
*Corresponding author: E-mail: Sunnyiyayi@yahoo.com 
 

 

   

Surface relaxation and surface energy of face –centered Cubic metals 
 

1AGHEMENLO H E; *2IYAYI, S E; 3AVWIRI ,G O 
1, 3 Department of Physics, Ambrose Alli University, Ekpoma, Nigeria 

2 Department of Physics, University of Benin, Benin City, Nigeria 
3 Department of Physics, University of Port Harcourt, PH, Nigeria 

                                                : E-mail: Sunnyiyayi@yahoo.com 
 

ABSTRACT: Surface relaxation and surface energy are calculated for Rh, Ir, Pb, Ca, Sr, and Th, 
for three low-index surfaces, using the equivalent crystal theory (ECT) method. The surfaces are the 
(100), (110) and (111) faces. In this study, we only considered perpendicular relaxation where the 
relaxation was determined by the minimization of the total energy. The results obtained are analyzed 
with good agreement to experiment and first – principles calculations where available. .@JASEM 

  
The phenomena of reconstruction and relaxation of 
metal surfaces has received considerable attention. 
Considerable experimental data indicate multilayer 
oscillatory relaxation of surfaces. Two methods, the 
Embedded Atom Method (EAM), based on density 
functional theory, and Equivalent Crystal Theory, 
ECT (Smith et al 1991), based on perturbation theory, 
have been extensively used to describe the energetics 
of defects in metals. Both methods have also been 
applied to the study of surface relaxation (Smith et al 
1991). Surface energy is another surface property of 
great interest. The energy of a free surface plays an 
important role in several physical and chemical 
processes such as fracture, catalysis, etc. 
Experimental measurements of the surface energy are 
usually at high temperatures and are subject to errors 
due to surface – active contaminants and thus have a 
degree of uncertainty. Early theoretical calculations 
were based on perturbation theory or non-perturbative 
variational methods. Over the years, there has been an 
increasing effort on first-principles calculations as 
well as in the area of Semi-empirical methods: EAM 
and ECT have been applied to this and other surface 
properties (Smith et al 1991), with the latter method 
providing excellent agreement with available 
experimental data and first-principles calculations. 
Finally the work of Metheffessel, Hennig and 
Scheffler (1992) discusses trends in surface energies 
as well as different models that relate the surface 
energies to other crystal properties. 
 
In this paper, we extend our previous application of 
ECT to surface energy calculation (Aghemenloh and 
Idiodi 1998), and in order to improve on our previous 
calculated results; we here include the effect of 
relaxation in the calculated surface energies. Several 
studies of surface phenomena have been done with 
the ECT on Al, Ni, Pd, Cu, Pt, Ag and Au (Smith et 
al 1991; Rodriguez et al.1993) obtaining remarkable 

agreement with experimental results. At the present 
time none has been performed to the author’s 
knowledge for Rh, Ir, Pb, Ca, Sr and Th metal 
surfaces. To fill this gap, we present in this paper the 
first ECT calculation of surface energy and surface 
relaxation for the three low-index faces (100), (110) 
and (111) of these metal surfaces. In this study, we 
ignore parallel relaxation as well as surface 
reconstruction and dealt only with rigid perpendicular 
translations of the near-surface planes. With these 
restrictions, we apply ECT and discuss the different 
contributions to the surface energy. 
 
Equivalent crystal theory: Equivalent crystal theory is 
based on an exact relationship between the total 
energy and atomic locations and applies to surfaces 
and defects in both simple and transition metals as 
well as in covalent solids. Lattice defects and surface 
energies are determined via perturbation theory on a 
fictitious, equivalent single crystal whose lattice 
constant is chosen to minimize the perturbation. The 
energy of the equivalent crystal, as a function of its 
lattice constant is given by a Universal binding 
energy relation (Smith et al 1991). The method has 
been applied previously to calculate surface energies 
(Rodriguez et al 1993; Aghemeloh and Idiodi 1998), 
surface reconstructions and bulk distortions of metals 
and semiconductors (Smith et al 1991). Since the 
details of the ECT method may be found in other 
previous works (Smith et al 1991; Rodriguez et al 
1993; Aghemenloh and Idiodi 1998), we shall here 
restrict ourselves to the calculation of relaxed surface 
energies only. As given in section three of this work. 
 
