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ABSTRACT: Rainfall-riverflow is crucial for effective hydrology and water resource management. Hence, the 

objective of this study was to evaluate the rainfall-riverflow trends of Enyong Creek in Akwa Ibom State, Nigeria, 

utilizing daily hydro-meteorological data of daily rainfall, river discharge, and temperature data collected from the 
period 2018 to 2023 and modeling the data by Vector Autoregressive (VAR) models. The results show that the VAR 

model successfully captured the dynamic relationships among water discharge (WD), rainfall (RF), and average 

temperature (AVE.TEMP). Equations revealed the influence of past values on the current state of each variable. 

Correlation matrix and graphical representations confirmed model adequacy. Validation results demonstrated the 

model's accuracy, with model R-squared value of 0.8781 indicating a strong correlation. The performance 

measurement of evaluation for the developed model showed a Mean Average Error (MAE), Root Mean Square error 
(RMSE), and Mean Absolute Percentage Error (MAPE) values of 5.5066, 6.7831, and 7.4203 respectively, revealing 

a satisfactory accuracy and precision. Information derived from this study offers valuable insights for government 

officials, policymakers, and planners in accurate flood forecasting, emergency management, land use planning, and 
infrastructure development 
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Stochastic modeling of rainfall-riverflow plays a 

pivotal role in hydrology and the management of water 

resources. The stochastic rainfall-river flow modeling 

involves the use of probabilistic and statistical 

methods to simulate the variability and uncertainty of 

rainfall and river flow patterns (Ahaneku and Otache, 

2014). This methodology utilizes probabilistic and 

statistical approaches to model the variability and 

uncertainty inherent in rainfall-riverflow patterns. The 

significance of stochastic rainfall-riverflow modeling 

is underscored by its contributions to various aspects, 

including comprehending hydrological processes, 

managing floods and droughts, optimizing reservoir 

operations and water allocation, designing 

infrastructure, adapting to climate change, conducting 

risk assessments, facilitating hydropower generation, 

ensuring environmental protection, addressing data-

scarce regions, and supporting research and education. 

Flood forecasting system integrating meteorology, 

hydrology, technology, and communication, is 

instrumental in issuing early warnings to mitigate the 

impacts of flooding. This field continuously advances 

alongside developments in science and technology, 

aiming to enhance the protection of people and 

property against the consequences of this natural 

disaster, flood (WMO, 2023). Floods, recognized as 

one of the most recurring and devastating natural 

hazards, profoundly affect human lives and result in 

substantial economic losses globally (Khan et al., 

2011). It is acknowledged that the risks associated 

with flooding will persist in the future, exacerbated by 

climate change leading to increased intensity and 
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frequency of floods in various regions worldwide 

