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ABSTRACT

A numerical simulation is used to study turbulent natural convection flow in a cubical
cavity whereby a transverse magnetic field is applied along the vertical axis. The
cavity is heated steadily on the lower horizontal surface and cooled on the top opposite
side. The fluid is passed on from an inlet and exit on the opposite vertical side. The
fluid in question is incompressible, electrically conducting and the fluid flow is unsteady.
The standard f — ¢ model is used to model the mean flow equations of heat flux and
momentum flux and is approximated by Boussinesq approximation and the generalised
gradient diffusion hypothesis. Effects of the magnetic field on velocity, temperature
and heat transfer of the fluid inside the cavity are investigated. The Reynolds averaging
of Navier-Stokes equations method is used to decompose the equations and match
them through time and space. The finite difference method is used to arrive at the
results. Effects of various parameters on velocity, temperature and the rate of heat
transfer are analysed with the help of graphs and tables. It is found that magnetic field
suppresses turbulence for an electrically conducting fluid flow.

Key words: Natural convection, turbulent flow, transverse magnetic field, heat
transfer, finite difference method
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Quantity
Outlet and inlet area, m?

KJ
Specific heat at constant pressure, Kg K

Empirical k-e model constants

Kinetic energy, J
Total energy

Gravitational acceleration in tensor notation , m/s?

Grashof number
Gravity number
Hartmann number
Magnetic field intensity, Wb/m?

Turbulent intensity at the outlet and inlet, m?%/s

Turbulent energy, J

Nusselt number
Prandt] number

Reynolds number

Rayleigh number

_J

Kg-K

Temperature on the hot wall, K
Temperature at the cold wall, K
Reference temperature, K
Temperature, K

Time, s

Velocity components, m/s
Tangential velocity component, m/s
Velocity at the inlet and outlet, m/s
Tensor notation for velocity, m/s

Entropy,

Time advanced velocity values, s

Velocities at the cell, m/s
Characteristic velocity, m/s
Velocity at the inlet and outlet, m/s
Direction tensor notation, m

Normal distance to the inlet and outlet, m
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Abbreviations
FDM

MAC

MHD
FUX,FUY, FUZ
FKX, FKY, FKZ
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Time step, s

Cell dimensions, m

Density, kgm-
Electrical conductivity, Q' / m
Firstcoefficient of viscosity, kg/m.s

Second coefficient of viscosity, kg/m.s
Magnetic permeability

Eddy-viscosity, m?%/s

Kronecker delta

Viscous stress tensor notation
Thermal conductivity, W/m K
Thermal diffusivity, m%/s
Donor cell coefficient
Kinematic viscosity, m?%/s
Constants in the k-e model

Fluid viscosity, turbulent viscosity, m?/s

Thermal coefficient, K!

Turbulence dissipation rate, m?/s>

Turbulent time scale, s

Tensor notation for a function in turbulent equation
Function in turbulent equation

Nondimensional temperature

Function in turbulent equation, K

Relaxation factor

Finite difference Method

Marker and Cell Representation

Magneto hydrodynamics

Convective terms in momentum equation

Convective terms in the turbulent kinetic energy equation
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FEX,FEY, FEZ, Convective terms in the turbulent energy rate of
dissipation equation.

DFFR Desired fluid flow rate, m/s

BDF Boundary differential finite method

GGDH Generalised diffusion hypothesis
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1.0 INTRODUCTION
Turbulent natural convection is observed in many circumstances such as in passive
solar rooms, equalisation of temperature in large nuclear reactor containment filled
with a conducting fluid and for removal of the heat generated within a casing of
electronic equipment by integrated circuits. Generally the study is also applicable to
systems involving high temperature plasmas applicable to liquid-metal and magneto-
fluid dynamic power generation systems.