Surface energy calculation: In a previous study 
(Aghemenloh and Idiodi 1998), we considered a rigid 
surface where no interlayer relaxation was allowed, 
hence all bond lengths and angles, retained their bulk 
equilibrium values, thus, 
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F a F a F a* * * * * *( ) ( ) ( )2 3 4 0= = = . The surface 
energy was therefore obtained by solving for the 
‘volume’ term represented by F a* *( )1  only. If we 
now consider the simplest surface relaxation, that is, a 
rigid displacement of the surface layer towards the 
bulk, the contribution from the higher order 
anisotropic terms must be included. Letting the planes 
close to the surface relax turns on the other three 
contributions to the energy. Some bonds are 
compressed, contributing to F a* *( )2 , the bond 
angles near the surface as well as the difference 
between face diagonal are distorted, generating an 
increase of energy via F a* *( )3  and F a* *( )4 . Also, 
allowing the atoms in the surface region to relax 
introduces the additional complexity of including in 
the calculation more nonequivalent atoms, located in 
deeper layers. Many – atom effects, which are 
represented in the ECT by the inclusion of the three – 
atom bond – angle anisotropy and the four – atom 
face diagonal distortion terms (see the third and 
fourth term in the RHS of Eq. (2) of Rodriguez et al 
1993) are necessary but, in the case of surface energy 
calculations of metals, of very little relevance. As 
have been shown in other previous ECT works, they 
introduce a small correction, usually of the order of 

1% of the leading term in Eq. (2) of Rodriguez et al 
(1993). This is however not the case for 
semiconductors, where angular anisotropies are a 
significant contribution to the surface energy. 
 
 Calculation of relaxed surface energy for (100) 
surface: This subsection provides an application of 
the ECT method to an fcc (100) metallic surface, 
where only the surface plane is allowed to relax. All 
atoms in a given plane are identical; therefore we 
only need to evaluate the contribution of a single 
nonequivalent atom per plane. Moreover, only two to 
three planes have to be considered in this calculation: 
atoms in the fourth plane and below find themselves 
in equilibrium, bulk-like environment. The data by 
Bozzolo et al (1993) shows the (100) surface of Fcc 
metals. Let assume that the top plane (j = 1) is lightly 
contracted by a distance x towards the first plane 
below the surface (j = 2), but both the j = 2 and j = 3 
planes as well as any other plane below are at 
equilibrium positions. The rigid inter-planar spacing 
is d =a/2 (a is the equilibrium lattice parameter); 
therefore, the distance between j = 1 and j = 2 is a/2-
x. Following the labeling of Bozzolo et al 1993, we 
write the ECT equations for the atoms A1, B1 and C1 
in terms of the distances between atoms of nearest 
and next nearest neighbors: 

      12 6 2 1 2R R R Rec
p

ec ec
p

ecexp( ) ( ) exp ( / )[ ]− + − +α α λ  

                 − − − −4 4
1 2 1 2 1 1 1 1

r r r rA A
p

A A A B
p

A Bexp( ) exp( )α α  

                         − − + − − = =4 1 1 0 1
1 3 1 3 1 1 1 1

r r r r jA A
p

A A A c
p

A cexp[ ( / ) ] exp[ ( / ) ] ( )α λ α λ                   (1) 
 
     12 6 2 1 2R R R Rec

p
ec ec

p
ecexp( ) ( ) exp ( / )[ ]− + − +α α λ          

                 − − − −8 4
1 2 1 2 1 1 1 1

r r r rB B
p

B B B A
p

B Aexp( ) exp( )α α  

                            − − + = =5 1 0 2
1 3 1 3

r r jB B
p

B Bexp ( / ) ( )[ ]α λ                                                   (2) 
 
