Superiority of Legendre Polynomials to Chebyshev Polynomial in Solving Ordinary Differential Equation

*1AKINPELU, FO; 2ADETUNDE, L A; 3OMIDIORA, E O.

1 Ladoke Akintola University Of TechnologyDepartment Of Pure And Applied Mathematics Ogbomoso, Oyo State Nigeria.

2 University Of AgricultureDepartment Of Mathematical SciencesAbeokuta, Ogun State, Nigeria.

3 Ladoke Akintola University Of Technology.Department of Computer Science & Engineering.Ogbomoso, Oyo State.

ABSTRACT: In this paper, we proved the superiority of Legendre polynomial to Chebyshev polynomial in solving first order ordinary differential equation with rational coefficient. We generated shifted polynomial of Chebyshev, Legendre and Canonical polynomials which deal with solving differential equation by first choosing Chebyshev polynomial $T_n(x)$, defined with the help of hypergeometric series $T_n(x) = F(-n, n, 1/2; X)$ and later choosing Legendre polynomial $P_n(x)$ defined by the series $P_n(x) = F(-n, n+1, 1/2; X)$ with the help of an auxiliary set of Canonical polynomials Q_k in order to find the superiority between the two polynomials. Numerical examples are given which show the superiority of Legendre polynomials to Chebyshev polynomials.

The so-called Canonical polynomials introduced by Lanczos(A) have hitherto been used in application to the Tau method for the solution of ordinary differential equation via Legendre polynomials and Chebyshev polynomials. In this paper, we described how canonical polynomials can easily be constructed as basis to the solution of first order differential equations. From a computational point of view, the canonical polynomials are attractive, easily generated, using a simple recursive relation and its associated conditional of the given problem via Legendre and Chebyshev polynomials is of great importance.

The paper of Oriz(B) gives an account of the theory of the Tau method which it subsequently uses in the problems considered to illustrate the effectiveness and superiority of Legendre polynomials to Chebyshev polynomials.

THE METHOD USED

IN THIS SECTION, WE GENERATE CANONICAL POLYNOMIALS FOLLOWING LANCZOS(A), WE DEFINE CANONICAL POLYNOMIALS $Q_k(x)$; $K = 0$ WHICH ARE UNIQUELY ASSOCIATED WITH THE OPERATOR. CONSIDER A LINEAR DIFFERENTIAL EQUATION

$Y' - y = 0, \ y(0) = 1$ 1

GENERATING THE CANONICAL POLYNOMIALS,

$L = D/\Delta x - 1$

$Lx^k = kx^{k-1} - x^k$

THUS,

$LX^k - KLQ_{k-1}(X) - LQ_k(X) - LQ_0(X) = 0$

FROM THE LINEARITY OF L, AND THE EXISTENCE OF L^{-1}, WE HAVE

$Q_k(X) + X^k = KQ_{k-1}(X)$

SINCE $DQ_k(X) = X^k$

FROM THE BOUNDARY CONDITION

$DY(X) = 0 \Rightarrow X^k = 0$

$Q_0(X) = KQ_{k-1}(X)$

IT FOLLOWS THAT

$Q_k(X) = K!S_k(X)$

FOR THE DIFFERENTIAL EQUATION

CONSIDER CHEBYSHEV POLYNOMIALS

WE RECALL SOME WELL-KNOWN PROPERTIES OF THE CHEBYSHEV POLYNOMIALS:

$T_n(X) = F(-n, n, 1/2, X)$

$T_n(X) = \cos n(\cos^{-1} X)$

$-1 = X = 1$ WHERE $X = \cos 0$. TO EVALUATE THE FIRST FEW POLYNOMIALS, WE FOLLOW

$T_0(X) = T_0(\cos 0) = 1$

$T_1(X) = T_1(\cos 0) = X$

WE NOW MAKE USE OF THE RECURSIVE RELATION

$T_{n+1}(X) = 2XT_n(X) - T_{n-1}(X)$

TO GENERATE OTHERS FOR $n = 1, 2, 3, ...$

LEGENDRE POLYNOMIALS

LEGENDRE POLYNOMIALS $p_n(X)$, DEFINED BY THE HYPERGEOMETRIC SERIES

$P_n(X) = F(-n, n+1, 1; X) = F(\alpha, \beta; x)$

*Corresponding author
Now by choosing Chebyshev polynomials $T_n^*(x)$ defined with the help of the hypergeometric series
\[T_n^*(x) = f(-N, N, 1/2; x) \]
as the error term on the right hand side of (1) we therefore solve the differential equation
\[y''_N - y_N = \delta T_n^*(x) \]
by introducing canonical polynomial
\[Q_k(x) = Q_k(x) \]
where $Q_k(x)$ is the canonical polynomial. Here, we need a small perturb term which leads to the choice of Chebyshev polynomials which oscillates with equal amplitude in the range considered.

\[p_n(x) = T_n^*(x) \]
where $T_n^*(x)$ is the shifted Chebyshev polynomial which are often used with the Tau method and
\[T_n^*(x) = \Sigma C_k^N x^k \]
where C_k^N are coefficients of x^k, we
\[k=0 \]

Assume here that a transformation has been made such that $A=0$ and $B=1$ to simplify matter further in order to get the shifted Chebyshev polynomial i.e
\[T_0^*(x) = 1, T_1^*(x) = x = (1-2\theta), T_2^*(x) = 1 - 8\theta + 8\theta^2 = 1 - 8x + 8x^2 \]

Result and Discussion
Consider the differential equation
\[y'' - y = 0 \]
which defines the exponential function,
\[y(x) = e^x = 1 + x + x^2/2 + x^3/3! + \ldots \]
which converges in the entire complex plain. If we truncate the Taylor series
\[y_\Sigma(x) = 1 + x + x^2/2! + \ldots + x^N/N! + \ldots \]
this function satisfies the differential equation
\[y''_N - y_N = x^N/N! \]
Suppose we are solving 1 in the range of $(0,1)$.