(Jonkman and Dawson, 2012). Flood occurrences are 

primarily driven by the rapid accumulation and release 

of runoff waters, triggered by intense rainfall. The 

swift rise to peak discharge and subsequent rapid 

decline characterize these events. The prevalence of 

flooding is a significant concern in hydrological and 

natural hazards science, ranking high among natural 

disasters in terms of both global population impact and 

individual fatalities (Borga et al., 2014). The potential 

for flood-related casualties and damages is further 

increasing in numerous regions due to ongoing social 

and economic development, exerting pressure on land-

use, particularly through urbanization. The frequency 

and severity of flood vulnerability are anticipated to 

escalate due to the impacts of global climate change, 

characterized by intense weather events such as heavy 

rainfall and river discharge conditions (Dihn et al., 

2014). Addressing the current trajectory and potential 

future scenarios of flood risks necessitates accurate 

spatial and temporal information on potential hazards 

and risks associated with floods. As reported by Chang 

and Guo (2006), heavy convective rainfall often 

results in flooding in urban areas. The conversion of 

agricultural land, depletion of natural vegetation, and 

population growth in flood-prone areas exacerbate this 

risk, disrupting natural infiltration processes. The 

consequences of flooding vary across regions, with 

Nigeria experiencing its share of flood events resulting 

in significant losses of lives and property. In Nigeria, 

the various factors contributing to flooding, including 

the accumulation of refuse leading to blockages in 

natural waterways, high-intensity rainfall on gentle 

slopes, dam failures, and rapid unplanned settlement 

affecting drainage systems. While complete 

eradication of floods may be impractical, minimizing 

their impact is feasible through a holistic 

understanding of contributing factors. Implementing 

an early warning system becomes crucial for effective 

risk assessment in spatial planning, facilitating 

resource allocation for emergency response teams and 

infrastructure protection. Forecasting plays a 

fundamental role in flood management, guiding 

decisions related to closing flood gates, activating 

protective measures, and enabling communities to 

prepare for potential flooding through evacuations and 

resource provisioning. The components of flood 

forecasting systems encompass data collection, 

involving monitoring weather conditions, river levels, 

snowpack, and soil moisture. Mathematical and 

computational models predict how changes in these 

variables impact river discharge and water levels. 

Warning systems, automated to issue alerts to 

emergency management agencies and the public, and 

effective communication of forecasts are critical 

elements in minimizing flood-related risks and 

protecting human life, property, and natural 

ecosystems. 

 

However, Flood forecasting encompasses various 

types of floods, such as riverine floods, flash floods, 

coastal floods, and urban floods, each requiring 

tailored forecasting methods based on the specific 

flood type and geographical location (Parker and 

Wilby, 2005). Technological advancements over the 

years have significantly enhanced the precision and 

timeliness of flood forecasting, utilizing tools like 

weather radar, satellite imagery, remote sensing, and 

computer modeling to deliver more accurate 

predictions. As a multidisciplinary field integrating 

meteorology, hydrology, technology, and 

communication, flood forecasting aims to provide 

early warnings and mitigate the impacts of flooding 

(Merz et al., 2020). It continually evolves with 

scientific and technological progress to enhance 

protection against this natural disaster. However, it is 

not without challenges, facing uncertainties in weather 

forecasts, the intricate nature of hydrological 

processes, the influence of urbanization on local 

drainage systems, and the necessity for effective 

communication to ensure public responsiveness. 

Public education and community involvement are 

integral aspects, contributing significantly to the 

effectiveness of the forecasting system when 

communities are well-informed about risks and have 

clear guidance on responding to warnings. Historical 

advancements in meteorology and hydrology from the 

late 19th to the early 20th century, including the 

utilization of precipitation data, laid the foundation for 

more comprehensive flood forecasting (Kidd and 

Huffman, 2011). The mid-20th century witnessed the 

introduction of numerical weather models, enhancing 

precipitation forecasting and understanding its 

potential impact on flooding. Concurrently, 

hydrological models, simulating water movement in 

river basins, emerged to improve forecasting accuracy. 

The 21st century has brought challenges from climate 

change, resulting in more frequent and intense rainfall 

events and altered flood patterns. In response, 

forecasting models and techniques are being updated 

to accommodate changing climate conditions (Alfieri 

and Pappenberger, 2019). Recent advancements in big 

data analytics and machine learning enable more 

sophisticated flood forecasting models capable of 

processing and analyzing vast amounts of data in real-

time, thereby improving accuracy and lead time in 

flood predictions. Therefore, this objective of this 

study was to evaluate the rainfall-riverflow trends of 

Enyong Creek in Akwa Ibom State, Nigeria, utilizing 

hydro-meteorological data of daily rainfall, river 

discharge, and temperature data collected from the 
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period 2018 to 2023 and modeling the data by Vector 

Autoregressive (VAR) model. 

 

MATERIALS AND METHODS 
Study Area: The study area is situated between 

latitudes 5°11′ to 5°28′ N and longitudes 7°51′E, 

covering a geographic expanse of 55.63 km2 (Figure 

1). Geologically, the region displays a diverse range of 

formations, ranging from the Asu River Formations 

within the Abakiliki Anticlinorium to recent alluvium 

in the southern part. The Asu River Group 

predominantly underlies the northern section of the 

study area, featuring intense fracturing evident in 

outcrops like those in Uburu. The Albian-aged Asu 

River Group comprises three formations, 

characterized by bluish-grey to olive-brown shales, 

sandy shales, fine-grained micaceous and calcareous 

sandstones, along with some limestones. The 

landscape is marked by structurally controlled ridges, 

denudational hills such as the 150m high Obotme 

conical hill, steep-sided valleys, and geographical 

features like saddles and cols at Obot Ito Ikpo. 

