Production and Characterization of Water Treatment Coagulant from locally sourced Kaolin Clays

1,2 KURANGA, IA; **1** ALAFARA, AB; **1** HALIMAH, FB; **3** FAUSAT, AM; **1** MERCY, OB; **2** TRIPATHY, BC

1Department of Industrial Chemistry, P.M.B 1515, University of Ilorin, Ilorin – 240003 (Nigeria)
2Hydrometallurgy Department, CSIR- Institute of Minerals and Materials Technology, Bhubaneswar – 751013, India
3Department of Chemical and Geological Sciences, Al-Hikmah University, Ilorin-Nigeria

E-mail: ibkuranga@gmail.com (+2347065360971, +919090701268).

ABSTRACT: Base on high cost in coagulant for treating both domestic and industrial water in the recent time. There is need to identify cheaper and efficient methods of removing contaminant as the demand for clean water increases. A study was carried out to investigate the use of locally sourced Kaolinite clay from Okefomo Agbarigidoma, Ilorin south Local Government of Kwara state, for the production of aluminum sulphate using sulphuric acid (H2SO4) solution. The clay sample was beneficiated and calcined at 700°C for 7 h to obtain meta-kaolin, then later leached using sulphuric acid. The effect of leaching temperature (25-100°C), period of activation (10-120 minutes), acid concentration (1-6 M), particle size (50-200 µm), acid to clay weight ratio on the leaching were investigated. The optimum leaching conditions for the calcined Kaolin clay were found to be particle size 100 µm, acid concentration 5 M, leaching temperature 110°C and leaching time of 90 min. Under optimized condition 68.75% (w/w) aluminium sulphate (alum) was extracted. The extract showed that sulphuric acid could be used on a large scale to extract alum from Kaolin clay. The extract alum showed similar structure and physical characteristics compared with commercial alum. A dosage of 38mg/L of the extract alum show effective coagulant properties with a great potential of treating Industrial water.

DOI: https://dx.doi.org/10.4314/jasem.v22i1.19

Copyright: Copyright © 2018 Kuranga et al. This is an open access article distributed under the Creative Commons Attribution License (CCL), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Dates: Received 05 November 2017; received in revised form 12 December 2017; accepted 30 December 2017

Keywords: Clay, Calcinations, Kaolin, Sulphuric acid, Aluminum sulphate, Alum.

The high increase in demand for portable water for domestic and industrial uses cannot be over emphasized (Abdulsalam et al., 2013). Treatment of raw water to remove unwanted materials is a long practice and the commonly used chemical to achieve this purpose is Aluminium sulphate, otherwise called Alum (McCurdy et al., 2004; Renault et al., 2008).

Alum is found naturally in the earth crust as a double salt with formula, Al2(SO4)3.14-27H2O. This compound is a coagulant that is commonly used in water treatment plants for safe domestic and industrial water (Koohestanian et al., 2008; Ismail, 2010; Arnoldsson et al., 2011; Apostol et al., 2011). Traditionally, Alum is extracted from bauxite an alumino silicate mineral through bayer process (Pehliran et al., 2012). The bayer process involves grinding of bauxite mineral and pressure leaching with an alkali, such as sodium hydroxide to obtain an aluminate solution. Pure aluminum hydroxide is then precipitated from aluminate solution by seeding (Chingodo et al., 2015). Apparently, bauxite is often completely absent in known commercial quantity in most developing countries such as Nigeria (Aderemi et al., 2009). Apart from bauxite usage, the use of kaolin for the production of aluminum sulphate has received great attention in recent time (Az-zahrani and Abduk-majid, 2004; Hosseini et al., 2011; Pauwska and keshir, 2002). Nigeria was reported to have estimated two (2) billion metric tons of kaolin deposit scattered in different part of the country which needs to be properly exploit for economic and technological development of the country (Ekosse, 2010).