The study of MHD’s started in the early 1830°s with Faraday (1839) where
he experimented on passing of an electrically conducting fluid between poles of a
magnet in a vacuum glass. Since then a lot of research in this area has been done.
Hoogendorn (1986) investigated the effects of various parameters on natural
convection in an enclosure, the skin friction and the shear stress on the boundary
layer. Alboussiere ef al (1992) analysed the effects of a transverse magnetic field in
arectangular enclosure, where effects of various parameters on temperature and
velocity profiles were analysed. Effects of various parameters were also studied
towards heat distribution in the enclosure. Alboussiere et al (1993) later studied the
effect of slight non-uniformity of the magnetic field on MHD natural convection and
established effects of the magnetic field on heat transfer in an enclosure. Branover et
al (1993) studied the effects of a transverse magnetic field on the intensity profiles of
turbulent velocity distribution in a rectangular cross-section. Henry and Kaddeche
(1993) studied the stability of methods used in solving the turbulent natural convection
problems. Stabilisation laws of buoyant flows under a weak magnetic field were
presented. Hague and Arajs (1994) undertook both numerical and experimental
studies on convective heat transfer for different kinds of fluids namely, kerosene,
silicon oil and nitrogen in an enclosure. They analyzed the effects of magnetic, electric
and electromagnetic forces on heat transfer. Aleksandrova and Molokov (2000)
studied a three-dimensional buoyant convection in a rectangular cavity with
differentially heated walls in a strong magnetic field and analysed the effects of varying
the magnetic field on fluid flow. Ming and Tang (2001) used several known time
stepping approaches including the second-order boundary differential finite method
(BDF) inclusive of the 4*-order BDF together with the Crank-Nicholson method on
acavity problem to study the velocity and temperature distributions in a square cavity.

The studies above did not analyse the effects of magnetic field to velocity,
temperature distribution and rate of heat transfer in a cubical enclosure having an
outlet and inlet on opposite sides despite most being concerned about natural
convection with use of different fluids in enclosures which is our present study.
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2.0 MATHEMATICAL ANALYSIS
We consider a turbulent natural convection fluid flow of a heat and electrically
conducting viscous incompressible fluid inside a differentially heated cubical enclosure

with atransverse uniform magnetic field of strength 7, applied on its vertical axis.
The cavity is heated on the lower horizontal surface (7, ) and cooled on the top

surface (7, ). The fluid flows inside the enclosure from an inlet and exits’ on the

opposite side is taken to have Prandtl number 0f 0.71, which corresponds to air. We
consider some physical characteristics of the fluid to be constant like: dynamic viscosity
v, thermal conductivity ,, and specific heat rate on the constant pressure for

averaged temperature 7, . All temperatures are of low intensity and therefore we can
neglect radiation. Density is considered as constant value but for buoyant term it’s

linearised by the relation: p(T) = ,D(T0 ) - ,lB’p(T0 )(T -7, ) .

Cooled from top
magnetic field H, l

{ /
z Q—%Flow outlet
N
flow intlet ?/
" ™
—
» X

y

Heated form
below

Figure 1: The geometry of the problem and flow configuration with the
coordinate system .

Both the fluid and the cavity walls are initially in thermal equilibrium, having a
temperature 7, . Two of the cavity walls (horizontal) are isothermal whereas the four
vertical walls are adiabatic (thermally insulated). The cold wall is kept at the initial
temperature (7, = 7, ) and the temperature of the hot wall is suddenly increased at
time t=0to . Thereafter at t > 0 the ‘hot’ isothermal wall temperature is maintained

at 7. The cold wall temperature is maintained at 7., .
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Due to the temperature gradient applied between the two walls, the fluid
inside the cavity initially at rest begins to move. The buoyancy forces act to accelerate
the fluid creating a horizontal viscous layer with large velocities transporting the fluid
to the top of the cavity. The type of flow occurring is determined by the relative
values of the dimensionless parameters; Rayleigh and Prandtl numbers.