Extensive wetlands and alluvial plains contribute to 

soil covers consisting of silty clay, sandy areas, and 

heavily weathered loamy and alluvial deposits. The 

region experiences a tropical climate, with 

temperatures ranging from 26 to 32º C. Temperature 

fluctuations are relatively uniform, except during the 

dry months when temperature increases are more 

pronounced than during the extended wet period 

(March to October). The proximity to the main Cross 

River Channel results in high humidity levels (84%). 

The average annual rainfall in the basin measures 

2200mm, with a significant contribution from 

southwest tropical maritime air-masses. 

 
Fig. 1: Delineation Map of the Enyong Creek of Aka Ibom State, Nigeria 

 

𝑦𝑡 = 𝛽𝑦0𝛽𝑦𝑦1𝑦𝑡−1 + ⋯ . +𝛽𝑦𝑦𝑝𝑦𝑡−𝑝 + 𝛽𝑦𝑥1𝑥𝑡−1 + ⋯ + 𝛽𝑦𝑥𝑝𝑥𝑡−𝑝 + 𝑣𝑡
𝑦

               1 

𝑥𝑡 = 𝛽𝑥0𝛽𝑥𝑦1𝑦𝑡−1 + ⋯ . +𝛽𝑥𝑦𝑝𝑦𝑡−𝑝 + 𝛽𝑥𝑥1𝑥𝑡−1 + ⋯ + 𝛽𝑥𝑥𝑝𝑥𝑡−𝑝 + 𝑣𝑡
𝑦

                   2 

 

Methods: The vector autoregressive (VAR) model is 

for the analysis of multivariate time series. A VAR 

system contains a set of m variables, each of which is 

expressed as a linear function of p lags of itself and of 

all of the other m–1 variable, plus an error term, ɛ. 

With two variables, x and y, an order-p VAR would be 

the two equations 1 and 2;  

 

The model development process included:  

 

Data Exploration: Visualization of the data was 

carried out to understand the patterns, trends, and 

seasonality present in each time series. Equally, the 

data summary statistics was calculated and identify 

any apparent correlations between the variables. 

 

Data Stationarity: The VAR models assume that the 

data is stationary. Performing stationarity tests (e.g., 

Augmented Dickey-Fuller) for each time series to 
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check for non-stationarity was mandatory and it was 

carried out.  

 

Model Order Selection: To determine the appropriate 

lag order for the VAR model. The use of information 

criteria like AIC, BIC, or Ljung-Box tests to select the 

lag order that best fits the data were employed. 

Data Splitting: The dataset was divided into training 

and testing sets. The training set was used to estimate 

the VAR model, and the testing set for model 

evaluation. 

 

VAR Model Estimation: I used Python libraries like 

Statsmodels to estimate the VAR model. For example, 

“python: from statsmodels.tsa.api import VAR 

model = VAR(train_data) 

model_fitted = model.fit(4)” 

 

Forecasting: Using the fitted VAR model to make 

forecasts for water discharge, rainfall, and average 

temperature into the future. 

“python: 

forecast = model_fitted.forecast(model_fitted.y, 

steps=n_steps)” 

 

Model Evaluation: Comparing the model's forecasts to 

the actual values in the testing set using appropriate 

evaluation metrics such as the Mean Average Error 

(MAE), Root Mean Square Error (RMSE), Mean 

Absolute Percentage Error (MAPE), and R-Squared 

(R2) were used to determine the performance of the 

models developed. 

 

Interpretation: Analysing the VAR model's 

coefficient matrices to understand the causal 

relationships between the variables and their lagged 

effects was carried out. 