Akinpelu, F.O.; Adetunde, L.A.; Omidiora, E.O.
\[\sum_{k=0}^{n} C_k^4 S_k(Z) \]

We obtain

\[\sum_{k=0}^{n} C_k^4 S_k(Z)\]

15

The previous approximations have now turned into rational approximations giving the successive approximates as the ratio of two polynomials of order \(n \).

When \(n = 4 \), we have

\[\sum_{k=0}^{n} C_k^4 S_k(Z) \]

16

Whereas the unweighted partial sum \(S_n(1) \) gives

\[65/24 = 2.70832 \]

With error \(= 1.0 \times 10^{-2} \)

Here, we see the great increased convergence thus obtained.

However, the range \((0, 1) \) is accidental now testing with analytic functions which are defined at all points of the complex plane except for singular points. Hence, our aim will be to obtain \(Y(Z) \) where \(Z \) may be chosen as any non-singular complex point.

In view of this, we choose our error polynomial in the form \(T_4^*(Z) \) and solve the given differential equation along the complex ray which connects the point \(X = 0 \) with the point \(X = Z \). Then solving the differential equation

\[D_i Y_i(X) = \varphi_T T_4^*(X/Z) \]

14

By considering \(Z \) merely as a given constant, we finally substitute for \(X \) the end-point \(X = Z \) of the range in which \(T_4^*(X/Z) \) is usable.

Hence,

\[T_n^*(X/Z) = \sum_{k=0}^{n} C_k^4 X^k \]
LEGENDRE SOLUTION GIVE MUCH CLOSER E-VALUE THEN THE VALUES OBTAINED BY THE CHERBYSHEV WEIGHTING.
IF WE PROCEED BY PUTTING Z = 1, WE OBTAIN SUCCESSIVE APPROXIMATIONS OF
E1 = COS1+ISIN1 = 0.54030231 + 0.84147981
IN THE CASE N = 4 CONSIDERED

\[Y_4^*(i) = 1501 + 820i \\
1501 - 820i \\
= 1580601 + 2461640i \\
2925401 \]

\[Y_4^*(i) = 0.540302338 + 0.84147964i \]

ERROR \(\eta = -3*10^{-8} + 2*10^{8}i\)

WHEREAS THE WEIGHTING BY CHERBYSHEV COEFFICIENT YIELDS

\[Y_4^*(i) = 2753 + 1504i \\
2753 - 1504i \\
= 5316993 + 8281024i \\
9841025 \]

\[Y_4^*(i) = 0.5402885 + 0.84147981 \]

ERROR \(\eta = 1.4*10^{-7} - 0.9*10^{-8}i\)

SEE TABLE 1 FOR SOME NUMERICAL RESULTS FOR THE ERROR ESTIMATES BASED ON THE EXAMPLE 1, WHEN X = 1

EXAMPLE 2

\[Y(1+X) = 1, Y(0) = 0. \]

THE EXACT VALUE (SOLUTION) \(\Rightarrow Y(X) = \log(1+X) \Rightarrow Y(\infty) = X - X^2/2 + X^3/3 \)

FOLLOWING THE ILLUSTRATION OF EXAMPLE 1 WE HAVE CANONICAL POLYNOMIAL BECOMES

\[Q_n(X) = (-1)^n S_n(X) \]

THE PERTURBED TERM BECOMES

\[Y^*(1+X) = 1 + \phi T^*(X) \]

\[Y^*(X) = \phi \sum_{k=1}^{N} C_k X^{-k} \]

WHERE

\[S_n(X) = \sum_{k=0}^{n} (-1)^{k+1} X^k \]

\[T_n^*(X) = \sum_{k=0}^{n} C_n X^k \]

HENCE WE HAVE THE TABLE FOR THE RESULT OF EXAMPLE

CONCLUSIONS: The polynomials of legendre and chebyshev has been described. The two method is shown to be accurate efficient and general in application for sufficiently solution y(x) and for tau polynomial approximation y_0(x).

The result obtained in the present work demonstrate the effectiveness and superiority of legendre polynomials to chebyshev polynomials for the solution of order linear differential equation. The variants of the error estimated described the case of reciprocal radii in which the point x = 0 becomes a singular point of our domain legendre polynomial fail to give better value than the chebyshev polynomials even of the end point x = 1. By excluding, however the point x = 0 by defining our range as \(\in(1)\) which by a simple linear transformation can then be changed back to the standard range \(\in(1)\). The condition that our domain shall contain no singular points is now satisfied.

in the vicinity of singularity \(p_n^*(x)\) (i.e. the legendre polynomials) gives larger errors than the \(t_n^*(x)\) (i.e. chebyshev) for small values of n. As n increases, the polynomials \(p_n^*(x)\) compete with \(t_n^*(x)\) with increasing accuracy to the \(t_n^*(x)\) for the purpose of end point approximation.

Acknowledgement: The authors wish to thank ayeni e.o and tunde okevale for performing the numerical experiments. The subject matter of this paper has been discussed with numerous individuals and the authors are grateful to them all. The following deserve particular mention: r.o ayeni (lautech), tejumola, dosu ojengbede, omosoju, eegungomi, and opoola t.o (of university of ilorin)

REFERENCES

AKINPELU, FOJADETUNDE, LA; OMIDIORA, E.O.