2.1 Turbulence Model
The governing equations based on the standard model of Piomelli (1999) for turbulent
natural convection problems are

ax—,l:O ......................................................................................................... (1)
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Due to the presence of extra terms in the turbulent kinetic energy and rate of dissipation
equations (equations 4 and 5) we modelled the turbulent momentum and turbulent
heat flux as by commonly used generalised gradient diffusion hypothesis (GGDH) of
Daly and Harlow (1970) which was used by Ince and Launder (1985) to account
for the interaction between shear stress and span wise temperature gradient. That is,

— | oU, U,
u,T =—C€,u,uj%§x—Tand uu, =-v, {——‘+—ax—i}+§k§,j

k

¥ i

where v, =C, k—_ C =009 e 8
£

The boundary and initial conditions pertaining to the study are:
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2.2 Solution of the Problem by Finite Difference Method (the Marker
and Cell (Mac))

This investigation uses the MAC method of defining variables within the flow field,

Harlow et al. (1965). The method is useful as it assumes that pressure is invariant

whereby the Boussinesq approximation is comfortably applied. For a given cell the

dimensions and, velocities are defined at the centre of the cell as shown in the figure
below.

Mk

U,k

Figure 2: Marker-and-cell representation

We extend the concepts to three-dimension which incorporates the starting point of
mathematical formulation of the study assuming that, density is constant: Since the
mean velocity values need only be considered when imposing the scheme, the finite
difference equation for continuity equation may be used to impose the conservation
of mass for the turbulent flow viz;

1
le_(Ui,_/,k - Ui-l,j,k )+ Aiy (I/IJL - Vi,j—l,k )'*' E (W:/k - Wi,j.k-l ) =0 )]
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For convenience and ease in implementation into a numerical scheme, the

momentum €quation is written using a new term I

Ui.J,k

=U, , + A, = FUX = FUY = FUZ) eooeeeeereceerrerreeeseenressrersinne (10)

Where FUX, FUY and FUZ are the convective terms where incase of x, y or z-

component the terms are dropped for the rest of the cases. (~) denotes any value at

time¢ + Ar. Awbi (1989) introduced a constant that ensures numerical stability without

avoidable round-off errors. The coefficient is called the donor-cell coefficient ( 4 )

representing the amount of upstream differencing used in determining first derivatives.
o . [U]ar [7]ar w]ar

The donor-cell coefficientis givenby ~ & = ¢ -max | Ar Ay Az | 5

ij.k

where £ is arelaxation constant used in buoyant flows varying from 1.2 to 1.5. The
convective terms in form of FDM are given as
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The same can be done for the y and z- components.
The energy equation, Lilley (1991) can be treated as a scalar quantity together
with the turbulent energy (k) and the dissipationrate ( ¢ ). Thus for any scalar quantity
@ we can obtain an explicit equation for the time-advanced scalar quantity. Hence
the energy equation may be approximated by the following set of equations.

T, =T, +AH{VIST = FTX = FTY = FTZ) c.orvcrmmeecccrrevercerinnee (12)

ij.k

where

133



Journal of Agriculture, Science and Technology

FTX=—— I j ( ik +a4 »/in( ik~ :+luc }
24 -U; (T:IJ.L+ :/,k 4(],4,1((,_1\”( T;M)
Vil

Jf i+, /Jr)+a{ uk}( ik -l /Jr) }

L V; ( '/'.k)_O{V—I er‘( ik “‘Ti..uc)

1 ( ( ]:+L/Jf 0{ l/k‘( ijk = :—l /Jf) r
T0)

FT. —_4
2%z ~W JJc(T/ kT, ,,J() O{ '-l/J‘I( Y| (13)

[a—
N T

FTY=—
2y

= T T s =2 4T )
— A TR T ek g e Tk T

+ij;(T 20, 4 +Tf‘/-k-')

i fok+

where the value of is to be determined in the same way as one in the momentum
differences. For turbulent energy (£) the equation can be written in finite differenced
equations as

2772

s oy H,
PPN Y. (o SEEC LS TR /AN ea
ik = Mgk P . (14)