 

Visualization: Visualization of the model's forecasts 

and comparing them to the observed data to assess the 

model's performance was also carried out. The 

structural block diagram of the Vector autoregressive 

model development is shown in Figure 2 

 

 
Fig 2: The structural Block Diagram of Vector Autoregressive Model Development (Source: Helmut Luetkepohl, 2007) 

 

RESULTS AND DISCUSSION 
The VAR model was modeled evaluated and compared on a number of 

different factors. The numerical and graphical assessment of their 

performance in terms of accuracy, reliability, and lead time for flood 

forecasting were determined. The descriptive graph representation of 

data visualizing to know whether the parameters (Water Discharge 

(WD), Rainfall (RF), and Average Temperature (AVE.TEMP)) data is 

stationary or non-stationary is shown in Figure 2 The data graph 

visualization for the Water Discharge(WD) is represented as blue color, 

rainfall Humidity(RH) is represented as orange color and Average 

Temperature (AVG_TEMP) is represented as green color.  

 

From Figure 2, the dataset was 

subjected to the AD-fuller test, 

however, it was discovered that that 

AD Statistic of -

3.9194437722354185 was less than 

the three Critical Values: {'1%': -

3.4339700129534423, '5%': -

2.8631390341376393, '10%': -

2.567621272963846} and a p-

value: 0.0018963213250938582 

signifying it is a stationary time 

series data set.  The VAR model 
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statistical summary for the three parameters used are given in Tables 1 

to 4 

 

 
Fig 2: The structural Block Diagram of Vector Autoregressive Model Development 

 

 
Table 1: The Statistical Summary of Regression Results 

Model: VAR 

Method:  OLS  

Date:  Fri, 20, Oct, 2023  

Time:  11:25:14  

No. of Equations: 3.00000 BIC:  6.69601 

Nobs:  1791.00 HQIC: 6.62060 

Log likelihood: -13474.2 FPE: 717.990 

AIC:   6.57645 Det (Omega_mle): 702.579 

 
Table 2: The Statistical Summary Results for Water Discharge (WD) equation 

 coefficient std. error t-stat prob. 

Const. -30.735576 25.522443 -1.204 0.228 

L1.WD 0.977359 0.023688 41.260 0.000 

L1.RF -0.043293 0.165075 -0.262 0.793 

L1.AVG_TEMP -0.484993 0.748628 -0.648 0.517 

L2.WD -0.101073 0.033137 -3.050 0.002 

L2.RF 0.265705 0.179884 1.477 0.140 

L2.AVG_TEMP 0.994903 0.884948 1.124 0.261 

L3.WD 0.048196 0.033140 1.454 0.146 

L3.RF 0.012498 0.179491 0.070 0.944 

L3.AVG_TEMP -0.819405 0.886125 -0.925 0.355 

L4.WD -0.031498 0.023760 -1.326 0.185 

L4.RF 0.002013 0.157492 0.013 0.990 

L4.AVG_TEMP 1.034040 0.751513 1.376 0.169 

 

Table 3: Statistical Summary Results for equation RF 

 Coefficient Std. Error T-Stat Prob. 

Const. 15.357379 4.340417 3.538 0.000 

L1.WD 0.002701 0.004028 0.670 0.503 

L1.RF 0.483552 0.028073 17.225 0.000 

L1.AVG_TEMP 1.146141 0.127314 9.002 0.000 

L2.WD 0.004758 0.005635 0.844 0.398 

L2.RF 0.050206 0.030591 1.641 0.101 

L2.AVG_TEMP -0.436397 0.150497 -2.900 0.004 

L3.WD -0.007552 0.005636 -1.340 0.180 

L3.RF 0.161872 0.030525 5.303 0.000 

L3.AVG_TEM -0.040890 0.150697 -0.271 0.786 

L4.WD 0.001745 0.004041 0.432 0.666 

L4.RF 0.100994 0.026784 3.771 0.000 

L4.AVG_TEM -0.581518 0.127804 -4.550 0.000 

 

