ABSTRACT: Prostate Cancer has assumed an important public health concern in Nigeria. Its incidence is anecdotal on the rise in our community and many prominent Nigerians are dying from it. The current study set out to ascertain the age adjusted prostate specific antigen (PSA) values indigenous to the local community and to confirm the relationship between PSA and age. In this study, enrollees were from a medical outreach carried out by a non-governmental agency in Benin City, Nigeria. The number of volunteers was 443 adult males. Eleven 11(2.48%) of this number were excluded from the study on account of their outlying PSA values. The mean age was 42.4years, the youngest volunteer being 18 years and the oldest, 86 years. The mean PSA value in the ≤40 year, 40-49, 50-59, 60-69, and ≥70year age categories were 1.77 ng/ml, 2.09 ng/ml, 1.99 ng/ml, 2.63 ng/ml, and 2.59 ng/ml respectively. The overall mean PSA was 2.21 ng/ml, whereas the median was 2.09ng/ml. Results showed positive but weak correlation between age and PSA (R = 0.161, P < 0.01). Nonetheless, significant increases in PSA with age were reported. The current study therefore provides a set of serum PSA values that are indigenous to the local environment, which could be used as cut-off threshold for performing prostatic biopsies.

DOI: https://dx.doi.org/10.4314/jasem.v24i1.21

Copyright: Copyright © 2020 Eboreime and Atoe. This is an open access article distributed under the Creative Commons Attribution License (CCL), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dates: Received: 30 November 2019; Revised: 20 December 2019; Accepted: 23 December 2019

Keyword: prostate cancer, prostate specific antigen, glycoprotein, biopsy, Benin City

Prostate cancer is increasingly becoming a public health issue in Nigeria and the most diagnosed internal cancer in male (Clarke et al., 2010; Adedapo et al., 2012). PSA is a glycoprotein in the kallikren-like protease family with reduced chymotrypsin-like enzyme activity. It is produced by all the epithelial cells of the prostate gland. It is organ specific but not specific for carcinoma of the prostate as its levels are elevated in benign prostatic hypertrophy (BPH), urinary retention, acute prostatitis, prostatic ischaemia or infarction, after digital rectal examination, and after sexual activity (Oesterling, 1995; Luboldt et al., 2007). It was not until 1987 that it gained popularity for prostate cancer screening.

The traditional cut-off of serum PSA level of 0-4ng/ml is based on a single study and has appreciable shortcomings; it is based on older (isotopic) technology, non appreciation of the diverse molecular forms of PSA, absence of standardization and lack of knowledge of co-variate of age (Sibbly and Sturgeon, 1999). This threshold is insufficient to detect early stage carcinoma of the prostate and as such a great proportion of prostate cancers are missed (Luboldt et al., 2007).

The current biopsy guidelines that specifies that a serum PSA level equal or greater than 4ng/ml or PSA velocity greater than 0.75ng/ml per year, as indication for prostatic biopsy, underestimate cancer risk in the 50-59 year old (Moul, 1995). For these reasons, the age-adjusted PSA reference range values were developed by reducing this threshold well below the time honoured value of 4ng/ml for the younger male and raising it in the older male. This allowed for early detection of prostatic cancer, reduction in tumour stage at diagnosis, morbidity and mortality and reduction in the number of unnecessary biopsies in patients with benign prostatic hyperplasia (BPH) without signs and symptoms of prostatic cancer (Luboldt et al., 2007; Heidegger et al., 2015).

Increasing incidence of prostate cancer and their late presentation has been observed by the authors during practice. This prompted the need to ascertain the actual serum PSA cut-off threshold for the different age groups in our locality with the view to help in the early...
The correlation between both parameters is however a weak correlation (R = 0.161, P < 0.01). This Figure 2 shows graphs of 75th, 80th, 85th, 90th and 95th percentiles of the serum PSA values plotted against the age categories. The PSA values increased uniformly with age in the 90th and 95th percentiles unlike in the 75th, 80th and percentiles. The overall mean of the 95th percentiles was 4.6ng/ml.

