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ABSTRACT

Kernel estimators for smooth curves require modifications when estimating
near end points of the support, both for practical and asymptotic reasons. The
construction of such boundary kernels as solutions of variational problem is a difficult
exercise. | A

For estimating the error variance of a ratio estimator, we suggest an alternative
estimation procedure using the theory of local linear regression. The proposed
estimator adapts robustly to both ihtet‘iér and boundary poinﬁts, We also derive the
asymptotic mean square error of the new estimator and conditions under which it is

efficient.

1.0 INTRODUCTION

Consider a finite population of N identifiable units: U = (U Lorereeeens ,UN).
Suppose that to‘ each of these units there exists two numbers (xi,yi)which are
positively correlated and are such that (xi,yi) >(0,0) VieU, where x,’s is known
vV (i €eU), but y, is known only if 1 €s, s is a subset of U chosen using a probability
selection plan, P, which assigns a probability P(s), to a given s such that P(s) >0,

Y P(s)=1, S=U{s}. Given s, we can compute a statistic T(y) based on the
s=8

observed y;'s (i €s) and all the prior values x,'s, where y = (yl, ......... ,yN). Let
T(y) be the finite population function (i.e. census value) of interest. The problem

considered here is that of estimating the variance of ’i’(y) -T(y).
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2.0 A MODEL BASED APPROACH

A standard approach to estimating T{(y) assumes that the values of y can be
looked upon as realisation of some unknown random variables Y = {Yi, .......... SYN)

whose conditional distributions can be specified, with X = (Xi, ...... 4.‘..,XN) being a

conditioning parameter. This distribut}on is generally described by a probability
model, & .

A commonly used model in survey sampling is (Cochran 1977);

X, :Xi):ﬂxi

E(Y,
var(Y) = o’x,
cov(Y,Y,)=0 ifizj (1)
where 8 and o’ are unknown positive constants.

A Best Linear Unbiased Estimator (BLUE) for the population total

T(y)=T= Z vy, , under model (1) is the ratio estimator:

Givens, and all x,'s T, , can be computed. Once T, has been computed the
next and more formidable step is the assessment of the accuracy of TR (ie. the
precision of TR) as an estimator of T. Under a model based approach, a popular
measure of the accuracy of 'i"R is the variance of the prediction error.

E= TR - T. Under (1), this error variance is given as

var (T, - T)= [(N n)xj Yo+ 307 e (3)

ieS icr

where r is the complement of s, X,, X, are the population and non-sample means of

X, 's respectively. An optimal estimator of (3) from standard weighted Least squares

theory is
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o[ MR

n(n-1)X, ) 5 x,

where &, = y, - Rx,.
The estimator V, is optimal only if (1) is true, which is unlikely to hold in
practice. This iminediately raises the question of whether it is possible to obtain

alternative estimators of (3) which are robust to miss specification of the variance

model (i.e. var(Y,[X,}-o7x,).

3.0 ROBUST VARIANCE ESTIMATION VIA LOCAL LINEAR REGRESSION
If one adopts design based approach to survey sampling, this question of

robustness is easily answered, just replace V, by a design unbiased estimator of (3).

For example one could use the classical variance estimator (Cochran, 1977),

A2
€
i

v,- Mook

T n-1

This estimator is unbiased under repeated sampling from finite population sampling,

irrespective of the link between the survey variables Y and the bench mark variables.
From a model based perspective, design unbiasedness lacks appeal. This is a

property that holds over repeated sampling. The survey statistician has only one set of

sample data. The worry is how to protect against incorrect inference given these data,
A natural alternative is to adopt a non-parametric model based approach. That

is we replace the parametric working model (1) by a non parametric model linking
var(Yi{X ;= xi)and X,, and then use an estimator that performs reasonably with

respect to this expanded model.
Let

E(Y,

X; = Xi) = px,
yar(YilXi = xi) = o’ (x,)

cov{Y,Y,)=0  Viej e (4)
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where o%(x;) is differentiable up to second order. Under this model, the error

variance of T, is

Var{('fR~T) ((N ) J S ol(x)+ 262K, (5)

ieS ier

Noting that
Eg(efin ==xi)=0'2(xi)+0(n“‘) ................................... (6)

it follows that we can take & as a naive estimator of o’(x;), and then seek an

estimation procedure that achieves a more appealing estimator, based on this initial
estimator.

In a small neighbourhood of xj, it can be shown that

o (x)m o (x )+ o (X)X = X) )
where o7 (x,) is the first derivative of  o’(x,). For jes, and from (6), it
follows that (7) can be approximated, (if n is large) by

e~ o’ (%) + o (x,)(x; - x;) = a+ b(x; - x;).
Thus the problem of estimating o*(x,), and hence (by extension) (5) is equivalent to

a local linear regression problem: estimating the intercept a. Now consider a weighted
(local) linear regression, finding a and b to minimize:

Z(éﬁ—arb(xj »xi))zk[xi ;xj) i (8)

i=1

. where k(.) is a kernel function of the parzen type. Let a and b be the solution to the

weighted Least squares problem (8). Simple calculation yields
2 Wi
jsS

W,

jsS

where w; is defined by (10). Thus we define the local linear regression smoother by

A=
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o (x-X, L
where S, Ek( J{ x) . L=12. e 1)

and h is the bandwidth parameter that controls the amount of smoothing to be done.