The Vector Autoregressive (VAR) 

model statistical summary 

generated contains the results for a 

multivariate time series analysis 

involving three variables: WD 

(Water Discharge), RF (Rainfall), 

and AVG. TEMP (Average 

Temperature). The VAR models 

were used to understand the 

relationships and dependencies 

between the multiple time series 

variables. The Significance of 

number of equations the model 

specifies are of three equations, one 

for each variable WD, RF, and 

AVG. TEMP, respectively. Each 

equation represents how the current 

value of a variable depends on its 

own past values and the past values 

of the other variables. The BIC, 

HQIC, AIC information criteria are 

information criteria that was used 

for the model selection. The lower 

values indicate better model fit. In 

this case, the BIC, HQIC, and AIC 

values were used for selecting the 

lag order of the VAR model. Also, 

the log likelihood measures the 

goodness of fit of the model to the 

data. less negative values indicating 

better fit. However, the FPE (Final 

Prediction Error) is another measure 

of model adequacy. Smaller values 

indicate a better model fit. The VAR 

model equations developed is given 

in equations 3 to 5. The equations 

appear to be a set of simultaneous 

equations that represent a system of 

dynamic relationships between 

three variables: WDt (Water 

Discharge at time t), RFt (Rainfall at 

time t), and ATt (Average 

Temperature at time t). 

 

𝑊𝐷𝑡

=  0.977359 𝑊𝐷𝑡−1

−  0.101073 𝑊𝐷𝑡−2            1  
 

This equation relates the current 

Water Discharge (WDt) to its values 

in the two previous time steps (WDt-

1 and WDt-2). It implies that the 

current Water Discharge is 

influenced by its past values. The 

positive coefficient (0.977359) on 

WDt-1 suggests a positive auto-
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regressive effect, meaning that if the water was discharged in a particular 

level in the previous time step, it is likely to continue in that level.  

 
Table 4: The Statistical Summary Results for equation AVGTEMP 

 Coefficient Std. Error T-Stat Prob. 

Const.  6.767784 0.963164 7.027 0.000 

L1.WD 0.001535 0.000894 1.717 0.086 

L1.RF -0.017099 0.006230 -2.745 0.006 

L1.AVG_TEMP 0.463519 0.028252 16.407 0.000 

L2.WD -0.001513 0.001251 -1.210 0.226 

L2.RF 0.008803 0.006788 1.297 0.195 

L2.AVG_TEMP 0.093533 0.033396 2.801 0.005 

L3.WD 0.000501 0.001251 0.400 0.689 

L3.RF -0.009163 0.006774 -1.353 0.176 

L3.AVG_TEMP 0.095567 0.033440 2.858 0.004 

L4.WD 0.000515 0.000897 0.574 0.566 

L4.RF -0.003088 0.005943 -0.520 0.603 

L4.AVG_TEMP 0.156961 0.028361 5.535 0.000 

 
Table 5: The Correlation matrix of the developed model residuals 

S/No. WD RF AVG_TEMP 

WD 1.000000 -0.003291 -0.002285 

RF -0.003291   1.000000 -0.549146 

AVG. TEMP    -0.002285 -0.549146   1.000000 

 

The negative coefficient (-0.101073) on WDt-2 implies a negative auto-

regressive effect, indicating that the Water Discharge may have a 

tendency to change, dampened by the value two-time steps ago. 

 

 𝑅𝐻𝑡  =  15.357379 +  0.483552𝑅𝐻𝑡−1  +  1.146141 𝐴𝑇𝑡−1   
− 0.436397 𝐴𝑇𝑡−2  +  0.161872  𝑅𝐻𝑡−3  
+  0.100994  𝑅𝐻𝑡−4      − 0.581518𝐴𝑇𝑡−4            2 

 

This rainfall equation models (Equation 4.4) the current rainfall (RFt) as 

a function of several factors. It includes an intercept term of 15.357379, 

the auto-regressive terms RFt-1, RFt-3, and RFt-4, the lagged effects of 

average temperature (ATt-1 and ATt-2). The equation suggests that 

current rainfall is influenced by its past values and average temperature 

in previous time steps. Positive coefficients on the RF terms indicate a 

positive auto-regressive effect, while negative coefficients on the AT 

terms imply a dampening effect on rainfall. This equation essentially 

describes the dynamic relationship between rainfall and these variables. 

