Performance Evaluation of Waste Stabilization Pond for Treatment of Wastewater from a Tertiary Institution Campus Located in Jos North Local Government Area, Plateau State, Nigeria

1,2*ALFA MI; 3OWAMAH, HI; 4ISHAQ, A; 1ENOKELA, PA; 5OLUWASEUN, D; 5CHIKEZIE, AO

1Department of Civil Engineering, University of Jos, Jos, Nigeria
2Department of Civil Engineering, College of Engineering, Covenant University, Ota, Nigeria
3Department of Civil Engineering, Delta State University, Abraka, Oleh Campus, Delta State, Nigeria
4Department of Water Resources & Environmental Engineering, Ahmadu Bello University, Zaria, Nigeria
5Department of Agricultural and Bio-Environmental Engineering Technology, Federal Polytechnic, Nasarawa, Nigeria

*Corresponding Author Email: meshilalfa@gmail.com; Tel: +2347030288424
Other Authors’ Emails: owamah.hilary@gmail.com; aleeeks4real@gmail.com; petenoksoni5@gmail.com; bakodoofanj2011@gmail.com; adaokeychikeziej@yahoo.com

ABSTRACT Appropriate treatment of wastewater before disposal into the environment or reuse is very important in the quest to protect the environment and safeguard public health. This paper investigated the performance evaluation of a waste stabilization pond (WSP) for treatment of wastewater from a tertiary institution campus located in Jos North Local Government Area of Plateau State in North Central Nigeria. The waste stabilization pond of the tertiary institution campus was designed for a wastewater flow rate of 12,945 m³/day. In order to evaluate the performance of the WSP, a model was developed following the Froude’s number dimensional analysis technique. The model was evaluated based on a wastewater flow of 0.4 m³/day. The final effluent from the maturation pond had 80 mg/L BOD, 195 mg/L COD, 75 CFU/100ml Total Coliforms, 610 mg/L Total solids, 19 mg/L Total Nitrogen, 210 mg/L Chloride, 28 mg/L Phosphate, 1.3 mg/L Ammonia and 7.0 pH. The WSP was able to achieve an overall efficiency of 77.38% reducing all quality parameters to recommended limited with exception of total nitrogen and phosphate. The implementation of this design will go along way to aid the treatment of wastewater from the campus of the university.

DOI: https://dx.doi.org/10.4314/jasem.v26i9.10

Open Access Policy: All articles published by JASEM are open access articles under PKP powered by AJOL. The articles are made immediately available worldwide after publication. No special permission is required to reuse all or part of the article published by JASEM, including plates, figures and tables.

Copyright Policy: © 2022 by the Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0) license. Any part of the article may be reused without permission provided that the original article is clearly cited.


Dates: Received: 06 September 2021; Revised: 18 September 2022; Accepted: 26 September 2022

Keywords: Biological treatment; Wastewater; Waste Stabilization Pond; Biological Oxygen Demand

Production of waste is an unavoidable part of the activities of human, a significant part of which will end up as wastewater (Henze and Comeau, 2008). Generally speaking, wastewater refers to the water supply of a community after it has been used which now contains objectionable constituents that make it unfit for intended use. Depending on the source of generation, the characteristics of wastewater varies significantly. Wastewater comprises of liquid waste discharged from domestic, commercial, industries and agricultural properties (Lee et al., 2019). Treatment of wastewater before disposal or reuse is very important for many reasons. According to Tchobanoglous et al. (2003), the accumulation of untreated wastewater will undergo decomposition which can constitute serious nuisance conditions such as but not limited to the production of malodorous gases. More so, untreated wastewater usually contains pathogenic microorganisms that are natural habitat of the human intestinal tract which when in contact with municipal water source can result in outbreak of water borne diseases (Alfa et al., 2014; Iorhemen et al., 2016; Owamah et al., 2021). In order to protect public health and the environment therefore, the immediate and nuisance-free removal of wastewater from its source of generation, followed by appropriate treatment, reuse, resource recovery or disposal into the environment becomes very necessary (Safoniuk, 2004; Ogbozige and Alfa, 2019).
Wastewater treatment systems can either be decentralized or centralized (Jung et al., 2018). While the decentralized treatment system which involves on-site treatment is preferred particularly for communities with improper zoning (Massoud et al., 2009), the centralized system offers a lot of advantages including the recovery of resources at a large scale which makes it more appropriate for a tertiary institution campus such as the Naraguata campus of the University of Jos (Peter et al., 2017). The centralized treatment system which is an off-site treatment involves primary, secondary and tertiary processes (Jung et al., 2018). Waste stabilization pond is one of such centralized systems that has been used extensively especially in hot climates like Nigeria largely due to the simplicity of their design, low cost and the use of low-skilled operators (Edokpayi et al., 2021). This paper therefore, explored the development and performance evaluation of a waste stabilization pond (WSP) for treatment of wastewater from a tertiary institution campus located in Jos North Local Government Area of Plateau State in North Central Nigeria.