Kaolin is another aluminosilicate mineral which is found among different type of clays. It has a high Aluminum content compare to other types of clay minerals in its category, which include; smectite, illite and chlorites (Abdulsalam et al., 2013; Madejová, 2003; Murray, 2007). Aluminum has been extracted from kaolin clays using different mineral acids (Hosseini, 2004). However, the use of hydrochloric acid for leaching alumina compare to other mineral acids offer many advantages which ranges from; the ease of filtration of slurries, ease of iron removal , and the insolubility of titanium dioxide present in many clays (Dodson et al., 1939). The problem of severe corrosion of equipment which is the only setback of using hydrochloric acid has been solved to a large extent. Therefore both hydrochloric acid and sulphuric acid extract approximately the same amount of alumina from same quantity of clay (Raghavan and Gajam, 1985; Schoenborn and Hofman, 1979).
In addition, other aluminosilicate form such as fly ash can be adopted in the extraction of alumina. The use of alkaline treatment on desilicate coal fly ash was reported to extract 89-90% alumina (Bai et al., 2010; Su et al., 2011). Apparently, the use of both alkali and acid dissolution process on fly ash suffer high energy consumption drawback that are not economical at industrial scale level (Bai et al., 2010).

Currently, all water treatment plant across Nigeria import aluminum sulphate from other developed countries like, France, Newzealand, and Egypt, which attract huge amount in dollars. Base on this aforementioned, there is need to identify local source of coagulant to reduce or totally eliminate import cost. In this study, an investigation was carried out on the production of aluminum sulphate from locally sourced kaolin clay from Okefomo Agbarigidomo axis of Ilorin South Local Government Area of Kwara State, Nigeria. This study focused on production of water coagulant (Alum) from locally abundant kaolin clay using sulphuric acid. All the optimizing conditions for project scale-up would be established and the efficiency of the product would be tested on industrial wastewater treatment practice.

MATERIAL AND METHODS
Study area: The study area is Okefomo Agbarigidomo, Ilorin, Kwara State, Nigeria with GPS reading N10°05’42.1″NC007°26’73″

Sample collection: The clay sample selected for this study was kaolinite clay, collected from Okefomo Agbarigidomo axis, Ilorin South Local Government Area of Kwara state, Nigeria. The commercial aluminum sulphate used as a control and sulphuric acid used in this study are analytical grades and double distilled water was used to prepare all aqueous solutions.

Sample treatment: Beneficiation of raw sample: Beneficiation process involves the pretreatment of raw clay to remove impurities. About 200g of the clay sample was crushed, ground and washed with distilled water to remove soluble impurities. Already washed sample was subsequently suspended in water to get rid of intermediate to coarse associated mineral particles. The fine kaolin clay suspension was allowed to stand for six days to allow proper separation of the solid and liquid into two layers under the action of gravity. The upper layer was decanted and the solid layer was further dewatered to a thick mass in a clay bed under the action of pressure. The thick mass of clay resulted was dried overnight in an oven at temperature 80°C and then crushed and ball milled into fine powder (Wu et al., 2012; Abdulsalam et al., 2013).

Sample Preparation and Activation: The clay samples were grounded using a ball mill to particle size 300μm. The ground clay sample was place on the sieve, and then mechanically shake for 5 min. The oversize was further ground followed by sieving on the same sieve. The procedure was repeated till the entire clay sample pass through the sieve. 25g of grounded clay sample of different particle sizes (20-200 μm) were put in the crucible and subjected to high temperature in a muffle furnace(carbolite-LP 124) for activation process (Bai et al., 2010; Park, 2000). The calcination temperatures were varied between 500 and 900°C for a period of 1.5 hours.

Sample / Product characterization: The elemental composition of powdered clay and the synthesized product was determined using x-ray fluorescence (XRF) machine model: MINIPAL-LX123 and the metal organic bonding of the kaolin clay surface and the product were significantly determined by Fourier transform infrared spectroscopy (FTIR) [Model-JENWAY 430] analysis respectively. A 1.0g clay samples was calcinated at 900°C in a muffle furnace to determine the Loss on Ignition (LOI) and to reduce the impurities present.

