Assessment of the Antimicrobial Potency of Unripe Plantain Fruits and Peelings Extracts against *Escherichia coli*, *Staphylococcus aureus* and *Salmonella typhi*

1OKOH, EI; 2IMMANUEL, OM

1Department of Microbiology, Ambrose Alli University, Ekpoma, Edo State, Nigeria.  
2Department of Biological Science, University of Africa, Toru-Orua, Bayelsa State, Nigeria.

*Corresponding Author Email: immanuelomega@gmail.com  
*ORCID: https://orcid.org/0000-0002-4714-5069  
*Tel: +23407034545905

Co-author email: okohenivweru@aauekpoma.edu.ng

ABSTRACT: The objective of this paper was to assess the antimicrobial potency of unripe plantain fruits and peelings extracts against *Escherichia coli*, *Staphylococcus aureus* and *Salmonella typhi* using disc diffusion technique, with ciprofloxacin as control. The Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs) were determined using 100 mg/ml, 75 mg/ml, 50 mg/ml and 25 mg/ml concentrations of each extract. Phytochemicals detected in the extracts were flavonoids, glycosides, tannins, alkaloids and phenol. All isolates were susceptible to the extract at the highest concentration of 100 mg/ml. At the lowest concentration of 25 mg/ml, *E. coli* showed resistance, while *Salmonella typhi* and *Staphylococcus aureus* showed intermediate resistance to the extract. The MIC and MBC of the extract on the test organisms were 14 and 20 mg/ml for *E. coli*; 25 and 16 mg/ml for *Salmonella typhi* whereas it was 100 mg/ml and 15 mg/ml for *Staphylococcus aureus*. *E. coli* was more susceptible to the extract and *Staphylococcus aureus* was the least. The results revealed the presence of phytochemicals with antimicrobial properties against *E. coli*, *Staphylococcus sp.* and *Salmonella sp.* Thus, unripe plantain fruits and peelings could be harnessed for the control of *E. coli*, *Staphylococcus aureus* and *Salmonella sp.*, as natural antibiotics.

DOI: https://dx.doi.org/10.4314/jasem.v28i7.18

Open Access Policy: All articles published by JASEM are open-access articles and are free for anyone to download, copy, redistribute, repost, translate and read.

Copyright Policy: © 2024. Authors retain the copyright and grant JASEM the right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC-BY-4.0) License. Any part of the article may be reused without permission, provided that the original article is cited.

Cite this Article as: OKOH, E. I; IMMANUEL, O. M. (2024). Assessment of the Antimicrobial Potency of Unripe Plantain Fruits and Peelings Extracts against *Escherichia coli*, *Staphylococcus aureus* and *Salmonella typhi*. J. Appl. Sci. Environ. Manage. 28 (7) 2063-2067

Dates: Received: 21 May 2024; Revised: 17 June 2024; Accepted: 23 June 2024 Published: 02 July 2024

Keywords: *Escherichia coli*, natural antibiotics, *Staphylococcus aureus*, *Salmonella typhi*, phytochemicals, unripe plantain

Medicinal plants are commonly used as remedies for many diseases, as they are considered alternative therapeutic tools in healthcare (Alese et al., 2017). Medicinal plants contain bioactive compounds, with a broad range of functions including killing of microorganisms and inhibition of microbial activities (Albertyn et al., 2015; Hosseinzadeh et al., 2015; Jaiswal et al., 2016). The utilization of medicinal plants is a typical practice in many societies all over the world, although more popular in African and Asian societies. The modern crave for organic products has aided the widespread acceptance in the developed nations, even as research are beginning to point to the efficacy of medicinal plants (Ajiboye et al., 2018). Medicinal plant with antimicrobial properties are gaining considerable interest as a result of their effectiveness, low cost and the availability, high cost of orthodox medicines, inadequacy of modern healthcare and above all, as a result of the safety of synthetic drugs and resistance to antimicrobial agents (Verpoorte, 2017; Okaba et al., 2022).
Antibiotics revolutionized modern health and they are regarded as greatest achievements in medicine in modern time. Nevertheless, as microorganisms began to develop resistance to antibiotics, their suitability for sustainable management of infectious disease is now being questioned. With the advent of antibiotics resistance by disease-causing microorganisms, attention is shifting to alternative medicine. Thus, traditional medicine, once relegated as folk medicine, is now making a resurgence (Verpoorte, 2017; Amaeze et al., 2018). Indeed, antibiotic resistance and perceived safety of synthetic drugs are key reasons for their acceptance in the developed world (Zhang et al., 2015), although acceptance in the developing nations is mainly due to cost, limited and restricted access to orthodox medicine (WHO, 2013). Acceptance of the use of herbal medicine worldwide is chiefly because of its natural origin (Zhang et al., 2015; Chatfield et al., 2018).