 

      𝐴𝑇𝑡 =  6.767784 − 0.017099 𝑅𝐻𝑡−1    +  0.463519 𝐴𝑇𝑡−1  
+  0.093533 𝐴𝑇𝑡−1  +  0.095567 𝐴𝑇𝑡−3  
−  0.156961 𝐴𝑇𝑡−4          3 

 

This equation models the current Average temperature (ATt) as a 

function of various factors. It includes an intercept term (6.767784), 

auto-regressive effects (ATt-1, ATt-2, ATt-3, and ATt-4), and a lagged 

effect of rainfall (RFt-1). The equation implies that the current Average 

temperature is influenced by its past values and the previous value of 

rainfall. The coefficients on these terms indicate how much impact these 

variables have on the current Average temperature.  

 

The significance of these equations lies in their ability to capture the 

dynamics and interactions among water discharge, rainfall, and Average 

temperature. By estimating the coefficients, you can quantify the 

relationships and predict how changes in these variables at different time 

steps will affect one another. These 

equations can be used in various 

fields, including meteorology and 

environmental science, to model 

and predict weather-related 

variables. 

 

The Results for Equation WD, 

Equation 3, provides the 

coefficients, standard errors, t-

statistics, and p-values for the 

lagged values of the WD variable.  

The L1. WD has a coefficient of 

0.977359, suggesting that the 

current water discharge (WD) is 

positively influenced by its previous 

value.  

 

Also, Results for RF Equation, 

Equation 4, provides similar 

information for the Rainfall (RF) 

variable. It shows how the current 

RF depends on its own past values 

and the past values of WD and 

AVG.TEMP. The L1. RF has a 

coefficient of 0.483552, indicating 

that the current RF is positively 

influenced by its previous value.  

The Results for AVG. TEMP 

Equation, Equation 5, provides 

results for the AVG.  

 

TEMP variable. It shows how the 

current temperature depends on its 

past values and the past values of 

WD and RF. For example, L1.AVG. 

TEMP has a coefficient of 

0.463519, suggesting that the 

current temperature is positively 

influenced by its previous value.  

The model Correlation Matrix of 

Residuals is given in Table 5: The 

correlation matrix shows the 

relationships between the residuals 

of the equations (errors that are not 

explained by the model).  

 

A correlation close to -1 or 1 

suggests a strong linear relationship 

between the corresponding 

residuals. The descript modeled 

graph for the three parameters used 

for the developed VAR model are 

shown in Figures 3 to 5 
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Fig 3: The descript graph of the actual Vs. the predicted graph of the developed 

 

 
Fig 4: The descript graph of the actual Vs. the predicted graph of the developed 

 

 
Fig 5: The descriptive graph of the actual Vs. the predicted graph of the developed 

 
Fig 6: The descriptive graph of the actual Vs. the predicted graph for the next day’s 

forecast for the VAR model 

The descriptive graph from Figure 3 

to 5 shows that the validation model 

graph performed very well as it was 

observed that the predicted line 

followed in a consistence pattern to 

the actual data. Though there were 

little or non-significant deviation 

from the actual but, generally, made 

a good model. From Figure 3, the 

model validation graph for the water 

discharge shows that the model only 

over predicted the actual dataset 

from the 20th to the 28th of August 

2023 while the rainfall validation 

model as shown in Figure 4, under-

predicted only on the 15th and the 

28th of August 2023, as well as, the 

Average Temperature validation 

graph as shown in Figure 5. The 

Figure 6 shows that the model made 

a good prediction with R-squared 

value of 0.9873. This value of R-

squared gotten from the forecasted 

model indicate a very strong 

correlation with the actual dataset. 