+®k)- FKX-FKY~FKZ-¢

Since the turbulent energy (£) is a scalar quantity, the terms FKX, FKY and FKZ
may be determined in the same way as the ones in equations (13). The equation of
energy dissipation (5) can be written for time-advanced values as

a K 1
L R R R

&iu=b
+C£4k—Al; (U 4 U )-Coe-FEXFEEFEZ

1

The values FEX, FEY and FEZ can be determined similarly as ones in equation (13).
For numerical stability the material fluid was not allowed to move a distance greater
than one cell over a given time step. This was achieved by imposing the cell transit
time (CTT) hypothesis as
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Umax V W

Also for the turbulent viscosity that is considered nonzero, momentum is contained
and assumed not to diffuse more than one cell at a given time step. This was achieved

A Ay A
(ar) =¢- mm{ ST } Where 1.2<E<LS oo (16)

by
(at), =7mm((Ax) (Y 3A2) ) e a7
Similarly, the turbulent kinetic energy was controlled by
-1
1 1 1 1
At), = + +
( )3 2V, [(Ax)z (Ay)z (AZ)2 ] ....................................................... (18)

To determine temperature values and model buoyancy an additional criterion was
imposed that heat cannot diffuse more than one cell per a time step. The criterion
used was

1 {1 1 1 Y
(Af)4—9a[(Ax)2 (Ay)2+(AZ)2J ....................................................... (19)

The uniform grid used had 8 1x81x81nodes and very small changes were noted with
reduction of the number of nodes used.

3.0 DISCUSSION OF RESULTS
Numerical computations are performed for the velocity, temperature @.nd rate of heat
transfer inside the enclosure. Contours at different positions where a certain axis is
fixed, showing the distribution of velocity magnitudes and temperature distributions
in the enclosure is presented. A uniform velocity distribution is generally assumed
over the inlet area. Imposing this boundary condition allows the tangential velocity to
be zero (U, = 0). The normal component (U ) is then determined based on the
desired fluid flow rate (DFFR) (Awbi 1990) using the equation;
U,,= DFFR x Volume of Enclosure

3600 x area of inlet

The inlet velocity was taken as 0.175. Similarly, a uniform velocity distribution is
assumed at the enclosure outlet. Tangential velocities are to be considered zero
(U,=0), while the normal velocity is to be determined by the mass balance on the
enclosure given by

Uoutlet = Ujet (pA)inlet

pA oulet
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The outlet velocity was taken as 2.1 .The results presented here are with Rayleigh
number ranging between 5x10-'"' and 5x10", implying that the flow is turbulent.
Velocity and temperature profiles are first computed in the absence of the magnetic
field, Ha=0 (figures 3, 4, 5 and 6) for Reynolds number 750 and Rayleigh number
50x10". Velocity and temperature profiles are then computed in presence of magnetic
field, Ha=50(figure 7 to 20). Simulations are performed for the enclosure with fluid
entering at a temperature difference between 9°K and 36°K.. 36°K corresponds to
the Rayleigh number 5x10'" and Pr=0.71 corresponds to air.

31 Velocity Profiles

Generally, it is evident from figures 3, 5,7, 9, 11, 13 and 15 that the cubical cavity
problem has two distinct flow patterns:
® Growth of the boundary layer along the wall.
(1) Recirculation motion in the core region.
Growth of boundary layer is interpreted from the velocity intensity at the layers close
to both the hot and cold walls. The main recirculating flow splits into smaller counter
rotating eddies at the cavity core forming roll cells. The smaller inner eddies are
stretched towards the top retaining the dominance of the main circulation. With increase
in the Rayleigh number, there is a change of fluid flow patterns with inner seconcary
eddies moving closer to the hot and cold walls

From Figure 7, it is noted that when the magnetic field is applied transversely
to the direction of fluid flow, the velocity decreases. From Figure 5, it is noted that
the roll cells are closer to the hot surface. Increase in Raleigh number and introduction
of magnetic pushes the roll cells in the core of the cavity as can be noted from Figurc
7. From Figures 9, 11 and 13, no significant change is noted from the roll cells.
Velocity intensity almost doubled with increase in Raylzigh number as can be noted
from Figures 7 and 9. From Figure 15, it is noted that the velocity intensity is greatest
mid-way between the roll cells. This may be explained by the increase in Rayleigh
number from 5x10''to 5x10'*. From this we note that in presence of a transverse
magnetic field, increase in Rayleigh number leads to increase in the velocity intensity
of a conducting fluid.