Herbal medicine or phytomedicine exploits the medicinal potency of roots, stems, herbs, nectar, rhizome, barks and any plant part that can be applied for therapeutic purposes (Bruno et al., 2018; Chatfield et al., 2018; Shakib et al., 2019). The use of plants in folk medicine is not new and their perceived health benefit have been well documented (Rojas et al., 2006; Shodehinde et al., 2015; Amutha and Selvakumari, 2016; Asuquo and Udobi, 2016).

Plantain (Musa paradisiaca), a major food crops in some parts of Africa, is used in its unripe form in Nigeria mainly for the management of diabetes mellitus (Agarwal et al., 2009; Eleazu et al., 2013; Famakin et al., 2016; Jaiswal et al., 2016). Because plantain serves dietary and nutritional needs, its curative function has not been fully explored.

There are however, few reports on the antimicrobial activities of plantain against several microorganisms including bacteria, fungi and viruses. Plantain has been reported as efficacious for wound healing (Shodehinde et al., 2015) and bactericidal against species of Escherichia and Staphylococcus (Asoso et al., 2016).

The therapeutic efficacy of plantain has been reported to be on account of its phytochemicals including flavonoid, glycosides and phenolic compounds (Agarwal et al., 2009; Eleazu et al., 2013; Famakin et al., 2016; Amutha and Selvakumari, 2016).

Hence, the objective of this paper was to assess the antimicrobial potency of unripe plantain fruits and peelings extracts against Escherichia coli, Staphylococcus aureus and Salmonella typhi using disc diffusion technique, with ciprofloxacin as control.

### MATERIALS AND METHODS

#### Collection of plantain samples: The unripe peels and fruits were obtained from fresh unripe plantains purchased from Market Square, Ekpoma, Edo State, Nigeria. The peels and fruits were dried and ground to powder using a milling machine (Silver Crest D-P2030D).

#### Collection of test bacteria: The tests isolates viz. Escherichia coli, Staphylococcus aureus and Salmonella typhi were obtained from Irrua Specialist Teaching Hospital, Irrua, Edo State. The organisms were collected on sterile agar slants and incubated at 37°C for 48hours in the laboratory, and preserved in the refrigerator at 4°C. The organisms were identified by their colony morphology using Nutrient Agar for Staphylococcus aureus, Eosin Methylene Blue for Escherichia coli, and Blood Agar for Salmonella typhi and by their biochemical profile upon Gram staining, catalase, oxidase, Voges-Proskauer, methyl-red, citrate, sugar fermentation and motility tests.

#### Extraction of plantain peel and fruit: The extraction was carried out by steeping in ethanol, as depicted by Doherty et al. (2010) with slight changes. Forty grams (40g) of the ground sample was soaked in 100ml of ethanol for 3 days, and thereafter filtered with muslin cloth and further filtered using Whatman filter paper. The filtrate was concentrated in a rotary evaporator. A stock concentration of the extract was prepared by dissolving 4g of extract in 40ml of Dimethyl sulfoxide (DMSO), from which the different concentrations used were calculated.

#### Antibiotic Susceptibility Test: Different concentrations (25, 50, 75 and 100mg/ml) of the ethanol extracts were prepared with sterile distilled water in sterile test tubes. Standardized concentrations (McFarland 0.5) of overnight cultures of test isolates were aseptically swabbed on agar plates. Sterile discs impregnated with the 25, 50, 75 and 100mg/ml of the extracts and were gently placed on the appropriately labeled plates. Standard antibiotic discs containing Ciproflox (10μg) served as control. Plates were incubated at 37°C 24hours. Clear zones around the discs were measured to ascertain the degree of susceptibility of the test bacteria.

#### Determination of Minimum inhibitory Concentration and Minimum Bactericidal Concentration: The MIC of the extracts was determined as per the method of Adebayo et al. (1989). Double-folds serial dilutions were prepared with the extract in nutrient broth and inoculated with test isolates. The culture was incubated at 37°C for 48hours. The smallest concentration at which growth was inhibited was taken.
as the MIC. The MBC was determined as the lowest concentration of the extract that killed the test organisms.