Production of alum: All leaching experiment were performed in triplicate as detailed in (Chigodo et al., 2015; Ilic, 2010; Park et al., 1992). The calcinated clay sample 5g of different sizes (20-200 μm) were leached in a 250 mL glass reactor equipped with magnetic stirrer using wide ranging concentration of sulphuric acid (1-6M) over varying duration (10-120 min) at different temperature between 25-110°C and various acid-clay ratio(4:1 to 7:1) w/v under reflux and constant stirring (120 rpm). At the end of leaching process the resulting residues was filtered to separate undissolved materials. The residue was washed thrice with 10 mL portion of distilled water in order to remove excess acid and the final product was dried and characterized using FTIR technique. The separating funnel was used to add slowly 100 mL of ethanol into the acid leach liquor and continuous stirring to precipitate aluminum sulphate. After precipitation, the precipitate was filtered using whatman filter paper and dried in the oven at temperature 90°C for 1 hour.

Comparative Evaluation between Commercial Alum and Locally Produced Coagulant: The product form and the commercially purchased aluminum sulphate (Alum) were used in coagulation test. Four beakers (250 mL each) were filled with 100mL of Industrial wastewater from Tuyil Pharmaceuticals Industry, Ilorin, Nigeria. Different dosages (10-40 ppm) of the extracted products and commercially purchased aluminum sulphate were separately added to the wastewater. The beakers were stirred continuously for 10 min before allow to settle for 20 min. The
coagulated particles was filter and the Turbidity, conductivity, total dissolved solid and the pH of the filtrate were determined using detail procedure by Abdulsalam et al. (2013).

RESULTS AND DISCUSSION

Analysis of raw clay sample by XRF: The chemical composition of the clay sample used in this study is depicted in table 1. Alumina and silica are the major component of the clay. The percentage composition of the alumina (25.34%) was higher than the value previously reported (Chigodo et al., 2015; Wu et al., 2011). In some other studies, clay of alumina content 29.40% was used to achieve an extraction of 32% Al$_2$(SO$_4$)$_3$ (Anderson and Prentice, 1999). Lori et al., (2004) reported sample containing approximately 66% SiO$_2$. The higher in silica content tends to form greater part of the insoluble residues after acid treatment (Chigodo et al., 2015). Other metallic and non-metallic oxide such as sodium, manganese, phosphorous and sulphur occur in trace below 1.70%. The calculated Loss on Ignition (LOI) value was 7.97%. The calculated value is attributed to bond hydroxyl ion in calcined kaolin clay (Greenwood and Earnshow, 1997)

Table 1: Elemental composition of raw kaolin clay sample

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Composition (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$</td>
<td>25.36</td>
</tr>
<tr>
<td>CaO</td>
<td>1.29</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>54.37</td>
</tr>
<tr>
<td>Fe$^{2+}$</td>
<td>1.67</td>
</tr>
<tr>
<td>K$^+$</td>
<td>0.98</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>1.87</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>1.67</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>0.98</td>
</tr>
<tr>
<td>LOI</td>
<td>7.97</td>
</tr>
</tbody>
</table>

The FTIR spectra of clay sample used for this study before and after acid leaching are shown in figure 2a and b. Figure 2a shows a spectrum band at 3210 cm$^{-1}$ and 3941 cm$^{-1}$ which are assign to hydroxyl stretch. The band is attributed to the water hydroxyl group situated at kaolin surface. The peak can be traced to the hydrogen proton and oxygen atoms coordination aluminum ion in the octahedral structure layer (Chigodo et al., 2015). The Si-O-Si band appeared at 457,463 and 473 cm$^{-1}$ this is attributed to silica phase of the clay. After leaching, the OH stretching of inner surface hydroxyl group in Al-OH in octahedral layer of kaolin bands was observed at 3608 and 3396 cm$^{-1}$ respectively. Appearance of new bands at 932, and 936 cm$^{-1}$ was suspected to be deformation of hydroxyl group in the bonding of Al-Al-OH octahedral sheet (Az-zahrani and Abdul-majid, 2004).

Effect of calcination temperature: Calcinations is an important parameter when investigating the extraction of aluminum from kaolin clay. The process thermally activates the kaolin to more reactive form (Greenwood and Earnshow, 1997). The effect of calcinations temperature on the extraction of aluminum sulphate is shown is figure 2.