**MATERIALS AND METHODS**

**Study Area:** The Naraguata Campus of the University of Jos is located in Jos North Local Government Area (LGA) of Plateau State in North Central Nigeria. The campus lies between latitudes 9° 57’ 30” N to 9° 58’ 49” N and longitudes 8° 52’ 11” E to 8° 53’ 39” E (Fig. 1). The campus stands at a very high altitude ranging from a minimum of 1,099 m to a maximum of 1,150 m above mean sea level. According to the National Bureau of Statistics (NBS, 2012), the city of Jos has a mean annual rainfall of 1,261.16 mm, annual mean minimum temperature of 16.30 °C, annual mean maximum temperature of 28.10 °C, annual mean relative humidity ranging from 51.34% at 0900 hours to 46.88% at 1500 hours, annual mean radiation of 21.18 mm and an annual mean evaporation of 4.60 mm.

![Fig. 1: Map of Study Area](image)

**Design of the Components of WSP:** The population of staff and students of the University of Jos as at 2019 made available by the Directorate of Academic Planning and Management of the university were 3,644 and 41,084 respectively making a total of 44,728 persons.

With a design life of 20 years chosen for the WSP (Tchobanoglous et al., 2003), the population was projected using the geometric growth model expressed by equation 1.

\[
P_2 = P_1 e^{k(t_2-t_1)}
\]

Where \( P_2 \) = projected population, \( P_1 \) is the current population, \( k \) is the growth rate while \( t_2 - t_1 \) is the design life of the project.

A per capita water consumption of 120 litres/day as recommended by the Nigerian National Water and sanitation policy was adopted with 85% assumed to end up in the sewers (Mara et al., 2001).

Based on the foregoing, the design criteria adopted in this study are itemized in Table 1.
The design of the anaerobic ponds, facultative ponds and maturation ponds was carried out following the detailed methods described previously (Mara and Pearson, 1986; Kayombo et al., 2004; Mohammed, 2006; Hamzeh and Ponce, 2007). A summary is presented herein.

**Design of Anaerobic Ponds:** The design of the anaerobic ponds was done on the basis of the permissible volumetric organic loading \( \lambda_v \), which is a function of the temperature \( T \) as presented by equation 2 for a temperature range of 20 – 25°C. However, for a temperature > 25°C, a value of 0.35 was recommended which was adopted in this design. Similarly, the volume of the anaerobic pond \( (V_{an}) \) is related to the wastewater flow rate \( (Q) \), influent BOD \(_5\) \( (BOD_{in})\) and the volumetric loading rate \( (\lambda_v) \) by equation 3.

\[
\lambda_v = 0.01 \times T + 0.1 \quad (2)
\]

Where \( T \) is temperature (°C).

The volume of the Anaerobic Ponds,

\[
V_{An} = \frac{BOD_{in} \times P}{\lambda_v} \quad (3)
\]

The retention time,

\[
t_a = \frac{V_{an}}{Q} \quad (4)
\]

Required time for sludge removal,

\[
t_s = \frac{V_{An}}{N} \times \frac{1}{PE \times SAR} \quad (5)
\]

Where \( SAR \) is sludge accumulation rate and \( N \) is number of ponds.

A depth of 3m was assumed with 2 identical ponds and a standby for desludging. The length and breadth of the identical ponds were estimated based on a ratio of 3:1 (Mohammed, 2006).