Figure 3 shows the box and whiskers plots for 95th percentile PSA values and age categories. There is a direct relation between age and serum PSA values. This figure also displays the spread of the 95th serum PSA values and the outliers. PSA values for 2.48% of the study participants made the 60-69 age category while the least number occurred in 70 years and above age category. The mean age was 42.4years.

Table 1: Mean values of serum PSA in the age categories

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>n(%)</th>
<th>PSA (ng/ml)</th>
<th>95% CI</th>
<th>95% CI (Lower)</th>
<th>p-value</th>
<th>95th Percentile</th>
<th>99th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td><40</td>
<td>80(18.5)</td>
<td>1.77 ± 0.63</td>
<td>1.63</td>
<td>1.91</td>
<td><0.001</td>
<td>1.9</td>
<td>2.89</td>
</tr>
<tr>
<td>40-49</td>
<td>69(16.0)</td>
<td>2.09 ± 0.86</td>
<td>1.89</td>
<td>2.29</td>
<td>2.0</td>
<td>3.60</td>
<td></td>
</tr>
<tr>
<td>50-59</td>
<td>113(26.2)</td>
<td>1.99 ± 1.09</td>
<td>1.78</td>
<td>2.19</td>
<td>1.9</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>60-69</td>
<td>118(26.2)</td>
<td>2.63 ± 1.68</td>
<td>2.32</td>
<td>2.94</td>
<td>2.2</td>
<td>5.21</td>
<td></td>
</tr>
<tr>
<td>≥70</td>
<td>52(27.3)</td>
<td>2.59 ± 1.94</td>
<td>2.05</td>
<td>3.13</td>
<td>1.7</td>
<td>7.01</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>432</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1 shows the mean, median and standard deviation of serum PSA values in five categorised age groups. The mean PSA value in the ≤40 year age category was the least at 1.77ng/ml while the highest value of 2.59ng/ml occurred in the ≥70years age group. However contrary to our expectations, the mean serum PSA value for the 40-49years age category stood at 2.09ng/ml, a higher value than the older age category (50-59 year) which stood at 1.99ng/ml. Again the mean serum PSA for the 60-69 years age group stood at 2.63ng/ml, a higher value than that of the ≥70years category (2.59ng/ml). The overall mean was 2.21ng/ml. The correlation between PSA and age has been presented (Figure 1). There is a positive relationship between age and PSA. As age increases there is a tendency for the serum PSA to also increase. The correlation between both parameters is however a weak correlation (R = 0.161, P < 0.01).
This study was conducted to determine the age-adjusted serum PSA ranges in a medical outreach cohort study carried out in Benin City, Nigeria and also to confirm the relationship between age and serum PSA in the Benin City environment. The results show that there was a positive correlation between PSA values and age ($R = < 0.161; p=0.01, 2$-tailed). The 95th percentiles of the serum PSA values for each age category also increased with age (see Figures 1 and 2); and this agreed with the findings in other studies (Amadi and Odum, 2018). Results of the present study indicated that a single serum PSA cut-off threshold cannot be used for all age groups. Serum PSA is influenced by age, race, geography, diet, androgens and environment (Read et al., 2007; Ikuerowo et al., 2016; Al-Abdin and Al-Beeshi, 2018). It also has a direct relationship with age-related volume changes resulting from hyperplasia of the prostate tissue. In old age, the prostate gland cells become more porous and leaks more PSA into the serum (Scattoni et al., 1999; Sibly and Sturgeon, 1999; Clarke et al., 2010; Luboldt et al., 2007). Hitherto, serum PSA cut-off of 0 – 4 ng/ml was used as the basis for carrying out prostatic biopsy regardless of age. This concept was premised on a single study which had appreciable shortcomings; an older (isotopic) technology which ignored the diverse molecular forms of PSA, and is hardly a standardized test which also does not take into consideration the co-variate of age (Sibly and Sturgeon, 1999). Similarly, this threshold of 0 - 4mg/ml is insufficient to detect early stage carcinoma of the prostate and as such a great proportion of prostate cancers are missed when applied (Luboldt et al., 2007). In this study, the 95th percentile cuff-off serum PSA value increased steadily from 2.89 ng/ml in the <40 years category to 7.0 ng/ml in the ≥70years category (see Figure 2). This trend was also replicated in other Nigerian studies (Amadi and Odum, 2018; Al-Abdin and Al-Beeshi, 2018). However, the mean PSA values obtained in this study were about two to two and half times higher than values reported by some researchers in the western world (Luboldt et al., 2007; Heidegger et al., 2015). Nonetheless, this was lower than other studies from Nigeria (Al-Abdin and Al-Beeshi, 2018) probably due the different population sizes, the types of the cohort, inter-assay variabity, inconsistent calculation of age specific reference ranges and verification bias (Luboldt et al., 2007).