The amount of alumina extracted increase with increasing calcinations temperature from 24.5% at 500°C to maximum of 50.2% at 800°C above 800°C the quantity of alumina decreased. Thermal treatment lead to loss of water molecules within the kaolin clay structure, which indicates that above 800°C, total dehydration of the kaolin clay occurs resulting in phase transformation and disruption of kaolin to meta-kaolin amorphous solid that is less prone to acid attack (Chigodo et al., 2015; Panda et al., 2010). This process can be represented stochiometrically as:

$$3\text{SiAl}_2\text{O}_4 \rightarrow 2\text{SiAl}_6\text{O}_{13} + \text{SiO}_2$$

Similar works (Lori et al., 2007; Ajemba and Onukwuli, 2012) showed that calcined clay at 750°C exhibited more alumina dissolution rate to those at lower temperature. Studies reported by Ibrahim et al., (2013) also gave maximum extraction at 800°C.
Effect of calcinations time: The effect of calcinations time was investigated on the yield of aluminum sulphate as presented in figure 3. The percentage of alum extracted up to 90 minutes. Beyond this 90 minutes the amount dropped by 8.79%. low calcinations time could result in insufficient thermal treatment of kaolin clay sample. Therefore, increasing the time of calcinations ensure that kaolin clay sample are adequately expose to calcination

Effect of particle sizes: Figure 4 shows the effect of kaolin particle size on the quantity of alum extracted. At the beginning, the quantity of aluminum sulphate extracted increases with increasing particle size but later drop at 100 µm. The maximum extraction yield of 40.25% was observed at this point. Above 100 µm particle size, a decrease in the quantity of aluminum sulphate extracted was observed. The reason could be attributed to decrease in clay surface area expose to acid attack. The particle size of 100 µm were selected for further leaching experiment.

Effect of leaching temperature: The yield obtained in a conventional aluminum sulphate extraction depends on the bath temperature. Figure 5 shows the effect of temperature on aluminum sulphate extraction. Increase in leaching temperature results in increasing yield of aluminum sulphate. An increased collision frequency occurred as a result of increase in kinetic energy of the kaolin acid solution due to increase in leaching time. The highest yield was obtained at temperature 120°C. Chingodo et al.,(2015) reported lower temperature.

Effect of liquid-solid ratio: The effect of acid to kaolin clay ratio on aluminum sulphate extraction is presented in figure 7.

This parameter indicates the actual amount of acid needed to be in contact with solid for optimum extraction. There was observable increase in
Percentage of aluminum sulphate extracted as the acid-solid ratio increased. 57.37% yield was achieved at an acid-solid ratio of 7:1 and maintained till 9:1. Above 9:1 acid to solid ratio, the alum yield dropped to 52.31%. This might be probably due to a saturated availability of clay with hydrogen ions. Other studies showed that increasing the ratio from 4:1-10:1 increased the quantity of alum sulphate extracted (Park et al., 1992; Ibrahim et al., 2013).

Effect of H_2SO_4 concentration: The effects of acid concentration were investigated on the extraction of aluminum sulphate as presented in Figure 8. The degree of extraction increased with increase in acid concentration. The percentage yield of alum increases from 24.1% at 1M to 68.75% at 5M. Above 5M H_2SO_4 concentration, there is decrease in aluminum sulphate extracted. An increase in acid strength increases the diffusion of H^+ ion into the octahedral layer of kaolin resulting in the dissolution of Al^{3+}. There is a collapse in the structure of the sample at very high acid concentration which in turn lead to decrease in the Aluminum ion dissolution (Chigondo et al., 2015).

Comparative study of physical properties of extracted alum with commercially purchased alum: The melting point, boiling point, pH and colour of the extracted and commercially purchased aluminum sulphate are compared closely as depicted in table 2.

Table 2: Shows different in physical properties of the product and commercially purchased alum.

<table>
<thead>
<tr>
<th>Property</th>
<th>Commercial alum</th>
<th>Produced alum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>White</td>
<td>Off-white</td>
</tr>
<tr>
<td>pH</td>
<td>7.3</td>
<td>7.20 (highest yield)</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>87.0</td>
<td>91.0</td>
</tr>
<tr>
<td>Boiling point (°C)</td>
<td>185</td>
<td>194</td>
</tr>
<tr>
<td>Solubility</td>
<td>CD</td>
<td>CD</td>
</tr>
</tbody>
</table>

CD: Completely dissolved at room temperature

Coagulation Test: The results obtained for the quality parameter test were presented in table 4. It can be seen that all parameters obtained for industrial wastewater indicates that it was not portable for drinking and hence treatment was required. The investigation revealed that parameter value for all the treated samples was lower than those obtained for commercial alum. In addition to this, the result obtained for the entire sample investigated fell below or within the limit specified by World Health Organization (WHO). The clear picture of this claim is summarized in table 6.