**Design of Facultative Ponds:** This pond was designed by considering the maximum surface organic loading rate which is a function of the temperature. Kayombo et al. (2004) gave the expression of the maximum organic loading rate for hot climate as expressed by equation 6.

\[
\lambda_s = 20T - 60 \quad (6)
\]

It was assumed that 60% BOD removal was achieved in anaerobic ponds.

The mid-depth area of the facultative ponds \( (A_f) \) was calculated using equation 7 (Mara and Pearson, 1986; Mara and Pearson, 1998) expressed as a function of the influent BOD to facultative pond \( (BOD_{fa})\), wastewater flow rate \( (Q) \) and surface BOD loading \( (\lambda s)\).

\[
A_f = \frac{(10 \times BOD_{fa} \times Q)}{\lambda_s} \quad (7)
\]

Retention time, \( t_f = \frac{A_fD}{Q} \quad (8) \)

A mid-depth, \( D \) of 1.5 m was adopted for the design with 2 identical ponds (Hamzeh and Ponce, 2007) and a length to width ratio of 3:1 (Mohammed, 2006).

**Design of Maturation Ponds:** The number and size of maturation ponds in a system depend upon the bacteriological quality required of the effluent. The expected effluent number of faecal coliform bacteria per 100 ml \( (B_e) \) was estimated using equation 9 (Mara and Pearson, 1986).

\[
B_e = \frac{B_l}{(1 + KB(T)t)} \quad (9)
\]

Where \( B_l = \) influent bacterial concentration in FC/100ml, \( t = \) retention time in days, \( KB \) \( (T) \) = First order FC removal rate constant in T°C per day

\[
KB(T) = 2.6(1.19)^{7-20} \quad (10)
\]

More so, the total number of faecal coliforms in the effluent from the last pond of the series was estimated using equation 11 (Mara and Pearson, 1986).

\[
B_e = \frac{B_l}{(1 + KB(T)t_a)(1 + KB(T)t_f)(1 + KB(T)t_m)^n} \quad (11)
\]

Where \( t_a, t_f \) and \( t_m \) are the retention times of the anaerobic, facultative and maturation ponds respectively while \( n \) is the number of maturation units in the series.
Assuming 2 maturation ponds with 4-day-retention time each, the effluent bacterial concentration was calculated using equation 11.

The area of maturation ponds, 

\[ A_m = \frac{2Q_t m}{(2D + 0.001e)t_m} \] (12)

Where \( e \) is net evaporation rate (mm/day). A pond depth of 1.5m was adopted. Using a length to width ratio of 3:1 with 2 ponds, the dimensions of the maturation ponds were estimated.

**Method of Development of Waste Stabilization Pond Model:** The development of the dimensions of anaerobic, facultative and maturation pond models was carried out following the Froude’s number method of dimensional analysis expressed as follows.

Froude’s number, \( Fr = \frac{V}{\sqrt{gL}} \) (13)

Where \( V \) = Velocity, \( L \) = Length and \( g \) = acceleration due to gravity

\[ Fr_m = Fr_p \] (14)

Where the subscripts \( m \) and \( p \) represent the model and prototype. Since acceleration due to gravity, \( g \) is constant, it implies that,

\[ \frac{V_m}{\sqrt{L_m}} = \frac{V_p}{\sqrt{L_p}} \] (15)

\[ \frac{V_m}{V_p} = \left( \frac{L_m}{L_p} \right)^{1/2} \] (16)

From similarities, \[ \frac{A_m}{A_p} = \left( \frac{L_m}{L_p} \right)^2 \] (17)

More so, \[ \frac{Q_m}{Q_p} = \frac{L_m}{L_p} \times \left( \frac{L_m}{L_p} \right)^{1/2} = \left( \frac{L_m}{L_p} \right)^{3/2} \] (19)

Setting the wastewater flow rate for the model at 0.4 m³/day, the dimensions of the model were estimated using equation 19 and maintaining the length to width ratio of 3:1.