Some authorities (Ganpule and Dessai, 2007; Amadi and Odum, 2018; Al-Abdin and Al-Beeshi, 2018) suggested that a PSA threshold of 2.0 to 2.5ng/ml should be used for 40-49 years in African – American (NCBI, 2009) compared to 0 - 3.6mg/ml in the present study. Other studies have revealed that serum PSA is higher in blacks than in whites, Chinese, Indians and Indians.
Japanese (Ganpule and Dessai, 2007; Al-Abdin and Al-Beeshi, 2018). Al-Abdin and Al-Beeshi (2018) claimed that in blacks the prostate volume is larger in Caucasians age for age. In the current study, the mean serum PSA values in the 40-49 years (2.09ng/ml) and 60-69years (2.63ng/ml) age categories were higher than that of the 50-60 years (1.99ng/ml) and ≥70years (2.59ng/ml) categories respectively against expectations based on the findings of similar studies (Ganpule and Dessai, 2007; Ikuerowo et al., 2016; Amadi and Odum, 2018; Al-Abdin and Al-Beeshi, 2018).

It is believed that using these threshold values which are lower and higher than 0-4ng/ml in the younger age and older age group respectively, localised prostatic cancers would be detected early leading to appropriate interventions, reduced morbidity and mortality and a reduction in unnecessary biopsies in patients with benign prostatic hyperplasia without missing the presence of prostatic carcinoma (Heidegger et al., 2015). It has been suggested that using the age-adjusted serum PSA ranges, sensitivity and specificity for prostatic cancer detection is enhanced in the younger male and older male respectively (Luboldt et al., 2007). It is recommended that a future a mega multicentre community based study be carried out for validation of these results.

Conclusion: The present study confirms that serum PSA values increased with age and this cut across all races although the degree of increase differed from race to race when compared with literature evidence. It also provides a set serum PSA values indigenous to the local environment; this could be used as cut-off threshold for performing prostatic biopsies.

Acknowledgement: The authors are grateful to the health workers that volunteered their services during the outreach programme. The study was privately funded.

REFERENCES

Clarke, RA; Schirra, HS; Catto, JW; Lavin MF; Gardiner RA (2010). Markers for Detection of Prostate Cancer (Basel), 2(2): 1125-1154.

Heidegger, I; Fritz, J; Klocker, H; Pichler, R; Bektic J ; Horninger ,W; Bhowmick ,N (2015). Age-Adjusted PSA Levels in Prostate Cancer Prediction: Updated Results of the Tyrol Prostate Cancer Early Detection Program DOI: 10.1371/JOURNAL.PONE.0134134

Read, A; Amherst, DP; Pollack, BH; Thompson, IM; Parekh, DJ (2007). Current Age and Race Adjusted Prostate Specific Antigen Threshold