    12 6 2 1 2R R R Rec

p
ec ec

p
ecexp( ) ( ) exp ( / )[ ]− + − +α α λ           

 − − − +12 5 1
1 2 1 2 1 3 1 3

r r r rC C
p

C C C C
p

C Cexp( ) exp[( / ) ]α α λ     

                   − − + = =r r jC A
p

C A1 1 1 1
1 0 3exp ( / ) ( )[ ]α λ                                                              (3) 

 
where 
       r r r R aA A B B C C o1 2 1 2 1 2

2= = = = /                                    (4) 

      r r r a x a xA B B A x1 1 1 1

2 22= = = + −/ .                    (5) 

      r r r S aA A B B C C o1 3 1 3 1 3
= = = =                     (6) 

and 
      r r S a xA C C A x1 1 1 1

= = = −                                 (7) 
 
Equations (1-3) are then solved, for each value of x , for the equivalent crystal nearest neighbor distance Rec. 
Finally, the ‘volume’ contribution to the surface energy is 
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         σ 1 1
1

3
= ∑

=

∆E
A

F a xj
j

*
,

*( )( )                                (8) 

where 
         a R c r lj ec

j
WSE1,

* ( )( / ) /= −                                                                                              (9)  
                                                                         
A is the surface area and F* is given by Eq. (3) of Rodriguez et al. (1993). 
 Next, we compute the bond length anisotropy contribution to the surface energy (for atoms A1 and B1) 
associated with this defect:  
 
        12 12R R R Rec

p
ec o

p
oexp( ) exp( )− − −α α  

                   + − − − =4 02 1A R r R r R atom Ao
p

x o x o( ) exp ( ) ( )[ ]β               (10) 
 
The equation for atom B1, for this particular case is identical to Eq. (10). Eq. (10) is then solved with respect to 
Rec and the energy contribution is then 
  

        σ 2 2=
∆E
A

F a x* *( )( )                    (11) 

 
where a2

*  is given by Eq. (7) of Rodriguez et al (1993) 
 The third term in the ECT expansion deals with bond – angle anisotropies. Contributions to σ3 comes 
from atoms for which the angle between the nearest neighbours departs from its equilibrium value θo (θo = 90o 
for fcc metals). Following the conversion described by Smith et al (1991), i.e., if an atom is missing one or more 
nearest neighbours then F a i j k* *( )( , , )3 0=  for that atom and the atoms in the top layer do not contribute to 
σ3 .The only contribution then arises from the atoms in the first layer below the surface (j = 2), for which we 
solve the transcendental equation 
 

       12 12R R R Rec
p

ec o
p

oexp( ) exp( )− − −α α + − − − =A R r R Sino
p

x o o3 0exp ( )[ ]α θ θ               (12) 
 
where 
 

       θ =
+ −−Cos x o x

x o

r R S
r R

1
2 2 2

2
[ ]                             (13) 

 
Equation (12) is solved with respect to Rec   and the bond – angle contribution is then  
 

       σ 3 3

4
=

∆E
A

F a x* *( )( )                                                               (14) 

 
Summarizing, the surface energy of an fcc (100) face, where only the top layer is allowed to relax, is given by 
 

       σ = ∑ + +
=

∆E F a x F a x F a xj
j

[ ]*
,

* * * * *( ) ( ) ( )( ) ( ) ( )1
1

3

2 34                                                            (15) 

 
The calculation of the contribution to the defect energy from  *

4a  has been ignored in this study. Equations 
similar to Eq. (1-15) can also be written down for the (111) - (110) – faces. Such details are ignored here. 
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Table 1. Experimental input for fcc metals. 
 