**Performance Evaluation of the WSP:** A physical model of the WSP based on the model dimensions was fabricated using silicon glass material. Performance evaluation of the fabricated WSP was carried out using real time wastewater obtained from the hostel area of the university. The physicochemical and bacteriological characteristics of the raw and treated water were analysed in the Sanitary Engineering Laboratory of the Department of Civil Engineering, University of Jos following the standard methods of wastewater analysis described previously in APHA (2012). The parameters assessed are BOD, COD, Total coliform, Chloride, Sulphate, Total Nitrogen, Phosphorus, Total Dissolved Solids, Ammonia and pH. The results obtained were compared with the World Health Organization (WHO)/Food and Agriculture Organization (FAO) guidelines for reuse of wastewater for irrigation (Blumenthal et al., 2000; Carr, 2005; Kotut et al., 2011; WHO, 2015). In order to evaluate the overall efficiency of the WSP system in the treatment of the wastewater, the conformity of the final effluent parameters with the standards were used. Parameters that conformed to the standard were given a score of 1 while those that did not conform were assigned a score of 0. The percentage conformity was used as the overall treatment efficiency of the system. This method has been used previously by Alfa et al. (2022).

**RESULTS AND DISCUSSIONS**

The dimensions of the designed prototype and model of the WSP are presented in Table 2 while the layout is presented in Figure 2.

Furthermore, the characteristics of the raw wastewater as well as those from the respective ponds are presented in Table 3. Table 2 shows that the length, breadth and depth of the anaerobic pond prototype are 92.3m, 30.8m and 3.0m respectively while those of the model are 1.9m, 0.6m and 0.1m respectively. The length, breadth and mid-depth of the facultative pond prototype are 121.3m, 40.4m and 1.5m respectively, while those of the model are 2.5m, 0.8m and 0.1m respectively. Similarly, the length, breadth and depth of the maturation pond prototype are 179.9m, 60.0m and 1.5m respectively while those of the model are 3.7m, 1.3m and 0.2m respectively.

Furthermore, the results of the final effluent quality obtained from the Maturation Pond (Table 3) reveal that the system was able reduce the BOD by 81%, COD by 73.6%, Total Coliforms by 75.8%, Total Solids by 61.9%, Total Nitrogen by 70.3%, Chloride by 56.3%, Phosphate by 60%, and Ammonia by 71.1%

<table>
<thead>
<tr>
<th>Number</th>
<th>Discharge</th>
<th>Length(m)</th>
<th>Breadth(m)</th>
<th>Depth (m)</th>
<th>Area (m²)</th>
<th>Retention time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototype</td>
<td>Model</td>
<td>Prototype</td>
<td>Model</td>
<td>Prototype</td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6,472.5</td>
<td>0.4</td>
<td>6,472.5</td>
<td>0.4</td>
<td>6,472.5</td>
<td>0.4</td>
<td>6,472.5</td>
</tr>
<tr>
<td>92.3</td>
<td>19</td>
<td>121.3</td>
<td>2.5</td>
<td>197.9</td>
<td>3.7</td>
<td>179.9</td>
</tr>
<tr>
<td>30.8</td>
<td>0.6</td>
<td>40.4</td>
<td>0.8</td>
<td>60.0</td>
<td>1.3</td>
<td>40.4</td>
</tr>
<tr>
<td>3.0</td>
<td>0.1</td>
<td>1.5</td>
<td>0.1</td>
<td>1.5</td>
<td>0.2</td>
<td>1.5</td>
</tr>
<tr>
<td>2,838.5</td>
<td>1.2</td>
<td>4,903.3</td>
<td>2.1</td>
<td>10,787.4</td>
<td>4.7</td>
<td>4,903.3</td>
</tr>
</tbody>
</table>

*Table 2: Dimensions of the prototype and model WSP*

This percentage removal not withstanding, the effluent quality did not meet the designated standard for Total Nitrogen and Phosphate removal. This corroborates the fact that WSP is not very efficient for nutrient removal (Sells et al., 2018; Lahiri and Ghosh, 2018; dos Santos and van Haandel, 2021). More so, an overall system treatment efficiency of 77.78% was achieved by the WSP model. However, the BOD removal of 81% obtained is lower than the expected for the effluent of the maturation pond (Achag et al., 2021). The reason for this however is a subject of further investigation.

Conclusion: The performance evaluation of a WSP designed to treat wastewater from the Naraguta Campus of the University of Jos was carried out using a physical model. The WSP was able to efficiently reduce all effluent quality parameters to recommended limits with exception of total nitrogen and phosphate. The implementation of this design will go along way to treat wastewater from this campus of the university. The design presented in this study could also be implemented in similar University campus with appropriate modifications.

REFERENCES