**Phytochemical Screening of Extracts:** Qualitative phytochemical screening of the extracts for the presence of tannins, flavonoids, alkaloid, glycosides and phenol, followed the procedures described by Shah et al. (2014).

**RESULTS AND DISCUSSION**

The results of this study showed that all the phytochemicals (tannins, flavonoids, alkaloid, glycosides and phenol) tested were all detected in the extract. Table 1 shows the morphology, gram reaction and biochemical characteristics of test isolate. The results confirmed the test isolates as *E. coli*, *Salmonella typhi* and *Staphylococcus aureus*. The antibacterial activity of the plant extracts is presented on Tables 2. All isolates were susceptible to the extract at the highest concentration of 100 mg/ml. At the lowest concentration of 25 mg/ml, *E. coli* showed resistance, while *Salmonella typhi* and *Staphylococcus aureus* showed intermediate resistance.

Table 3 shows the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the unripe plantain fruits and peelings extracts on the test organisms. The MIC and MBC were 14 and 20 mg/ml for *E. coli*, 25 and 16 mg/ml for *Salmonella typhi* whereas it was 100 mg/ml and 15 mg/ml for *Staphylococcus aureus*. *E. coli* was more susceptible to the extract and *Staphylococcus aureus* was the least.

Table 1: Characteristics of test bacteria

<table>
<thead>
<tr>
<th>Cultural characteristics</th>
<th>Gram reaction/ Morphology</th>
<th>MOT</th>
<th>OXI</th>
<th>IND</th>
<th>CIT</th>
<th>CAT</th>
<th>URE</th>
<th>COA</th>
<th>CLU</th>
<th>MAL</th>
<th>SUC</th>
<th>LAC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Round pinkish colonies</td>
<td>Gram -ve rod</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A/G</td>
<td>A/G</td>
<td>A</td>
<td>A</td>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorless with black center</td>
<td>Gram -ve rod</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>Salmonella typhi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth, round golden yellow cluster</td>
<td>Gram + or non Spores forming rod</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Staphylococcus aureus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: Mot: Motility; Oxi: Oxidase; Ind: Indole; Cit: Citrate; Cat: Catalase; Ure: Urease; Coa: Coagulase; Glu: Glucose, Mal: Malrose, Suc: Sucrose; Lac: Lactose; +: Positive; -: Negative; A/G: Acid and Gas Production; A: Acid production

Table 2: Antibiotic susceptibility test of ethanol extract of unripe plantain fruits and peelings against test bacteria

<table>
<thead>
<tr>
<th>Test isolate</th>
<th>Extract Concentration (mg/ml)</th>
<th>100</th>
<th>75</th>
<th>50</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Escherichia coli</em></td>
<td>27mm</td>
<td>25mm</td>
<td>22mm</td>
<td>3mm</td>
<td></td>
</tr>
<tr>
<td><em>Salmonella typhi</em></td>
<td>26mm</td>
<td>26mm</td>
<td>19mm</td>
<td>14mm</td>
<td></td>
</tr>
<tr>
<td><em>Staphylococcus aureus</em></td>
<td>26mm</td>
<td>18mm</td>
<td>18mm</td>
<td>15mm</td>
<td></td>
</tr>
</tbody>
</table>

Range: Resistance<13; Intermediate-14 to 17; Sensitive-17 and above

Table 3: Minimum inhibitory and minimum bactericidal concentrations of ethanol extract of unripe plantain against test bacteria

<table>
<thead>
<tr>
<th>Test isolate</th>
<th>Extract Concentration (mg/ml)</th>
<th>MIC</th>
<th>MBC</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Escherichia coli</em></td>
<td>14</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td><em>Salmonella typhi</em></td>
<td>25</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td><em>Staphylococcus aureus</em></td>
<td>100</td>
<td>100</td>
<td>15</td>
</tr>
</tbody>
</table>

