2.0 G-2 - RECURRENT PROJECTIVE TENSOR FIELDS

We consider a generalised Finsler space of second order G(2-F,) and study the
recurrence properties of the projective curvature tensor fields, projective tensor field
and the projective deviation tensor field in it. We discuss the properties of associated
recurrence vector and tensor fields also in this section.
Theorem 2.1

In G(2-F.), the projective tensor field and the projective deviation tensor field
satisfy the recurrence relations W .. = ;; oK, +W J_ik a,, and
Wll;(lv-)(m) = Wli(t)Km + W,';a mTeSpectively.

Proof
Differentiating (1.2) twice covariantly and using the equations (1.14), (1.16) and

(1.17), we get

i o ‘ i
Wit = HynKa + Hyd

ki
" n+l [Hj““)Km tagHy = Hy Ky - ija!’m]
i

+ ﬁ[nHWKm +nH, g + X Hyo Ky + K Hy@i| oo @.1)
_—i—[nH. K, +1Ha,, + XHy K, +5'H,a,,|
FERNEY Rk Ve Aem O m wim
From (1.2), the equation (2.1) yields
Wim = WioKa +Wiae, L (22)
Transvecting (2.2) by x’ and using the equation (1.5). We obtain

WI:(!’)(m) =Wy Kp+Wia,, 2.3)
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Definition 2.1

The projective tensor field W, and the deviation tensor field W, satistying the
conditions (2.2) and (2.3) respectively are calle;jd' generalised birecurrent projective
deviation tensor fields. In brief, we write them as G-2 - recurrent projective deviation
tensor fields.

Theorem 2.2

In G(2-F,), the necessary and sufficient condition for the
relationW*, Hj, = Wy K x‘X™to be true is that a,, x'x™ =0
Proof

Commuting the indices ¢ and m in (2.3) and subtracting the obtained result
from it, we obtain
W‘z[u)(m)l - le [([)Kml + lea[,m] ..................... (24)
By virtue of the commutation formula (1.8), it yields

-Wi H, -WH,, +W/H, =2W] K +2Wia,, (2.5)

/m

Transvecting (2.5) by x'x™ and using properties of the curvature tensor H;k and the
deviation tensor H} (Rund (1971 a) ), we get

W H = (W K+ Wi k5™ (2.6)
Let us assume that a,,x'x™ =0, , then (2.6) reduces to

Wi HE =W Koxx= (2.7)
Conversely, if the relation (2.7) is true, then (2.6) gives

WyaX'x"=0. (2.8)
Since W, # 0,, therefore the equation (2.8) implies

X X" =0 (2.9)

Remark 2.1
The associated recurrence tensor field a m 1S NOt symmetric in general.
Theorem 2.3
In G(2-F,), the associated recurrence tensor a,, is homogeneous of degree
zero in k' when the associated recurrence vector K,, is independent of the line

clements.
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Applying partial derivative to the equation (2.3} with .. # 0y o v onf
gy i A . ci ;’ i PSRN

in view of (1.5) with the assumption that K _ is independen?

From the commutation formula (1.10), the equations (1.5} and (2.2), the above
gguation becomes
Wiy Gl = Wi Gl ~ Wi Gl = WIGL, = WG K, + W/, 2.11)
Transvecting (2.11) by %' and noting G}, %’ =0, we obtain
WGa,,% =0 SR (2.12)

since W, # 0, the equation (2.12) establishes the theorem.
Cor. 2.1

In an affinely connected G(2-F,), if the associated recurrence vector K is

independent of the line elements and G, = 0, then the assccisted recurrence tensor

a,, 1s also independent of the line elements.

It is direct consequence of the equation (2.11) with the assumption G;kh =0,

since W, # 0.

Theorem 2.4

In an affinely connected G(2-F,), if the associated recurrence vector K, is
independent of the line elements along with condition G}, =0, then the projective
curvature tensor field satisfies the relation

jikh(l)(m) = Wiikh(l’)Km + Wjikh A

Proof

The covariant differentiation of (1.1) with respect to the indices¢ and m

yields.

i o i _
Wi = Hiuom + 777 [Hk.hm«m) thxﬂu]
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¥ —xf:—iﬁl[& j (H khuxm)) - 5’f(H hk(““"))]

Eh .
O o
tT 1[“Hjhm<m) + Hyoym + % aj(Hhrm(m))]
5 i .
o r
”"1" nH iy + Higopm + X ﬁj(Hh(,)(m))]

......................... (2.13)

by virtue of G;kh =0 and the equation (1.10). In view of the equations (1.14), (1.16)

and the Cor. 2.1 the equation (2.13) becomes

; W
Wiacem = K Hiae + H[ka)“‘Hhkm}

Xi

+ ﬁ[é’(Hmo) é(H‘*“F”)]

K l

2 “1‘ nH ) + Hyyey + a(Hmw)]

) ”I-;ié;}j—:—i‘[nij(f) + Hygey + xréj(Hk’m)]}

s
4'an{ﬂlkh +“:”I(Hkh - hk)+ (ﬁHkh - a]Hhk)

........ (2.14)
5 ’ Sy :
+ (0t + Hy, + K'GH,, )= 2 (nH , + H, + GH,,)
Simplifying (2.14) by the equation (1.1), we get
Wi = Wian Ko +Wiga (2.15)

which proves the theorem.

Definition 2.2

The projective curvature tensor field Wj‘kh satisfying the condition (2.15) is

called generalised birecurrent projective curvature tensor field.

Remark 2.2
Theorem 2.1 holds good in G(2-F,) but Theorem 2.4 is true in affinely

connected G(2-F,) when the associated recurrence vector field K, is independent of

the line elements. Conversely if the project curvature tensor field W;‘h satisfies (2.15),

20



Uppal \ Generalised Recurrent Finsler Space
then from (1.4) the projective tensor field W, and the projective deviation tensor field

W, satisfy (2.2) and (2.3), respectively.

Theorem 2.5

In G(2-F,), if W, is G-2-recurrent projective deviation tensor field which is
neither zero nor a recurrent tensor field, then the associated recurrence vector and
tensor fields are unique.

Proof

The equation (2.3) shows that the projective deviation tensor field W, is G-2 -
recurrent. Without loss of generality we can assume that it also satisfies the relation
Wiom = WioKn +Wal, L (2.16)
Subtracting (2.16) from (2.3), we obtain
WiBan +WeA, =0, 217
where B, =K -K! and A, =a, -~a,,.
Here we discuss the following cases:

Casel

Let K, =K! and a,, #a,,. Then B #0 and A, #0 which yields

W, =0 from equation (2.17).

Casell
LetK_ #K/ and a, =a;, . Then B, #0 but A, =0 which gives

W, =0 from (2.17) and hence W, = 0.

Case 11

Let K_ #K!’ and a,, #a,,. Inthis case both B, and A, are non zero. Let
B'™ be any contravariant vector field such thatB’®B_ = 0 , then the inner product

with B'™ in (2.17) yields
Wi =v,W., (2.18)

where v, =-A, B™ /B _B™
In (2.18),if v, = 0, then W, = 0 and hence W; =0

Butif v, # 0, then W, is a recurrent projective deviation tensor field.
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