3.2 Temperature Profiles

Temperature differences within the cavity will obviously cause density differences
throughout the enclosure, which arc the cause of buoyant effects. However tiie
maximum temperature difference is 27°k. It is assumed that density of the fluid did
not change irrespective of temperature difference within the enclosure. Figures 4 and
6 were obtained in the absence of magnetic field. It is noted that the temperature
distribution in the enclosure is minimal irrespective of the fluid being heated. The
profiles show less heat is transferred to the rest of the enclosur 2, as the profiles are
closely concentrated at the base of the cavity. With introduction of magnet:c field and
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increase in Rayleigh number, we compare Figures 6 and 8 whereby it is noted that
after these alterations, temperature distribution inside the cavity increased. Temperature
at the core of the cavity increased compared to the sections near the hot surface.
From Figures 8, 10, 12, 14 and 16, it is noted that on the bottom right and left
corners of the cavity temperature is low compared to the rest of the cavity. This is
due to the onset of a cold downdraught of cool fluid replacing heated fluid at the
base. The graphical plots comparison of Figures 8 and 10 sufficiently show that
there are no significant changes in temperature distribution. Both Figures were plotted
at Rayleigh number 5 x 102 and Hartmann number equal to 50. The only noticeable
thing is at the core of the cavity where temperature is greater compared to the bottom
left and right corners of the cavity. Comparing between Figures 6 and 8, it is noted
that there is an enhanced temperature distribution after increase in Rayleigh number
and introduction of magnetic field as Figure 8 was plotted after the two alterations.
Increase in Rayleigh number enhances temperature distribution as can be noted from
Figures 8 and 10. Figures 12 and 14 certainly highlight that as Rayleigh number
increases; temperature distribution within the enclosure increases but magnetic field
hinders temperature distributions within a cavity filled with an electrically conducting
fluid. Increasing the Rayleigh number to 5 x 10" as plotted in Figure 16 increased
the temperature distribution and the profiles can be clearly distinguished at various
positions within the cavity. Comparing the three situations where Rayleigh numbers
were changed and introduction of magnetic field, we deduce that presence of magnetic
field leads to a decrease in temperature gradient. To see what happens across the
enclosure, velocity profiles and Temperature distributions were obtained at the
locations x = 0.5 and x = 0.9 (Figures 17, 18, 19 and 20).The trends were found to
be similar to those illustrated in Figures7and 8.

3.3  Rate of Heat Transfer .

Knowledge of heat transfer along the hot and cold walls is valuable to thermal engineers
and designers. Nusselt number represents the desired non-dimensional parameter of
interest, which is the ratio of heat convected from the fluid to the wall. Itis given by

Ny=+—

x horizontal wulls

x
the relation where x = f

and 6 is the dimensionless temperature as defined earlier. In the expression above,
the negative sign essentially implies transfer of heat from the cold wall to the fluid
while the positive signifies transfer of heat to the fluid from the hot wall. The Nusselt
number distribution within the cavity is plotted in Figure 21. The distribution of fluid
Nusselt number is asymmetric between the hot and cold walls.