Element Cohesive 
Energy  
∆E  

Lattice 
constant   

a  

Vac. Form. 
Energy  

Eiv
f

 

Elastic Constants 
 c11         c12                  c44  

Bulk 
modulus 

B 

Rh 
Ir 
Pb 
Ca 
Sr 
Th 

5.75 
6.94 
2.04 
1.84 
1.72 
6.20 

3.80 
3.84 
4.95 
5.58 
6.08 
5.08 

1.71 
2.35 
0.5 
0.6 
0.6 
2.0 

4.13 
6.0 

0.466 
0.228 
0.147 
0.753 

1.94 
2.6 

0.392 
0.16 

0.0574 
0.489 

1.84 
2.7 

0.144 
0.14 
0.099 
0.478 

2.704 
3.704 
0.488 
0.152 
0.116 
0.543 

 
RESULTS AND DISCUSSIONS 
In this section we report surface energies for six fcc 
metals. The ECT method requires as experimental 
input, the three bulk elastic constants, the bulk 
cohesive energy, the bulk lattice constants and the 
vacancy formation energy. These are collected 
together in Table 1 above and they have been 
employed to compute the ECT constants in Table 2. 
The different contributions of surface energy arising 
from the ECT expansion are displayed in Table 3, the 
surface energy are both for the rigid and relaxed case. 

From Table 3, it can be seen that the contributions 
from the bond – angle term σ3, are very small when 
compared to the ‘volume’ and bond – compression 
term. It has been shown else where (Rodriguez et al. 
1993; Bozzolo et al. 1993), that the bond-angle and 
the face – diagonal term of the ECT represents only 1 
to 2% of the total energy, hence they are not of great 
relevance for the calculation of surface energies.       

 
Table 2. Computed ECT Constants for Rh, Ir, Pb,  Ca, Sr and Th 

Element P 
l A

o
( )

 
α ( )A

o−1

 

λ ( )A
o

 
x10-4 

A2 
x10-4 

A3 
x10-4 

A4 
x10-4 

D 

Rh 
Ir 
Pb 
Ca 
Sr 
Th 

8 
10 
10 
6 
8 
12 

0.247 
0.230 
0.303 
0.486 
0.515 
0.494 

3.726 
4.417 
3.539 
1.864 
2.160 
3.617 

0.693 
0.647 
0.852 
1.365 
1.447 
1.389 

0.336 
0.0273 
0.0284 
2.196 
2.773 
0.0629 

0.938 
0.082 
0.0448 
6.692 
12.099 
0.182 

2.979 
0.253 
0.216 

33.2.65 
4.406 
0.0848 

10.835 
0.890 
1.195 
103.98

3 
14.307 
0.271 

 
                                                 Table 3.  Rigid and relaxed surface energies (in erg cm-2) for Rh, Ir, Pb,Ca,Sr and Th surfaces. 
 

                          Relaxed   Element  Crystal 
face      
(hkl)        

     Rigid 
         σ1          σ2          σ3   

 Rh 
 
 

Ir 
 
 

 Pb 
 
 

Ca 
 
 

Sr 
 
 

         Th 

(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 

3112.37 
3251.56 
2332.82 
3898.17 
4040.15 
2971.46 
568.30 
599.39 
418.86 
486.57 
482.70 
356.19 
355.10 
369.05 
277.48 

1442.76 
1510.56 
1155.45 

2956.21 
3016.62 
2258.82 
3742.10 
3796.42 
2883.82 
531.21 
553.87 
403.20 
443.90 
453.70 
346.24 
344.93 
352.36 
271.83 

1419.69 
1472.75 
1143.50 

39.90 
59.82 
22.10 
41.10 
67.08 
35.52 
8.18 
11.75 
5.62 
4.79 
7.33 
3.43 
2.37 
3.96 
1.88 
6.16 
9.28 
3.36 

3.49 
1.39 
0.00 
3.94 
1.65 
0.00 
0.12 
0.05 
0.00 
0.25 
0.10 
0.00 
0.21 
0.09 
0.00 
0.31 
0.12 
0.00 

 
The surface energies obtained from the three low – 
index faces of the six fcc metals are summarized in 

Table 4, and are compared with the results from first 
– principles calculations (Methfessel et al 1992; 
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Skriver and Rosengaard 1992), the Tight – binding 
(TB) method (Mehl and Papconstantopoulos 1996), 
the modified embedded atom method (MEAM) 
(Baskes 1992), and experiment (de Boer et al 1988). 
In all cases we find σ σ σ111 100 110< < . Thus close 
packed surfaces are the most stable for the fcc metals. 
The ECT surface energies are uniformly larger and 
closer to experiment, than those obtained by TB. Our 
surface energies are generally closer to experiment 
than those obtained by the MEAM and in good 
agreement with first – principles calculations for the 
surface energy of Ca (111) and Sr (Skriver and 