The performance evaluation 

measurement results for the 

developed VAR model is given in 

Tables 6 to 8 The performance 

evaluation for the water discharge as 

shown in Table 6 reveal that the 

Mean Absolute Error (MAE) 

measures the average absolute 

difference between the actual values 

and the predicted values by the VAR 

model. The significance of a lower 

MAE indicates that the model's 

predictions are closer to the actual 

data points on average. It measures 

the model's accuracy in terms of the 

absolute error, regardless of the 

direction (overestimation or 

underestimation). The implications 

of an MAE of 5.5066 means that, on 

average, the model's predictions for 

water discharge differ from the 

actual values by approximately 

5.5066 units. Likewise, the Root 

Mean Squared Error is a measure of 

the square root of the average of the 

squared differences between the 

actual and predicted values. The 

significance: Like MAE, RMSE 

quantifies the model's accuracy, but 

it penalizes larger errors more 

heavily since it involves squaring 
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the errors. It's a popular choice when giving more weight to larger errors. 

The implications of an RMSE of 6.7831 means that, on average, the 

model's predictions for water discharge differ from the actual values by 

approximately 6.7831 units, with a stronger emphasis on larger errors.  
 

Table 6: The performance evaluation measurement results for the developed Water 

Discharge VAR model 

S/No. Evaluation Parameter Evaluation 

Measurement 

1 Mean Average Error (MAE) 5.5066 

2 Root Mean Square error (RMSE) 6.7831 

3 Mean Absolute Percentage Error (MAPE) 7.4203 

4 R-Squared (R2) 0.8781 

 

Table 7: The performance evaluation measurement results for the developed Rainfall 

VAR model 

S/No. Evaluation Parameter Evaluation 

Measurement 

1 Mean Average Error (MAE) 2.2178 

2 Root Mean Square error (RMSE) 2.9414 

3 Mean Absolute Percentage Error (MAPE) 2.4153 

4 R-Squared (R2) 0.9220 

 

Table 8: The performance evaluation measurement results for the developed Average 

Temperature VAR model 

S/No. Evaluation Parameter Evaluation 

Measurement 

1 Mean Average Error (MAE) 0.8204 

2 Root Mean Square error (RMSE) 0.9392 

3 Mean Absolute Percentage Error (MAPE) 3.2626 

4 R-Squared (R2) 0.9017 

 

Also, the Mean Absolute Percentage Error (MAPE) measures the 

average percentage difference between the actual values and the 

predicted values, making it a relative error metric. The significance of 

MAPE is useful for understanding the model's accuracy in terms of 

percentage errors. It's especially informative when to assess the model's 

performance relative to the scale of the data. From Table 6, the 

implications of a MAPE of 7.4203% means that, on average, the model's 

predictions for water discharge differ from the actual values by 

approximately 7.4203% in terms of relative error. However, the R-

squared, also known as the coefficient of determination, measures the 

proportion of the variance in the dependent variable (water discharge in 

this case) that is explained by the independent variables (the VAR model 

predictions) provides insights into how well the model fits the data. An 

R2 value of 0.8781 which is close to +1 suggests that the model explains 

a substantial portion of the variance in the data. It indicates that 

approximately 87.81% of the variability in water discharge can be 

accounted for by the VAR model, which suggests that the model is 

providing a good fit to the data. Generally, these validation metrics help 

assess the accuracy, precision, and goodness of fit of your VAR model 

for water discharge. A low MAE, RMSE, and MAPE indicate good 

prediction accuracy, while a high R-squared suggests that the model is a 

good fit for the data. These metrics collectively provide a comprehensive 

evaluation of the model's performance and can help determine its utility 

in making forecasts or predictions.  

 

Conclusion: The study employed Vector Autoregressive models (VAR) 

for rainfall-riverflow modeling of Enyong Creek, Akwa Ibom State, 

Nigeria. The model effectively captured the dynamic relationships 

between water discharge, rainfall, and average temperature, 

demonstrating its potential for flood 

forecasting in the region. It 

improves early warning systems for 

proactive disaster preparedness and 

management with emphasizes on 

the importance of incorporating 

advanced modeling techniques for 

disaster risk reduction. 
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