The number is greatest at the base of the cavity but reduces as the height of
the cavity increases. Thus, there is more heat transfer to the fluid from the hot surface
than on the cold surface. This is due to the fact that some fluid exits before it reaches
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the top of the compartment. Also, the magnetic field applied transversely from the
top of the cavity has greater effect on the upper fluid particles than the lower rising
fluid particles. This impedes heat transfer to the uppermost layer of the cavity.
From Figure 21, it is noted that as the height of the cavity increases, the rate
of heat transfer decreases. Figure 22 shows four plots: total energy, dissipation of
kinetic energy, effect of magnetic field on velocity and changes in velocity each with
respect to time from the time the fluid enters the cavity till when the fluid exits. It is
evident that total energy within the cavity reduces with increase in time. Effect of
magnetic field is strongly felt as the velocity reduced with time. However, the overall
velocity increased with time. This is attributed to increase in Rayleigh number, which
determines the domination of buoyant forces over viscous forces. Total rate of kinetic
energy dissipation reduces with increase in time. It was computed

from i 77t | From Figure 22, we note that energy reduces with time
inside the cavity. This depends on the velocity, temperature and the Rayleigh number
as it determines the temperature distribution and the velocity with which the fluid
flows inside the cavity.

3.4  Validation of Results

Our results were compared with those of Ozoe et al. (1986) who considered
Turbulent Natural Convection in a Cubical Enclosure heated from below, cooled on
a portion of one vertical side wall and insulated on all other surfaces. A top view of
the velocity vector revealed a downward spiral flow near the side walls along the
cooled vertical wall. A weak spiral flow was also found along the side walls near the
wall opposing the partially cooled one. These results show good agreement with this
study. For the present study, the flow near the centre of the enclosure is less spiral as
compared to that near the side walls as illustrated by all the figures on velocity profiles.

40 CONCLUSION

From the numerical simulations done in this study, it is noted that the velocity intensity
at the core and near side walls was different and precisely at the core it was higher
than near side walls. The results show that the transverse magnetic field has an important
influence on the overall motion of the fluid and heat transfer within the room. It retards
the velocity of the fluid within the enclosure and reduces the rate of heat transfer.
Thus, magnetic field suppresses turbulence fluid flow.

Verosity, and temperature profile magnitudes and intensity

138



i Fi

verse Magn

ts of a Tr

£

T Vol 1002) 2

JA

S
Il

Y

N B @ i B orte T @ @

>

4 =
T

R

M = a
g

_

S

Figure 5: Velocity profiles at X

—ERTIY

SEEE il STl
i

i

..\...:.,.w. = \\\
L Lp__ .\ ‘,mtm%mm“@/\
FARARE AT

O

SRR

0

5x10, Ha

Figure 6. Temperature profiles at X=0.1, Ra

139



Journal of Agricuiture, Science and Technology

>
il 2.40
N Y 2.20
) : 2.00
\ 1.80
¥ R 1.60
N ] I 1.40
W = 12
N{ — 0.80
= N 0.60
e 0.40
S 020

Z= S0

Figure 7: Velocity profiles at X=0.3, Ra =5x10'> Ha=50

Sl o

o

B oNQe MR TR R

Figure 8: Temperature profiles at X=0.3, Ra=5x10"?, Ha=50

140



JAGST Vol. 1002} 2008 Effects of a Transverse Magnetic Field

& £L o 4.20
W P T 3.90
bodss, ;;1’%4;: 3.60
A T 330
wanaEr 3.00
f';,}?//f Tl 270
Y 5 2.40
e i

/7 -7y .
\ /% 2 1.50
Ve 1.20
7 2 0.90
0.60
0.30
0.00

Figure 9: Velocity profiles at Y=0.1, Ra =5x10", Ha=50

ol Bad

o

LN bt lled -

Figure 10: Temperature profiles at Y=0.1, Ra=5x10"?, Ha=50

141



Journal of Agriculture, Science and Technology

Figure 12: Temperature profiles at Y=0.3, Ra=5x10", Ha=50
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Figure 21: Variations of Nusselt number along the z-axis
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Figure 22: Plot on dissipation rate of turbulent kinetic energy (solid line),
fluid velocity (dotted), total energy (long dash) and the effect of
magnetic field on fluid velocity with respect to time
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