Rosengaard 1992). Our results for the top-layer 
relaxations are presented in Tables 5, and are 
compared with the results of other theoretical 
calculations and experiment of which the authors are 
aware. Table 5 shows that our ECT values are in 
good agreement with the first– principles calculation 
of Methfessel et al (1992) for the (100) and (111) 
faces of Rh. The ECT value of the (110) face of Rh 
are also in better agreement with experiment (Begley 
et al 1993) than the theoretical calculations of Sinnott 
et al. (1991) and Methfessel et al (1992). 

 

                                                                       Table 4. Surface energies (in erg cm-2) for fcc metals 

Element Crystal face 
(hkl) 

ECT 
(Present) 

First – Principles 
Calculations 

TBC MEAMd   Expte. 

Rh 
 
 

Ir 
 
 

Pb 
 
 

Ca 
 
 

Sr 
 
 

Th 

(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 

3000 
3078 
2281 
3787 
3865 
2919 
546 
566 
409 
449 
461 
350 
348 
356 
274 

1426 
1482 
1147 

2810a 2900b 
2880a  

2530a 2780b  
3810b 

 
3410b 

 
 
 
 
 

352b 
 
 

287b 

2570 
2710 
2460 
2950 
3190 
2590 

2900 
2920 
2600 
2910 
3060 
2840 
424 
431 
366 

2700 
 
 

3000 
 
 
 
 
 

490 
 
 

410 

 
a:  FP LMTO calculations (Methfessel et al. 1992); b:   LMTO – ASA calculations (Skriver and Rosengaard 1992); c:   Tight-binding total ;  
energy calculations (Mehl and Papaconstantopoulos 1996); d:   Modified embedded atom calculations (Baskes 1992); e:   Experimental 
surface energies tabulated by deBoer et al.  (1988). 
 

Conclusion: We have in this study extended the 
surface energy results of Aghemenloh and Idiodi 
(1998), by including the effect of relaxation on the 
calculated surface energy of Rh, Ir, Pb, Ca, Sr and 
Th. Very generally, the surface energies are found to 
be in good agreement with the results from first 
principles calculation and experiment. Our work on 
relaxation is good, as it gives the correct sign and 
magnitude of the top-layer relaxations where 
experimental and first – principles calculations are 
available. 
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Table 5. The top-layer relaxation in percent of the unrelaxed layer spacing d/12∆ (%) for 
some metals. 

 
Element Crystal 

face 
(hkl) 

Changes in spacing 
(%)  

 

   X (Ǻ)      d/12∆     

Other method 
(Theoretical) 

Experiment 

Rh 
 
 

Ir 
 
 

Pb 
 
 

Ca 
 
 

Sr 
 
 

Th 

(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 

-0.07 
-0.08 
-0.04 
-0.06 
-0.07 
-0.04 
-0.08 
-0.09 
-0.05 
-0.13 
-0.15 
-0.08 
-0.11 
-0.13 
-0.07 
-0.07 
-0.08 
-0.04 

-3.7 
-4.2 
-2.1 
-3.1 
-2.1 
-3.6 
-2.1 
-3.2 
-3.6 
-4.7 
-5.4 
-2.9 
-3.6 
-4.3 
-2.3 
-2.8 
-3.2 
-1.6 

-3.2a –3.5b 
-7.8a –7.5b 
-2.3a –2.5b 

-1.16+ 1.6c 
-3.3+1.5d 
-1.6+ 0.8d 

d is the bulk interlayer distance. The calculated absolute changes are also given in A
o

; 
a:   Corrected effective- medium calculations (Sinnott et al. 1991). 

b:   FP LM TO calculation, using seven-layer slabs (Methefessel et al 1992) 
c:   Experimental result for the (100) surface (Begley et al. 1993) 

d:   LEED experimental result (Rodriguez et al.1993). 
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