In this study the antimicrobial effect of the ethanol extract of unripe plantain fruits and peelings was determined. The antimicrobial properties of plant extract have been attributed to the presence of secondary metabolites (Ugboko et al., 2020). The results of phytochemicals analysis of unripe plantain fruits and peelings extract showed that all the phytochemicals (tannins, flavonoids, alkaloid, glycosides and phenol) were present. These phytochemicals are commonly reported phytochemicals in plantain. Abdullah et al. (2024) characterised the phytochemicals in plantain to include tannins, flavonoids, alkaloid, glycosides, phenol, as well as steroids and saponins. Shodehinde and Oboh (2013) reported phenol and flavonoid as the main aqueous extracts of unripe plantain responsible for antioxidant activity monitored in rat. All test isolates (*E. coli, Salmonella typhi* and *Staphylococcus aureus*) were found to be susceptible to the extract at concentrations around 50-100 mg/ml. The extract showed more activity against the Gram negative bacteria (*E. coli* and *Salmonella typhi*) at concentrations of 50 and 75 mg/ml. However, at the lowest concentration of 25 mg/ml, *E. coli* was resistant to the extract, while *Salmonella typhi* and *Staphylococcus aureus* showed intermediate results. Our results are in contrast with findings of other researchers (Okaba et al., 2022) that reported that most
The MIC and MBC of the ethanol extract of unripe plantain peelings and fruits were 14 and 20 mg/ml for \textit{E. coli}, \textit{Salmonella typhi} and \textit{Staphylococcus aureus} respectively, which confirms that unripe plantain fruits and peels contain antimicrobial compounds. The sensitivity of isolates in the present study was higher than reported by Asoso et al. (2016), perhaps because the present study used a mixture of both the fruit and the peel of the plant. Again, plants could differ in their phytochemical composition both in types and concentration, owing to the growing condition and the extraction method, which could explain the high susceptibility of both Gram positive and Gram negative bacteria in this study compared to other studies.

The MIC and MBC of the ethanol extract of unripe plantain peels and fruits were 14 and 20 mg/ml for \textit{E. coli}; 25 and 16 mg/ml for \textit{Salmonella typhi} whereas it was 100 mg/ml and 15 mg/ml for \textit{Staphylococcus aureus}. \textit{E. coli} and \textit{Salmonella typhi} were more susceptible to the extract at lower concentration and \textit{Staphylococcus aureus} was susceptible at higher concentration. This suggest that lower concentrations of the extract would be needed for the control of \textit{E. coli} and \textit{Salmonella typhi}, which is very good, given that Gram negative bacteria have been reported to be less susceptible to plant extract. However, the MIC and MBC reported in this study are lower than values reported Asoso et al. (2016) for all isolates. In general, plant materials with antimicrobial properties can cause granular cytoplasm, cytoplasmic membrane rupture, and inactivation or inhibition of enzymes activity at sufficiently high concentrations relative to synthetic antibiotics (Iwu et al., 1999; Ugboko et al., 2016). The advantage in the use of natural antibiotics from plant materials is in their safety and low resistance (Okaba et al., 2022).

Conclusion: This study has demonstrated that the ethanol extract of unripe plantain contains phytochemical with bioactive function as clinical isolates (\textit{E. coli}, \textit{Salmonella typhi} and \textit{Staphylococcus aureus}). The specific phytochemical compounds exhibiting the antimicrobial effects on the test isolates need to be identified and utilized in drug formulation against pathogenic microorganisms.

REFERENCES

Abdullah, R; Younas, Q; Kaleem, A; Iqtedar, M; Aftab, M; Saleem F (2024). Phytochemical and antimicrobial properties of different plants and in silico investigation of their bioactive compounds in wound healing and rheumatism. Saudi J. Biol. Sci. 31(3):103942. https://doi.org/10.1016/j.sjbs.2024.103942


Asoso, OS; Akharaiyi, FC; Animba, LS (2016). Antibacterial Activities of Plantain (\textit{Musa paradisiaca}).

OKOH, E. I; IMMANUEL, O. M.
Assessment of the Antimicrobial Potency of Unripe Plantain Fruits and Peelings…

Musa paradisiaca Peel and Fruit. Der. Pharmacia Lettre. 8 (5):5-11.

Asuquo, EG; Udobi, CE (2016). Antibacterial and toxicity studies of the ethanol extract of Musa paradisiaca leaf. Cogent Biol. 2:1219248


Ugboko, HU; Nwinyi, OC; Onausi, SU; Fatoki, TH; Omonhinmin CA (2020). Antimicrobial importance of medicinal plants in Nigeria. Sci. World J. 1 (1): 1-10. 10.1155/2020/7059323


Zhang, J; Onakpoya, IJ; Posadzki, P; Eddouks, M (2015). The safety of herbal medicine: from prejudice to evidence. Evid Based Complement Altern Med. 316706

OKOH, E. I; IMMANUEL, O. M.