For Okefomo Agbarigidoma kaolin clay, the sample produce using 5M H_2SO_4 concentration at 110°C gave the best result 68.75%. Therefore, these optimum conditions can be used for commercial production of aluminum sulphate from Okefomo Agbarigidoma kaolin clay within the limit of experimental procedure used in this investigation.

Table 3: Some Coagulant Properties of Water using Alum Produced from Okefomo Agbarigidoma Kaolin Clay Sample

<table>
<thead>
<tr>
<th>Parameter</th>
<th>WHO values</th>
<th>Raw water</th>
<th>Commercial alum</th>
<th>Alum extracted at various [H$_2$SO$_4$].</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.5-8.5</td>
<td>4.76</td>
<td>7.30</td>
<td>6.90 6.85 7.20 7.20 6.90</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>500 max.</td>
<td>86.30</td>
<td>124.00</td>
<td>126 130 160 126 128</td>
</tr>
<tr>
<td>Hardness (mg/L)</td>
<td>150 max.</td>
<td>60.10</td>
<td>61.00</td>
<td>63.0 50.0 53.0 56.0 56.0</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>0-5</td>
<td>6.10</td>
<td>0.500</td>
<td>0.97 0.73 0.83 0.90 0.65</td>
</tr>
<tr>
<td>Conductivity (µs/cm)</td>
<td>1000 max.</td>
<td>132.90</td>
<td>215.00</td>
<td>212 216 212 216 216</td>
</tr>
<tr>
<td>Colour (pco)</td>
<td>15 max.</td>
<td>26.00</td>
<td>10.30</td>
<td>0.00 0.00 0.00 0.00 0.00</td>
</tr>
</tbody>
</table>

Conclusion: Base on the results obtained from this study, it is demonstrated that aluminum sulphate can be efficiently extracted from locally sourced Okefomo Agbarigidoma kaolin clay because the product has shown great potential in removing pollutant from Industrial wastewater.

Acknowledgements: The authors wish to thank Professor R. B. Bale of Department of Geology and...
Mineral Science, University of Ilorin for providing the kaolin-rich clay used for this study.

REFERENCES

Arnoldsson, E; Bergman, M Matsinhe, N and Persson, KM (2008). Assessment of drinking water treatment using Moringa oleifera natural coagulant, Vatten, 64, 137–150

Dodson, RW; Forney, GJ; Swift, EH (1936). The extraction of ferric chloride from hydrochloric acid solutions by isopropyl ether, J. Amer. Chem. Soc., 58(12), 2573–2577

Ilic, BR; Mitrovic, AA and Milicic, LR (2010). Thermal Treatment of Kaolin Clay to Obtain Meta-kaolin, Inst. of Test. Mat. 64(4) 351–356

Madejov’a, J (2003). FTIR techniques in clay mineral studies, Vibra. Spect., 31 (1), 1–10,

Park, HC; Byoung, CK; Hwang, EH and Park, SS (2000). Synthesis of hydrated aluminum sulfate
from kaolin by microwave extraction. J. Amer. Ceramic Soc. 83(6) 1341–1345

Pehlivan, A; Aydin, AO and Alp, A (2012). Alumina extraction from low grade diasporic bauxite by pyro-hydro metallurgical process, SAU Fen Bilimleri Enstiti’su Dergisi, 16(2) 92–987,

Schoenborn N. and Hofman, H (1979). Reaction of selected clays with hydrochloric acid, Freiberger Forschungshefte A, 616,39–50,

Su, SQ; Yang, J; Ma, HW; Jiang, F; Liu, YQ; Li, YQ (2011). Preparation of ultrafine aluminum hydroxide from coal fly ash by alkali dissolution process, Integ. Ferroelectrics, 128(1), 155–162,

Wu, CY; Yu, HF and Zhang, HF (2012). Extraction of aluminum by pressure acid-leaching method from coal fly ash, Trans. of Non. Met. Soc. of China, 22(9), 2282–2288,