This idea is an extension of Stone (1977), who used a kernel function
k(x) = {|x] <1]. 1t follows that o”(x,) is a weighted average of the

squared residuals and is called a linear smoother in curve estimation. Also by intuition

it is clear that o(x,) is estimated by b , defined by

e n)

2

substitution of (9) in (5) yields a robust estimator of (3) as

Vig = Fy—ﬁl&} 2,65 (x;)+ 2. 6Mx,)

nx ie8 ey

8

~

4.0 ASYMPTOTIC PROPERTIES OF THE NEW VARIANCE ESTIMATOR

Assume that the finite population under consideration comes from a sequence

of populations { Pk}::1 each of size N, with N, >N, ,. Let {Sk}a0

., be a sequence

of corresponding samples, each of size n,, with n, =2n,,. Let a§ k- oo,

n
f,=—->0, n,, N, 5 Suppose that as these developments take place, the
k .

sample and the population averages converge to non zero constants. Supposing further
that

(i.) o*(x,)has a bounded and continuous second derivative;

(ii.) The kernel function k() is a bounded density function with

[ xkGodx =0 and [ x*k(x)dx < o0

Let, in the sequel,

¢ = [uk@wdu,  d, = [K*(u)d
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If the above conditions apply and if in addition, the x;'s are regularly spaced in [0,1],

then the relationship of the asymptotic mean square error, bias, variance of V,, and

the bandwidth can be specified by the following theorem:

Theorem:
If h—>wo,and »ph-— oo, then for x e(ao,bo) the estimator Vi, has the

conditional relative mean square error given by

2
£ Varg(’i‘R,T) 1 124% Garreeneies , X, .

h4 Ckzo_z"(xi) 2 1 » N N (3(-—)4;.
T o | E[Zzww-me)JJlk(“)kk“"f‘“jd“}

ieS keS

where o () is the second derivative o’ ()

A sketch of the proof of the theorem follows. Observe that for large n,

X“‘Xj X"Xj
W=k~ [sn,z—(x—xj)sn,l]sz

Hence

i ;Xj]E(A;[g -x)

E.f[é“2 (x; )] S

P4
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. hiu® .

Z k[ ][02 (x;)+huo? (x,) + 2‘: o’ (xi)J

JES !

~ 1 X—X.
—3r Jj
nh 5 ( h

P
~ o2 (x,) +n~g—2—(§lju2k(u)du

h’e? (x;)e,
2
Hence the asymptotic bias of V,, under the expanded model is

~ [:(N ~ )X, ]ZZ h’s™ (X;)e,

nX oy 2

8

~ Gz(xi)+

From this it follows that the asymptotic relative bias of V, is

oo e[

s ie8

L(N - } [ZG . )}

ies

h4 _ckz O—ZN (Xi)
N — i
4 ZGZ (x;)
L ieS

Next we derive the asymptotic variance of V,,

Now
var{((N n)x] Z (xi)+z G (x, )} ((Nnxn)x} ZkZCOV(é‘Z(Xi),&Z(Xk))
+ZZCOV(6’2(Xi),&2(Xk))
+2[—(-1\I—£—n~)§-'j ZZcov( 72 (x,),0 (xk))
where
- A L — X
cov{67(x,),67(x,)) = sz( ]( - chov(rjz,r,f)

After some algebra, it can be shown that
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Var(y> )(1+0(1) +0(n™), j=L

cov(rj2 g2 ) =
O(™)
[#4(Xi) - 15 (x, )](1 +0Q1),i=L
~
0, Otherwise
where

H(x;) = E;(Y:)Xi = Xi)=
(%)= Eg(Yiz‘Xi = Xi)

Thus
v . l:Z Z [,”4 x)-u, (X )}(l + O(l))j k(u)k[ u) du}
var{ (',I\LR T) ieS kes _—
e el

2 2L () = 4 )1+ O) [ k(wik

icS keS

=5

! u] du

~

ies

{Zo%xi)]

Hence the asymptotic relative mean square error of V,, is

plazer @] ZZ[m(x) mx>(1+0(1))fk(u>k[

~ i8S ieS keS

u) du

vy > 0% (x,) i

ies

Remark 1: Unlike the usual kernel regression (Nadaraya (1964), Watson
(1964)) estimators, the local linear variance estimation procedure proposed here is not

susceptible to boundary effects. It thus has a wider scope and is theoretically more

appealing than the kernel procedures.
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Remark 2: The above theorem illustrates the following points:

V., is bias robust if h — Oas n—> o, V,, is efficient if nh —> c0as n — oo,

5.0 CONCLUSION

The conclusion is that local linear estimation can give estimators of the
variance that adapts robustly to the position of the point in the support. The resulting
variance estimator has good bias robustness properties that are generally lacking in V,

and V., for a given sample. Unlike the usual kernel techniques, the estimation

procedure suggested here does not require modifications when estimating near end

points of the support.
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